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Preface

The 10th International Conference on Developments in Language Theory (DLT
2006) was held at the University of California, Santa Barbara, USA on June
26–29, 2006. This was the first DLT conference to take place in North Amer-
ica. Past meetings were held in Turku (1993), Magdeburg (1995), Thessaloniki
(1997), Aachen (1999), Vienna (2001), Kyoto (2002), Szeged (2003), Auckland
(2004), and Palermo (2005). The conference series is under the auspices of the
European Association for Theoretical Computer Science.

The scope of the conference includes topics in the following areas: gram-
mars, acceptors and transducers for strings, trees, graphs, arrays; efficient text
algorithms; algebraic theories for automata and languages; combinatorial and
algebraic properties of words and languages; variable-length codes; symbolic dy-
namics; decision problems; relations to complexity theory and logic; picture de-
scription and analysis; polyominoes and bidimensional patterns; cryptography;
concurrency; bio-inspired computing; quantum computing.

This volume of Lecture Notes in Computer Science contains the papers that
were presented at DLT 2006, including the abstracts or full papers of four invited
lectures presented by Rajeev Alur, Yuri Gurevich, Gheorghe Paun, and Grzegorz
Rozenberg.

The 36 contributed papers were selected from 63 submissions. Each submitted
paper was reviewed by three Program Committee members, with the assistance
of external referees. The authors of the papers came from the following countries
and regions: Canada, Czech Republic, Finland, France, Germany, Greece, Hong
Kong, Hungary, India, Italy, Japan, Korea, The Netherlands, Poland, Romania,
Russia, South Africa, Spain, Sweden, the UK, and the USA.

A great many contributed to the success of DLT 2006. We extend our sincere
thanks to the authors who submitted papers and to all those who gave presenta-
tions. We express our appreciation to the members of the Program Committee
and their colleagues who assisted in the review process. To our invited speakers,
we thank you for sharing your insights and expertise. We would like to acknowl-
edge the work of the Organizing Committee, who thoughtfully and energetically
planned the event over the course of months. To members of the Steering Com-
mittee, we are grateful for your counsel. Finally, we wish to recognize the kind
support of the conference sponsors: Ask.com, Citrix, Google, and UCSB’s De-
partment of Computer Science, College of Engineering, and Graduate Division.

June 2006 Oscar H. Ibarra
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Gheorghe Păun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Computational Nature of Biochemical Reactions
A. Ehrenfeucht, G. Rozenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Papers

Polynomials, Fragments of Temporal Logic and the Variety DA over
Traces

Manfred Kufleitner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Weighted Automata and Weighted Logics on Infinite Words
Manfred Droste, George Rahonis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Simulation Relations for Alternating Parity Automata and Parity Games
Carsten Fritz, Thomas Wilke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Equivalence of Functions Represented by Simple Context-Free
Grammars with Output

Cédric Bastien, Jurek Czyzowicz, Wojciech Fraczak,
Wojciech Rytter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

On the Gap-Complexity of Simple RL-Automata
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Adding Nesting Structure to Words

Rajeev Alur1 and P. Madhusudan2

1 University of Pennsylvania, USA
2 University of Illinois at Urbana-Champaign, USA

1 Introduction

We propose nested words to capture models where there is both a natural linear
sequencing of positions and a hierarchically nested matching of positions. Such
dual structure exists for executions of structured programs where there is a
natural well-nested correspondence among entries to and exits from program
components such as functions and procedures, and for XML documents where
each open-tag is matched with a closing tag in a well-nested manner.

We define and study finite-state automata as acceptors of nested words. A
nested-word automaton is similar to a classical finite-state word automaton, and
reads the input from left to right according to the linear sequence. However, at a
position with two predecessors, one due to linear sequencing and one due to a hi-
erarchical nesting edge, the next state depends on states of the run at both these
predecessors. The resulting class of regular languages of nested words has all the
appealing theoretical properties that the class of classical regular word languages
enjoys: deterministic nested word automata are as expressive as their nondeter-
ministic counterparts; the class is closed under operations such as union, inter-
section, complementation, concatenation, and Kleene-∗; decision problems such
as membership, emptiness, language inclusion, and language equivalence are all
decidable; definability in monadic second order logic of nested words corresponds
exactly to finite-state recognizability; and finiteness of the congruence induced by
a language of nested words is a necessary and sufficient condition for regularity.

The motivating application area for our results has been software verification.
Given a sequential program P with stack-based control flow, the execution of P
is modeled as a nested word with nesting edges from calls to returns. Specifi-
cation of the program is given as a nested word automaton A, and verification
corresponds to checking whether every nested word generated by P is accepted
by A. Nested-word automata can express a variety of requirements such as stack-
inspection properties, pre-post conditions, and interprocedural data-flow proper-
ties. If we were to model program executions as words, all of these properties are
non-regular, and hence inexpressible in classical specification languages based
on temporal logics, automata, and fixpoint calculi (recall that context-free lan-
guages cannot be used as specification languages due to nonclosure under inter-
section and undecidability of key decision problems such as language inclusion).
In finite-state software model checking, the data variables in the program are
abstracted into a set of boolean variables, and in that case, the set of nested
words generated by the abstracted program is regular. This implies that algo-
rithmic software verification is possible for all regular specifications of nested

O.H. Ibarra and Z. Dang (Eds.): DLT 2006, LNCS 4036, pp. 1–13, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 R. Alur and P. Madhusudan

words. We believe that the nested-word view will provide a unifying basis for
the next generation of specification logics for program analysis, software model
checking, and runtime monitoring. As explained in Section 3, another potential
area of application is XML document processing.

1.1 Related Work

The finite automata on nested words that we study here have been motivated
by our recent work on visibly pushdown automata [6]. A visibly pushdown au-
tomaton is one in which the input alphabet Σ is partitioned into three parts,
〈Σc, Σi, Σr〉 such that the automaton pushes exactly one symbol when reading
symbols from Σc, pops one symbol from the stack when reading a symbol in Σr,
and does not touch the stack when reading letters of Σi. The input word hence
has an implicit nesting structure defined by matching occurrences of symbols in
Σc with symbols in Σr. In nested words, this nesting is given explicitly, and this
lets us define an automaton without a stack1. We believe that nested words is
a more appealing and simpler formulation of the insights in the theory of visi-
bly pushdown languages. However, in terms of technical results, this paper only
reformulates the corresponding results for visibly pushdown languages in [6].

Visibly pushdown languages are obviously related to Dyck languages, which
is the class of languages with well-bracketed structure. The class of parenthesis
languages studied by McNaughton comes closest to our notion of visibly push-
down languages [16]. A parenthesis language is one generated by a context free
grammar where every production introduces a pair of parentheses that delimit
the scope of the production. Viewing the nesting relation as that defined by the
parentheses, parenthesis languages are a subclass of visibly pushdown languages.
In [16, 11], it was shown that parenthesis languages are closed under union, inter-
section and difference, and that the equivalence problem for them is decidable.
However, parenthesis languages are a strict subclass of visibly pushdown lan-
guages, and are not closed under Kleene-∗.

The class of visibly pushdown languages, was considered in papers related to
parsing input-driven languages [22, 9]. Input-driven languages are precisely visi-
bly pushdown languages (the stack operations are driven by the input). However,
the papers considered only the membership problem for these languages (namely
showing that membership is easier for these languages than for general context-
free languages) and did not systematically study the class of languages defined
by such automata.

2 Nested Words

2.1 Definition

A nested relation ν of width k, for k ≥ 0, is a binary relation over {1, 2 . . . k}
such that (1) if ν(i, j) then i < j; (2) if ν(i, j) and ν(i, j′) then j = j′, and if
1 It is worth noting that most of the algorithms for inter-procedural program analysis

and context-free reachability compute summary edges between control locations to
capture the computation of the called procedure (see, for example [18]).
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Fig. 1. Execution as a word, as a nested word, and as a tree

ν(i, j) and ν(i′, j) then i = i′; (3) if ν(i, j) and ν(i′, j′) and i < i′ then either
j < i′ or j′ < j.

Let ν be a nested relation. When ν(i, j) holds, the position j is called a
return-successor of the position i, and the position i is called a call-predecessor
of the position j. Our definition requires that a position has at most one return-
successor and at most one call-predecessor, and a position cannot have both a
return-successor and a call-predecessor. A position is called a call position if
it has a return successor, a return position if it has a call-predecessor, and an
internal position otherwise.

A nested word nw over an alphabet Σ is a pair (a1 . . . ak, ν), for k ≥ 0, such
that ai, for each 1 ≤ i ≤ k, is a symbol in Σ, and ν is a nested relation of width
k. Let us denote the set of nested words over Σ as NW (Σ). A language of nested
words over Σ is a subset of NW (Σ).

2.2 Example: Program Executions as Nested Words

Execution of a program is typically modeled as a word over an alphabet Σ.
The choice of Σ depends on the desired level of detail. As an example, suppose
we are interested in tracking read/write accesses to a program variable x. The
variable x may get redefined, for example, due to a declaration of a local variable
within a called procedure, and we need to track the scope of these definitions.
For simplicity, let’s assume every change in context redefines the variable. Then,
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we can choose the following set of symbols: rd to denote a read access to x, wr
to denote a write access to x, en to denote beginning of a new scope (such as a
call to a function or a procedure), ex to denote the ending of the current scope,
and sk to denote all other actions of the program. Note that in any structured
programming language, in a given execution, there is a natural nested matching
of the symbols en and ex. Figure 1 shows a possible execution as a word as well as
a nested word. The nesting edges are shown as dotted edges. A vertical path can
be interpreted as a local path through a procedure. There is a natural connection
between nested words and binary trees, and is also depicted in Figure 1. In this
view, at a call node, the left subtree encodes the computation within the called
procedure, while a path along the right children gives the local computation
within a procedure.

In modeling the execution as a word, the matching between calls and returns is
only implicit, and a pushdown automaton is needed to reconstruct the matching.
The tree view makes the hierarchical structure explicit: every matching exit is a
right-child of the corresponding entry node. However, this view loses linearity:
the left and right subtrees of an entry node are disconnected, and (top-down)
tree automata need nondeterminism to relate the properties of the subtrees2. Our
hypothesis is that the nested-word view is the most suitable view for program
verification. In this view, a program will be a generator of nested words, and
will be modeled as a language of nested words. For acceptors, linearity is used to
obtain a left-to-right deterministic acceptor, while nesting is exploited to keep
the acceptor finite state.

2.3 Operations on Nested Words

Analogs of a variety of operations on words and word languages can be defined for
nested words and corresponding languages. We describe a few of the interesting
ones here.

Given two nested words nw1 = (w1, ν1) and nw2 = (w2, ν2), of lengths k1 and
k2, respectively, the concatenation of nw1 and nw2 is the nested word nw1.nw2 =
(w1.w2, ν) of length k1 + k2, where ν is the nested relation ν1 ∪ {(k1 + i, k1 +
j) | (i, j) ∈ ν2}. The concatenation extends to languages of nested words. The
Kleene-∗ operation is defined as usual: if L is a language of nested words over
Σ, then L∗ is the set of nested words nw1.nw2 . . . nwi, where i ∈ N, and each
wj ∈ L.

Given a nested word nw = (a1 . . . ak, ν) of length k, its reverse is nwr =
(ak . . . a1, ν

r) where νr = {(i, j) | (k + 1− j, k + 1− i) ∈ ν}.
Finally, we define a notion of insertion for nested words. A context is

a pair (nw, i) where nw is a nested word of length k, and 0 ≤ i ≤ k.
Given a context (nw, i), for nw = (a1 . . . ak, ν), and a nested word nw′, with
nw′ = (w′, ν′), (nw, i) ⊕ nw′ is the nested word obtained by inserting the
2 It is worth mentioning that in program verification, trees are used for a different pur-

pose: an execution tree encodes all possible executions of a program, and branching
corresponds to the choice within the program. It is possible to define nested trees in
which each path encodes a structured execution as a nested word [3].
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nested word nw′ at position i in nw. More precisely, (nw, i) ⊕ nw′ is the
nested word (a1 . . . ai.w

′.ai+1 . . . ak, ν
′′), where ν′′ = {(π1(j), π1(j′)) | (j, j′) ∈

ν}∪{(π2(j), π2(j′)) | (j, j′) ∈ ν′} where π1(j) is j, if j ≤ i, and |w′|+j otherwise,
and π2(j) = i+ j.

Note that our definition of nested word requires one-to-one matching between
call and return positions. It is possible to generalize this definition and allow a
nested relation to contain pairs of the form (i,⊥) and (⊥, j) corresponding to
unmatched call and return positions, respectively. Concatenation of two nested
words would match the last unmatched call in the first word with the first
unmatched return in the second one. Natural notions of prefix and suffix exist
in this generalized definition. The results of this paper can be adapted to this
general definition also.

3 Regular Languages of Nested Words

3.1 Automata over Nested Words

A nested word automaton (NWA) A over an alphabet Σ is a structure
(Q,Qin , δ, Qf) consisting of

– a finite set Q of states,
– a set of initial states Qin ⊆ Q,
– a set of final states Qf ⊆ Q,
– a set of transitions 〈δc, δr, δi〉 where

• δc ⊆ Q×Σ ×Q is a transition relation for call positions, and
• δi ⊆ Q×Σ ×Q is a transition relation for internal positions, and
• δr ⊆ Q×Q×Σ ×Q is a transition relation for return positions.

The automaton A starts in an initial state, and reads the word from left to right.
At a call or an internal position, the next state is determined by the current
state and the input symbol at the current position, while at a return position,
the next state can additionally depend on the state of the run just before the
matching call-predecessor. Formally, a run ρ of the automaton A over a nested
word nw = (a1 . . . ak, ν) is a sequence q0, . . . , qk over Q such that q0 ∈ Qin , and
for each 1 ≤ i ≤ k,

– if i is a call position of ν, then (qi−1, ai, qi) ∈ δc;
– if i is a internal position, then (qi−1, ai, qi) ∈ δi;
– if i is a return position with call-predecessor is j, then (qi−1, qj−1, ai, qi) ∈ δr.

The automaton A accepts the nested word nw if it has a run q0, . . . , qk over nw
such that qk ∈ Qf . The language L(A) of a nested-word automaton A is the set
of nested words it accepts.

A language L of nested words over Σ is regular if there exists a nested-word
automaton A over Σ such that L = L(A).

Observe that if L is a regular language of words over Σ, then {(w, ν) | w ∈ L}
is a regular language of nested words. Conversely, if L is a regular language of
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nested words, then {w | (w, ν) ∈ L for some ν} is a context-free language of
words, but need not be regular.

The fact that a nested automaton at a return position can look at the state
at the corresponding call position is, of course, crucial to expressiveness as it
allows a run to implicitly encode a stack. In automata theory, such a definition
that allows combining of states is quite common. For example, bottom-up tree
automata allow such a join. Various notions of automata on partial-orders and
graphs are also defined this way [20]. In fact, one can define a more general notion
of automata on nested words by giving tiling systems that tile the positions using
a finite number of tiles with local constraints that restrict the tiles that can occur
at a position, given the tiles in its neighborhood. The notion of neighborhood for
a node in a nested word would be its linear successor and predecessor, and its
return-predecessor or call-successor. It turns out that automata defined in this
fashion also define regular nested languages.

3.2 Determinization

A nested-word automatonA = (Q,Qin , (δc, δi, δr), Qf) is said to be deterministic
if |Qin | = 1, and for every a ∈ Σ and q, q′ ∈ Q, |{q′′ | (q, a, q′′) ∈ δc}| = 1
and |{q′′ | (q, a, q′′) ∈ δi}| = 1 and |{q′′ | (q, q′, a, q′′) ∈ δr}| = 1. Thus, a
deterministic nested-word automaton has a single initial state, and the transition
relations δc and δi are functions from Q × Σ to Q, and the transition relation
δr is a function from Q×Q×Σ to Q. Given a nested word nw, a deterministic
nested-word automaton has exactly one run over nw.

Adapting the classical subset construction for determinizing finite automata
over words turns out to be slightly tricky, but possible:

Theorem 1. Given a nested-word automaton A over Σ, there exists a determin-
istic nested-word automaton A′ over Σ such that L(A) = L(A′). Furthermore,
if A has n states, then A′ has at most 2n2

states.

Proof. The deterministic automaton will keep track of summaries of state-
transitions, rather than just the states reached. More precisely, after reading
the first i positions of a nested word nw = (w, ν), if j is the last call position
at or before i (if there is none, choose j = 1), then the automaton will be in a
state S ⊆ Q × Q where S is the set of pairs of states (q, q′) such that A has a
run from q to q′ on reading the nested word starting at position j to i. It hence
starts in the initial state {(q, q) | q ∈ Q}. At an internal position labeled a, the
automaton replaces each pair (q, q′) in the current state by pairs of the form
(q, q′′) such that (q′, a, q′′) ∈ δi. At a call position labeled a, the summary gets
reinitialized: the new state contains pairs of the form (q, q′), where (q, a, q′) ∈ δc.
Consider a return position labeled a, and suppose S denotes the current state
and S′ denotes the state just before the call-predecessor. Then (q, q′) belongs
to the new state, provided there exist states q1, q2 such that (q, q1) ∈ S′ and
(q1, q2) ∈ S and (q2, q1, a, q′) ∈ δr. A state is final if it contains a pair of the
form (q, q′) with q ∈ Qin and q′ ∈ Qf . �



Adding Nesting Structure to Words 7

Since the call and internal transition relations are separate, our definition allows
the automaton to check whether the current position is a call or an internal posi-
tion. It is easy to verify that this distinction is not necessary for nondeterministic
automata. However, for deterministic automata, removing this distinction will
reduce expressiveness. On the other hand, as the above proof shows, a determin-
istic NWA can accept all regular languages of nested words, even if we restrict
the call transition function to depend only on the current symbol.

3.3 Closure Properties

The class of regular nested languages enjoy many closure properties, similar to
the class of regular languages over words.

Theorem 2. The class of regular languages of nested words is (effectively)
closed under union, intersection, complementation, concatenation, Kleene-∗, and
reverse.

3.4 Application: Software Model Checking and Program Analysis

In the context of software verification, a popular paradigm to verification is
through data abstraction, where the data in a program is abstracted using a finite
set of boolean variables that stand for predicates on the data-space [7, 10]. The
resulting models hence have finite-state but stack-based control flow (see Boolean
programs [8] and recursive state machines [1] as concrete instances of pushdown
models of programs). Given a program P modeled as a pushdown automaton, we
can view P as a generator of nested words in the following manner. We choose an
observation alphabet Σ, and associate an element of Σ with every transition of
P . At every step of the execution of P , if the transition of P is a push transition,
then the corresponding position is a call position; if the transition of P does not
update the stack, then the corresponding position is an internal position; and if
P executes a pop transition, then the corresponding position is a return, with a
nesting edge from the position where the corresponding element was pushed. We
assume that P pushes or pops at most one element, and halts when the stack is
empty. Then, the nesting edges satisfy the desired constraints. Let L(P ) be the
set of nested words generated by a pushdown model P . Then, L(P ) is a regular
language of nested words.

The requirements of a program can also be described as regular languages of
nested words. For instance, consider the example of Section 2. Suppose we want
to specify that within each scope (that is, between every pair of matching entry
and exit), along the local path (that is, after deleting every enclosed matching
subword from an entry to an exit), every write access is followed by a read
access. Viewed as a property of words, this is not a regular language, and thus,
not expressible in the specification languages supported by existing software
model checkers such as SLAM [8] and BLAST [10]. However, over nested words,
there is a natural two-state deterministic nested-word automaton. The initial
state is q0, and has no pending obligations, and is the only final state. The
state q1 denotes that along the local path of the current scope, a write-access
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has been encountered, with no following read access. The transitions are: for
j = 0, 1, δi(qj , rd) = q0; δi(qj ,wr) = q1; δi(qj , sk) = qj ; δc(qj , en) = q0; and
δr(q0, qj , ex) = qj . The automaton reinitializes the state to q0 upon entry, while
processing internal read/write symbols, it updates the state as in a finite-state
word automaton, and at a return, if the current state is q0 (meaning the called
context satisfies the desired requirement), it restores the state of the calling
context. (Formally, we need one more state q3 in order to make the automaton
complete; when in state q1 and reading a return, the automaton will go to state
q3, and all transitions from q3 will go to q3.)

Further, we can build specification logics for programs that exploit the nested
structure. An example of such a temporal logic is Caret [4], which extends
linear temporal logic by local modalities such as 〈a〉ϕ, which holds at a call if
the return-successor of the call satisfies ϕ. Caret can state many interesting
properties of programs, including stack-inspection properties, pre-post condi-
tions of programs, local flows in programs, etc. Analogous to the theorem that
a linear temporal formula can be compiled into an automaton that accepts its
models [21], any Caret formula can be compiled into a nested word automa-
ton that accepts its models. Decidability of inclusion then yields a decidable
model-checking problem for program models against Caret [6, 4].

3.5 Application: XML Document Processing

Turning to XML, XML documents (which resemble HTML documents in struc-
ture) are hierarchically structured data with open- and close-tag constructs used
to define the hierarchy. An XML document is naturally a nested word, where
each open-tag is matched with its corresponding closing tag. Document type
definitions (DTDs) and their specialized counterparts (SDTDs) are used to de-
fine classes of documents, using a grammar. The grammar however is special
in that the non-terminals always stand for tags. Consequently, type definitions
can be encoded using nested word automata. Though trees and automata on
unranked trees are traditionally used in the study of XML (see [17, 14] for
recent surveys), nested word automata lend more naturally to describing the
document especially when the document needs to be processed as a word be-
ing read from left to right (as in the case of processing streaming XML doc-
uments). The closure and determinization theorems for nested word automata
have immediate consequences in checking type-inclusion and in checking stream-
ing XML documents against SDTDs. Further, minimization theorems for nested
word automata can be exploited to construct minimal machines to process XML
documents [13].

4 Alternative Characterizations

We now show alternate characterizations of the class of regular nested word
languages.
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4.1 Monadic Second Order Logic of Nested Words

Let us fix a countable set of first-order variables FV and a countable set of
monadic second-order (set) variables SV . We denote by x, y, x′, etc., elements
in FV and by X,Y,X ′, etc., elements of SV .

The monadic second-order logic of nested words is given by the syntax:

ϕ := Qa(x) | x = y | x ≤ y | ν(x, y) | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ,

where a ∈ Σ, x, y ∈ FV , and X ∈ SV .
The semantics is defined over nested words in a natural way. The first-order

variables are interpreted over positions of the nested word, while set variables
are interpreted over sets of positions. Qa(x) holds if the letter at the position
interpreted for x is a, x ≤ y holds if the position interpreted for x is before the
position interpreted for y, and ν(x, y) holds if the positions x and y are ν-related.
For example,

∀x.∀y. (Qa(x) ∧ ν(x, y)) ⇒ Qb(y)

holds in a nested word iff for every call labeled a, the corresponding return-
successor is labeled b.

For a sentence ϕ (a formula with no free variables), the language it defines is
the set of all nested words that satisfy ϕ. The corresponding result for visibly
pushdown languages [6] can be used to show that:

Theorem 3. A language L of nested words over Σ is regular iff there is an
MSO sentence ϕ over Σ that defines L.

4.2 Finite Congruence

Let L be a language of nested words. Define the following relation on nested
words. For two nested words nw1 and nw2, nw1 ∼L nw2 if for every context
(nw, i), (nw, i) ⊕ nw1 ∈ L iff (nw, i) ⊕ nw2 ∈ L. Note that ∼L is an equiv-
alence relation and a congruence (i.e. if nw1 ∼L nw2 and nw′1 ∼L nw′2, then
nw1.nw

′
1 ∼L nw2.nw

′
2). We can now show that the finiteness of this congruence

characterizes regularity for nested-word languages using the corresponding result
for visibly pushdown languages [5].

Theorem 4. For a set L of nested words, L is regular iff ∼L has finitely many
congruence classes.

Proof. Let L be a regular language of nested words. Let A be a NWA that
accepts L, and let its set of states be Q. Now, define the following relation on
nested words: nw ≈A nw′ if for every q, q′ ∈ Q, A has a run from q to q′ on
nw if and only if A has a run from q to q′ on nw′. It is easy to verify that ≈A

is an equivalence relation and, in fact, a congruence. Clearly there are no more
than |Q|2 congruence classes defined by it. Also, it is easy to see that whenever
nw ≈A nw′, it is the case that nw ∼L nw′. It follows that ∼L is of finite index.

For the converse, assume L is such that ∼L is of finite index, and let us denote
by [nw] the equivalence class of ∼L that a nested word nw belongs to. Then let
A = (Q,Qin , δ, Qf), where:



10 R. Alur and P. Madhusudan

– Q = {[nw] | nw is a nested word},
– Qin = {[nw0]}, where nw0 is the empty nested word,
– Qf = {[nw] | nw ∈ L}, and
– δ = 〈δc, δi, δr〉 where

• δc = {([nw], a, [(a, ∅)]) | nw ∈ NW (Σ), a ∈ Σ}
• δi = {([nw], a, [nw.a]) | nw ∈ NW (Σ), a ∈ Σ}
• δr([(w1, ν1)], [(w2, ν2)], a) = [w2.w1.a, ν], where, if (w2, ν2).(w1, ν1).a =

(w1.w2, ν
′, then ν = ν′ ∪ {(|w2|+ 1, |w2|+ |w1|+ 1)}.

It can then be proved that A is well-defined and accepts L. �

4.3 Visibly Pushdown Word Languages

A nested word over Σ can be encoded as a word over a finite structured alphabet
in the following manner. Let Σ′ = {c, int, r} × Σ. Let the set of well-matched
words over Σ′ (denoted WM (Σ)) be the words generated by the grammar

W := ε | (int , a)W | (c, a)W (r, a′) | W.W,

for a, a′ ∈ Σ. Given a nested word (a1 . . . ak, ν) over Σ, we will encode it as the
well-matched word u over Σ′ by setting u = (x1, a1) . . . (xk, ak) where xi = c
if i is a call, xi = r if i is a return, and xi = int otherwise. Let us call this
mapping nw2w : NW (Σ)→WM (Σ). It is also clear that for every well-matched
word over Σ′, there is a unique nested word over Σ that corresponds to it.
Consequently, we can treat languages of nested words over Σ as languages of
words over the structured alphabet Σ′.

A finite automaton on nested words over Σ can be simulated by a pushdown
automaton on the corresponding word over Σ′. The pushdown automaton would
simply push the current state at each call position, and at return positions it
would pop the state to retrieve the state at the corresponding call. Note that
this pushdown automaton is restricted in that it pushes exactly one symbol when
reading symbols of the form (c, a), pops the stack when reading symbols of the
form (r, a), and does not touch the stack when reading symbols (int , a). This
kind of pushdown automaton is called a visibly pushdown automaton [6]. The
automaton accepts if it reaches a final state and the stack is empty.

Proposition 1. A language L of nested words over Σ is regular iff nw2w(L) is
accepted by a visibly pushdown automaton over the structured alphabet Σ′.

4.4 Regular Tree Languages

Given a nested word over Σ, we can associate it with a Σ-labeled (ranked)
binary tree that represents the nested word, where each position in the word
corresponds to a node of the tree. Further, the tree will encode the return position
corresponding to a call right next to the call. See Figure 1 for an example of a
tree-encoding of a nested word. Formally, we define the map from nested words
to trees using the function nw2t that maps nested words to sets of trees (we allow
more than one tree to correspond to a nested word since we do not differentiate
the left-child from a right-child when a node has only one child):
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– For the empty nested word nw = (ε, ν), nw2t(nw) is the empty tree.
– For a nested word nw = (a1.w1, ν) such that the first position is internal,

let nw1 be the nested word corresponding to w1. Then nw2t(nw) is any tree
whose root is labeled a1, the root has one child, and the subtree at this child
is in nw2t(nw1).

– For a nested word nw = (a1.w1.a2.w2, ν) such that (1, |w1| + 2) ∈ ν, let
nw1 = (w1, ν1) be the nested word corresponding to the w1 portion, and
nw2 = (w2, ν2) be the nested word corresponding to the w2 portion. Then
nw2t(nw) is any tree whose root is labeled a1, the subtree rooted at its left-
child is in nw2t(nw1), its right-child u is labeled a2, and u has one child and
the the subtree rooted at this child is in nw2t(nw2).

We can now show that the class of regular nested word languages precisely
corresponds to regular languages of trees:

Theorem 5. A language T of trees is a regular tree language iff the set of nested
words {nw2t−1(t) | t ∈ T } is a regular nested word language.

Note that the closure of nested languages under various operations as stated
in Theorem 2 can be proved using this connection to regular tree languages.
However, the determinization result (Theorem 1) does not follow from the theory
of tree automata.

5 Decision Problems

The emptiness problem (given A, is L(A) = ∅?) and the membership problem
(given A and nw, is nw ∈ L(A)?) for nested word automata are solvable since we
can reduce it to the emptiness and membership problems for pushdown automata
(using Proposition 1).

If the automaton A is fixed, then we can solve the membership problem in
simultaneously linear time and linear space, as we can determinize A and simply
simulate the word on A. In fact, this would be a streaming algorithm that uses at
most space O(d) where d is the depth of nesting of the input word. A streaming
algorithm is one where the input must be read left-to-right, and can be read
only once. Note that this result comes useful in type-checking streaming XML
documents, as the depth of documents is often not large [19, 13]. When A is
fixed, the result in [22] exploits the visibly pushdown structure to solve the
membership problem in logarithmic space, and [9] shows that membership can
be checked using boolean circuits of logarithmic depth. These results lead to:

Theorem 6. The emptiness problem for nested word automata is decidable in
time O(|A|3).

The membership problem for nested word automata, given A and w, can be
solved in time O(|A|3.|w|). When A is fixed, it is solvable (1) in time O(|w|)
and space O(d) (where d is the depth of the nesting in w) in a streaming setting;
(2) in space O(log |w|) and time O(|w|2.log |w|); and (3) by (uniform) Boolean
circuits of depth O(log |w|).
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The inclusion problem (and hence the equivalence problem) for nested word
automata is decidable. Given A1 and A2, we can check L(A1) ⊆ A2 by checking
if L(A1) ∩ L(A2) is empty, since regular nested languages are effectively closed
under complement and intersection. It follows from the results in [6] that:

Theorem 7. The inclusion and equivalence problems for nested word automata
are Exptime-complete.

6 Conclusions

Nested words allow capturing linear and hierarchical structure simultaneously,
and automata over nested words lead to a robust class of languages with ap-
pealing theoretical properties. This theory offers a way of extending the expres-
siveness of specification languages supported in model checking and program
analysis tools: instead of modeling a boolean program as a context-free language
of words and checking regular properties, one can model both the program and
the specification as regular languages of nested words.

The theory of regular languages of nested words is a reformulation of the the-
ory of visibly pushdown languages by moving the nesting structure from labeling
to the underlying shape. Besides the results reported here, many results already
exist for visibly pushdown automata: visibly pushdown languages over infinite
words have been studied in [6]; games on pushdown graphs against visibly push-
down winning conditions are decidable [15]; congruence based characterizations
and minimization theorems for visibly pushdown automata exist [5]; and active
learning, conformance testing, and black-box checking for visibly pushdown au-
tomata are studied in [12]. The nested structure on words can be extended to
trees, and automata on nested trees are studied in [3, 2]. Finally, a version of the
μ-calculus on nested structures has been defined in [3], and is shown to be more
powerful than the standard μ-calculus, while at the same time remaining robust
and tractable [3, 2].
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1 Introduction

Abstract state machines (originally called evolving algebras) constitute a modern
computation model [8]. ASMs describe algorithms without compromising the ab-
straction level. ASMs and ASM based tools have been used in academia and indus-
try to give precise semantics for computing artifacts and to specify software and
hardware [1, 2, 6]. In connection to the conference on Developments in Language
Theory, we consider how and whether ASMs could be useful in language theory.

The list of topics on the conference site starts with “grammars, acceptors and
transducers for strings, trees, graphs, arrays”. The conventional computation
models cannot deal directly with graphs or other abstract structures. For exam-
ple, you cannot put an abstract graph on the tape of a Turing machine. Instead,
the conventional models deal with presentation of abstract structures. Accord-
ingly, when people speak about graphs they often mean ordered graphs, that is,
graphs with a linear order on vertices. This seems to be the case with the current
research on grammars, acceptors and transducers for graphs [13]. If there were
indeed interest in grammars, acceptors and transducers for (unordered) graphs
or other abstract structures, ASMs would be indispensible. The current mod-
els for computations with abstract structures and the related complexity theory
build upon ASMs [4, 5].

Another possible application of ASMs is to write language algorithms on their
natural abstraction level, devoid of unnecessary details. We give one illustrative
example below: an ASM program of the well-known algorithm for minimizing a
deterministic finite-state automaton [12]. More examples will be presented during
the conference talk. Before turning to the example, we point out some properties
of ASMs that from our outsiders’ point of view appear to have relevance to
language theory: their universality, their facility for abstraction, and their ability
to capture concurrency and non-determinism.

2 The ASM Computation Model: How Is It Different?

The original definition of ASMs in [8] is still valid. But there has been a sub-
stantial advance in the meantime. See in particular the ASM based specification
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language AsmL [2]. We do not define ASMs here; instead, we discuss some of
the distinctive qualities of ASMs that may be of interest to this audience.

2.1 A Richer Notion of Universality

Turing’s original model of computation was intended to capture the notion of
computable function from strings to strings. Turing convincingly argued that
every string-to-string computable function is computable by some Turing ma-
chine [14]. His thesis is now widely accepted.

The string-to-string restriction does not seem severe because usually inputs
and outputs can be satisfactorily coded by strings. But the restriction is not
innocuous. First, some well-known (already in Turing’s time and even earlier)
algorithms work with inputs that do not admit string encoding. Think for ex-
ample of the Gaussian elimination algorithm, which deals with genuine reals,
or of the ruler-and-compass constructions of classical geometry, which deal with
continuous objects. Second, some inputs can be coded by strings but not in a
satisfactory way. Consider graphs for example. Graphs can be represented by
adjacency matrices, and matrices are perfectly string codable. But there is no
known canonical and feasible adjacency-matrix presentation of graphs. It is es-
sentially the well-known problem of database theory: how to deal with databases
in an implementation independent way?

One can argue that, taken literally, the Gaussian elimination algorithm is too
abstract, that in any actual computation one deals with finite approximations of
reals which are perfectly represented by strings. But in many cases, it is desirable
to deal with abstract algorithms. This brings us to an essential drawback of
Turing’s computation model. While it is perfect for the intended purpose, its
abstraction level is essentially that of single bits.

There is another drawback of Turing’s model. A Turing machine simulation
of a given algorithm is guaranteed to preserve only the input/output behavior.
There may be more to an algorithm than the function it computes.

The ASM thesis asserts that, for every algorithm A, there is an ASM B
that is behaviorally equivalent to A. In particular, B step-for-step simulates A.
Substantial parts of the thesis have been proved from first principles [9, 3, 11].

2.2 Abstraction

We have mentioned already that the single, low abstraction level of the Tur-
ing machine inhibits its ability to faithfully simulate algorithms, and that an
appropriate ASM simulator operates at the abstraction level of the original al-
gorithm. Each ASM is endowed with a fixed vocabulary of function names. A
state of the ASM is a (first-order) structure of that vocabulary: a collection of
elements, along with interpretations of the function names as functions over the
elements. The author of an ASM program has flexibility in choosing the level of
abstraction. For example, atoms, sets of atoms, sets of sets of atoms, etc. can
be treated as elements of a structure of the vocabulary with the containment
relation ∈. Similarly, other complex data — maps, sequences, trees, graphs, sets
of maps, etc. — can be treated as elements without any encoding. This makes
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ASMs appropriate for various applications — e.g., specifications of software —
dealing with high-level abstractions. It remains to be seen whether there are
areas of language theory that can take advantage of it.

rule MinDFA:
1 if not initialized then
2 Q′ := {F, Q − F}, F′ := ∅
3 initialized := true
4 else
5 choose X ∈ Q′, σ ∈ Σ where splits(X, σ)
6 do-forall Y ∈ Q′ where reaches(X, σ, Y )
7 add {q : δ(q, σ) ∈ Y } to Q′

8 remove X from Q′

9 ifnone
10 choose X ∈ Q′ where q0 ∈ X
11 q′

0 := X
12 do-forall X ∈ Q′

13 choose q ∈ X
14 do-forall σ ∈ Σ
15 choose Y ∈ Q′ where δ(q, σ) ∈ Y
16 δ′(X, σ) := Y
17 if q ∈ F then add X to F′

18 halt

Fig. 1. ASM program: DFA minimization

2.3 Concurrency and Non-determinism

We distinguish between sequential-time ASMs and distributed ASMs. A sequen-
tial time ASM computes in a step-after-step manner. As in the case of Turing
machines, the program describes a single step. Already in the case of Turing ma-
chines, a single step may involve several operations executed in parallel: change
the control state, change the content of the observed cell, move the head on the
tape. In the case of an ASM, there may be no a priori bound on the amount of
work done in parallel during one step. In particular, the do-forall rule provides
a powerful form of concurrency; see Figure 1. In the ASM world, parallelism is
the default. If you have a rule R1 followed by rule R2, it is presumed that they
are executed in parallel. For example, the three assignments in lines 2 and 3 of
Figure 1 are executed in parallel. In the ASM based specification language AsmL
[2] mentioned earlier, you pay a syntactic price for requiring that the rule R1 is
executed first, and the rule R2 is executed second.

A sequential-time ASM can be non-deterministic. This is achieved by means
of the choose rule that allows you to non-deterministically choose an element
from a finite set. You may require that the chosen element satisfies a specified
condition; see Figure 1.
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A distributed ASM is a dynamic set of agents operating asynchronously over
a global state. The global state could reflect a physical common memory or be
a pure mathematical abstraction with no physical counterpart [8, 1].

There are various new computational paradigms that exploit the possibility
of massive parallelism: quantum computing, DNA computing, membrane com-
puting, evolutionary computing. All of these approaches seem well suited for
description in terms of ASMs. In fact, Grädel and Nowack proved that every
model of quantum computing in the literature can be viewed as a specialized
sequential-time ASM model, some steps of which are hugely parallel [7].

3 Example: Minimization Algorithm

We illustrate the use of ASMs with an example taken from elementary automata
theory: the well-known algorithm for minimizing a deterministic finite automaton
[12]. This example is instructive in that it uses the power of the do-forall and
choose rules, and it demonstrates the ability to compute with sets.

3.1 Informal Description

We recall a version of the minimization algorithm (without proving its correct-
ness). Let Σ be a finite alphabet. Given a finite automaton A = 〈Q,Σ, q0, δ, F 〉,
the algorithm computes a minimal finite automaton A′ = 〈Q′, Σ, q′0, δ′, F ′〉. A′
is equivalent to A in the sense that L(A) = L(A′). And it is minimal in the sense
that Q′ is as small as possible. Here Q is the set of states of A, q0 is the initial
state of A, δ : Q × Σ → Q is the transition function of A, and F is the set of
final states of A. And Q′, q′0, δ

′ and F ′ play the same roles respectively for A′.
The algorithm computes Q′ and then uses Q′ to compute q′0, δ′ and F ′. Q′

is computed by means of successive approximations. Q′ is initialized to {F,Q−
F}, and then the splitting process starts. View the current members of Q′ as
candidates for the membership in the ultimate Q′; every candidate X is a subset
of Q. A candidate Y is σ-next for a candidate X if δ(q, σ) ∈ Y for some q ∈ X ,
and a candidate X σ-splits if there exist distinct candidates Y, Z that are σ-next
for X . If X splits on σ, replace it with new candidates {q ∈ X : δ(q, σ) ∈ Y }
where Y ranges over σ-next candidates for X . The splitting process stops when
no candidate splits on any letter. At this point we have the desired Q′. The new
initial state q′0 is the candidate that contains q0. Now consider a member X of the
ultimate Q′ and let q be any element of X . For any letter σ, δ′(X,σ) is the unique
candidate Y such that δ(q, σ) ∈ Y for some q ∈ X . And F ′ = {X ∈ Q′ : X ⊆ F}.
This does not depend on the choice of q as X does not split on any letter σ.

3.2 Minimizing ASM

Figure 1 gives an ASM form of the algorithm. For the reader’s convenience we
number the lines of the program. Lines 1–3 reflect the initialization process. We
use two auxiliary Boolean terms, next and splits, defined as follows.
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next(X,σ, Y ): (∃q ∈ X) δ(q, σ) ∈ Y .

splits(X,σ): (∃Y, Z ∈ Q′ : Y �= Z) next(X,σ, Y ) and next(X,σ, Z).

Lines 5–8 reflect the splitting process. Lines 10–17 reflect the computation
of the remaining components of A′. Note the significant degree of parallelism
through the use of do-forall and choose. Furthermore, there is implicit paral-
lelism in every sequence of instructions. For instance, splitting a candidate X
consists of two actions: creating the appropriate subsets of X (lines 5–6) and
removing X (line 7), which occur simultaneously.

The ASM program in Figure 1 looks like pseudo-code but it has a well-defined
semantics. It is a simple exercise to rewrite the program in AsmL [2, 10]. The
result will be an executable version of the program.

4 Conclusion

Our intention is to raise awareness of the ASM model as a potential tool for
language theory. Whether it is a tool of real value for this area is a question
that can only be answered by language theory people. We hope that this little
exposition attracts their attention.
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Abstract. After a brief introduction to membrane computing, pointing
out the more important intersections with formal language theory, we
survey a series of recent results related to spiking neural P systems used
as devices for handling languages. Several open problems are formulated.

1 Introduction: MC Versus LT

Membrane computing is a branch of natural computing which abstracts com-
puting models from the structure and the functioning of living cells and from
the way the cells cooperate in tissues or in higher order structures. This phrase
is sort of a slogan of the domain – in the same extent as Figure 1 is used as
sort of logo of it. Indeed, after adding that the computing models investigated
in this area (called P systems) are parallel and distributed cell-like or tissue-like
devices, processing multisets of objects in compartments defined by membranes,
we have already a rather exact, although general, description of membrane com-
puting. (It is maybe necessary to also add that most classes of P systems are
synchronized models, that they are Turing complete as computing power, and
that, if enhanced parallelism is provided, e.g., by means of membrane division,
then polynomial solutions of computationally hard problems – NP-complete,
but also PSPACE-complete problems – can be devised.)

Still, there are here several keywords which need clarification and which are
central to the scope of our notes – a discussion about the relationships between
membrane computing and formal language theory. The starting point should be
the syntagma multisets of objects.

The membranes of a cell have two main roles: to delimit “protected reac-
tors”, where specific reactions take place, and to provide support for certain
reactants, especially enzymes/proteins, which control part of the reactions from
the compartments and the passage of molecules across membranes. Reactants,
molecules, chemicals, from ions to large macromolecules – in short and more
general, objects. Then, because in bio-chemistry the numbers matter (actually,
mainly the abundance), membrane computing considers the multiset as the basic

O.H. Ibarra and Z. Dang (Eds.): DLT 2006, LNCS 4036, pp. 20–35, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Languages in Membrane Computing 21

data structure. Multisets, i.e., sets with multiplicities associated with their ele-
ments. Specifically, in the compartments of a membrane structure as that from
Figure 1 one places multisets of abstract objects; the objects are represented by
symbols of a given alphabet O, hence the multisets can be represented by strings
over O, with the obvious convention that all permutations of a string represent
the same multiset. Then, as basic rules for making multisets evolve we can use
“chemical reactions”, which are nothing else than multiset rewriting rules, of
the form u → v (the objects specified by multiset u react, are consumed, and
as a result of the reaction we get the objects indicated by v). Using the rules
in a synchronized way (a global clock is assumed, and in each step each rule
which can be applied should be applied – of course, in competition for objects
with other rules), we obtain computations. A result is associated with halting
computations, as provided by the multiset of objects placed in a specified region
of the system – and this result can be the vector describing the multiplicity of
objects in that multiset or the total number of objects in the multiset.

We started already to speak in terms of formal languages: the multiplicity of
objects in a multiset described by a string is given by the Parikh vector of the
string, while sets of multisets are nothing else than commutative languages. The
first Workshop on Membrane Computing, organized in August 2000 in Curtea
de Argeş, Romania, was actually explicitly devoted to multiset processing – see
[2], where a series of details can be found about the multiset bridge between
membrane computing and computer science and general, including a proposal
to start a more general theory of families of sets of multisets, of the AFL theory
type.

There are several other aspects related to the early years of membrane com-
puting (well, five to seven years ago. . . ) which made people consider this area as
a branch of language theory: (i) The approach was initially “grammatical-like”,
with the P systems used to generate sets of numbers (due to the inherent non-
determinism in using the rules for multiset processing, the computations branch
and in the end of halting computations one gets sets of numbers or of vectors of
numbers). (ii) The main tools used in investigating the computing power of P
systems were matrix grammars with appearance checking in the binary normal
form (which was improved in several stages with new motivations coming from
membrane computing, for instance, in what concerns the number of symbols used
in appearance checking rules – see, e.g., [8]), grammar systems, L systems, and
later register machines; all these are classic devices in language (and automata)
theory. (iii) The types of results were also of a known type: comparisons with
families of languages in Chomsky and Lindenmayer hierarchies, modulo order-
ing of symbols (hence stated in terms of Parikh images of known families of
languages)1.

The “second generation” of membrane computing has departed from language
theory – as we will see immediately, still keeping a close contact with it. First, be-
sides multiset rewriting rules there were considered symport and antiport rules,

1 By the way: is the inclusion PsE0L ⊆ PsET0L proper? (For a family FL of lan-
guages, PsFL denotes the family of Parikh images of languages in FL).
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of a direct biological inspiration, which are only moving objects across mem-
branes, never changing them. This is still very much in the spirit of register
machines – which became the main tool in investigating such classes of P sys-
tems (and this made again necessary clarifications concerning the relationships
between various types of register machines, matrix grammars, vector addition
systems – see [9]). Then, mainly based on membrane division, which makes pos-
sible the creation of an exponential workspace in a linear time, by means of a
natural (in both senses: coming from nature, and simple-basic-intuitive) opera-
tion, membrane computing became much interested in solving hard problems in
a feasible time, thus getting closer to computational complexity. In this moment,
this is one of the most active directions of research, with a series of nice results
(e.g., characterizations of classic complexity classes) and intriguing open prob-
lems (mainly concerning the borderline between efficiency and non-efficiency:
which ingredient makes possible a polynomial solution to an NP-complete prob-
lem, such that without this ingredient only problems from class P can be solved
in polynomial time by a given type of P systems?)2.

Still, languages are always present also in these frameworks, of sym-
port/antiport rules and of complexity investigations – let us mention only the
automata approach (see an overview in [7]), which will be considered in more
details below.

It is worth returning now to the basic ingredients of a P system: the “objects”
of bio-chemistry are not only “symbols” (atoms, in the etymological sense), but
also “words”, molecules with a structure which plays a role in the behavior
inside the cell. Thus, we can consider string-objects (actually, this was already
done in the initial paper, [18]), with two possibilities: working in the multiset
sense, or in the standard language sense. An important detail appears here:
what means “standard language sense”? Sets when we discuss operations with
languages, multisets with infinite multiplicity when defining the derivations in a
grammar: starting from a sentential form, all continuations made possible by the
rules of the grammar (which rule to apply and where in the string to apply it)
are simultaneously possible. This does not make a difference when defining the
language generated by a Chomsky grammar, but it is crucial in situations where
the strings interact (like in DNA computing) in order to produce new strings,
and where it is important which strings are available in each step.

Both sets and multisets of strings were considered in membrane computing,
processes by means of usual rewriting rules, by splicing rules, or by other types
of rules inspired from the genome area. The multiplicity matters when consid-
ering P systems with string-objects for solving computationally hard problems:
using rewriting with replication (when applying a rule a → u1||u2|| . . . ||un to
x2ax2 we get n strings x1u1x2, . . . , x1unx2 at the same time) we can again solve
NP-complete problems in polynomial time, like in the case of using membrane
division.

2 I am wondering whether similar problems were investigated for Lindenmayer sys-
tems: can we make use of the possibility of growing exponentially the strings of, e.g.,
an ET0L system, in order to solve NP-complete problems using ET0L systems?
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This close initial relationship of membrane computing with language theory
stays nicely in balance with recent developments (we may say that we have now
P systems of a “third generation”) where tissue-like and neural-like P systems
are much investigated. Besides the next two sections, all the remaining sections
of this paper will be devoted to presenting such a model, the spiking neural P
systems, mainly as they are used for handling languages.

2 A Glimpse to Membrane Computing

For the sake of completeness, we recall here some basic ideas, definitions, and
results from membrane computing. Further details can be found in [19] (with
applications presented in [6]), while updated information can be found at the
web site [23].

Actually, we discuss only cell-like P systems, and we refer the reader to the
cited sources for tissue-like P systems and population P systems.

The basic ingredient of the computing device we consider is that of a mem-
brane structure; the related terminology and representation are given in Figure 1.
Mathematically, we can represent a membrane structure as a rooted unordered
tree, or as a string of matching parentheses.
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Fig. 1. A membrane structure

By placing multisets of objects and evolution rules in the regions of a mem-
brane structure, we get a P system of the basic type, called transition P system.
Formally, such a device (of degree m ≥ 1) is a construct of the form

Π = (O,C, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm, io),

where:

1. O is the (finite and nonempty) alphabet of objects;
2. C ⊂ O is the set of catalysts;
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3. μ is a membrane structure, consisting of m membranes, labeled 1, 2, . . . ,m;
we say that the membrane structure, and hence the system, is of degree m;

4. w1, w2, . . . , wm are strings over O representing the multisets of objects
present in regions 1, 2, . . . ,m of the membrane structure;

5. R1, R2, . . . , Rm are finite sets of evolution rules associated with regions
1, 2, . . . ,m of the membrane structure;

6. io is either one of the labels 1, 2, . . . ,m, and then the respective region is the
output region of the system, or it is 0, and then the result of a computation
is collected in the environment of the system.

The rules are of the form u→ v or u→ vδ, with u ∈ O+ and v ∈ (O×Tar)∗,
where Tar = {here, in, out}. The rules can be cooperative (with u arbitrary),
non-cooperative (with u ∈ O−C), or catalytic (of the form ca→ cv or ca→ cvδ,
with a ∈ O−C, c ∈ C, and v ∈ ((O−C)×Tar)∗); note that the catalysts never
evolve and never change the region, they only help the other objects to evolve.

When using a rule u → v, the objects of u are consumed and those of v are
produced. An object a appearing in v in a pair (a, tar) is placed in the region
specified by tar: if tar = here, then the object remains in the same region where
the rule is used, if tar = in, then the object goes in any of the directly inner
membranes, and if tar = out, then object a exits the membrane and becomes
an element of the immediately upper region (this is the environment if the rule
was used in the skin region). If δ is present, then the membrane is dissolved,
its rules are removed and its objects become elements of the immediately upper
membrane; the skin membrane is never dissolved.

As suggested in the previous section, the rules are used in a non-deterministic
way, choosing randomly the objects to evolve and the rules by which they evolve,
but in such a way that the choice is maximal, no further rule can be applied in
the same step to the remaining objects. This is an essential point, important
in establishing the computing power of these devices (the maximal parallelism,
combined with the halting restriction in defining successful computations, is
closely related to the appearance checking in regulated grammars, and to the
check for zero in register machines – see a more detailed discussion about this
point in [11]).

By using the rules in this way, we get transitions among configurations of the
system Π . A sequence of transitions starting from the initial configuration of the
system forms a computation. With a halting computation we associate a result,
for instance, in the form of the number of objects present in the halting configu-
ration in region io. We denote by N(Π) the set of numbers computed/generated
in this way, and by NOPm(type-of-rules) the family of sets N(Π) for systems Π
with at most m membranes and using rules of the type-of-rules specified.

We have given this general notation, because the number of types of rules
which can be used in a P system is very large, with motivations coming both
from biology and from computer science. The rules can be cooperative, non-
cooperative (context-free), or catalytic, they can have promoters or inhibitors,
can control the membrane permeability, can dissolve or create membranes, and so
on and so forth. In particular, they can correspond to the biological phenomena
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of passing molecules through membranes in couples, in the same direction (this
is called symport) or in opposite directions (antiport).

Such rules can be formalized as (x, in) and (x, out) (symport) and
(z, out;w, in) (antiport), where x, z, and w are multisets of objects. The meaning
is that all objects of x are moved across the membrane with which the rule is
associated, going inside in the case of (x, in) and outside in the case of (x, out),
while the application of the antiport rule (z, out;w, in) moves the objects of z
out of the membrane at the same time with moving in the objects of w. The
length of x is called the weight of the symport rule, and max(|z|, |w|) is the
weight of the antiport rule. The formal definition of a symport/antiport P sys-
tem is the same as above, with the important additional detail that we need an
inexhaustible supply of objects in the environment, otherwise we can handle only
a finite number of objects, those present initially in the system. The transition
among configurations is defined in the same way (using the rules in the non-
deterministic maximally parallel manner). The families of numbers generated in
this context are denoted by NOPm(symp, antiq) when considering systems of
degree at most m, using symport rules of weight at most p and antiport rules of
weight at most q.

We mention here only two universality results related to these basic types of
P systems (cat2 indicates the fact that one uses catalytic rules, with only two
catalysts present in the system, and NRE is the family of Turing computable
sets of numbers, hence the length sets of recursively enumerable languages; an
intriguing current open problem in this area is whether or not systems with
one catalyst are universal, with the conjecture that this is not the case – see
papers and references about this subject in [23], for instance, from the Fourth
Brainstorming Week on Membrane Computing, Sevilla, 2006):

1. NRE = NOP1(cat2), [10].
2. NRE = NOP3(sym1, anti1) = NOP3(sym2, anti0), [1].

We do not continue this general presentation of membrane computing, in par-
ticular, not touching the important complexity related area of research (neither
the applications area, maybe still more important/promising in this moment),
because we want to return to languages, first as they already appear in rela-
tion with “classic” types of P systems, and then as they appear in the recently
introduced spiking neural P systems.

3 Languages in Membrane Computing

As said before, we can work with objects described by strings, and then the
languages appear in a direct way – with several possible types of systems: using
rewriting, splicing, or other operations with strings; rewriting can be with repli-
cation; the rules can be context-free or controlled by promoters or inhibitors; the
strings can have multiplicities of not; as successful computations we can consider
only halting computations or all computations, in the latter case selecting the
strings, e.g., by sending them outside the system or by using a terminal alphabet.
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Still, there are more interesting ways to associate strings with computations in
a P system which have inside multisets of symbol objects, and the interest comes
from the essential difference between the “internal” data structure, multisets,
and the “external” data structure, that of the result of computations, strings
(with syntax, positional information).

Three main ways to compute strings were investigated for P systems with
symbol objects: (i) considering an external output, (ii) using P systems in the
accepting mode, and (iii) following the traces of a traveler across membranes.

The first idea was considered already at the beginning of research in membrane
computing, [22]: let us stay outside the system and record all objects which exit
it, in the order they are expelled from the system; if several symbols exit at the
same time, then any permutation of them is allowed in the generated string. For
a computation to be successful, it has to halt, otherwise we do not know when a
string is completed. The definition is clear for P systems with multiset rewriting
rules, because the objects sent into the environment are never retrieved (and
not considered yet for symport/antiport systems, because the symbols can come
back into the system, but also for this case we can investigate such externally
generated strings, allowing or not the symbols already introduced in the string
to return into the system).

Dual to this idea is the second one mentioned above, also natural in view
of the grammar-automata duality in language and automata theory: using a P
system not to generate the strings of a language, but to recognize them. This
is possible also for numbers: introduce a number in a region, in the form of the
multiplicity of a specified object, start the computation and accept the number
if and only if the computation halts. For strings it is necessary to involve again
the environment: the symbols of the strings are supposed to be available in the
environment, in the order they appear in the string, and then rules for bringing
them inside are necessary. Thus, accepting P systems were considered only for
symport/antiport systems (and for certain related systems with the computation
based on communication only), with several variations in the definition: the
symbols should be introduced in the system one by one, in the first steps of
the computation (this is very restrictive, because no intermediate computations
are possible, e.g., for encoding the positional information of the string in the
numbers available inside the system), or only from time to time, at the request
of the system; restrictions can be imposed on the form of the used rules; we can
consider the string not as provided in the environment, but constructed from
the symbols imported from the environment, in the order they are brought in,
maybe associating a label to a multiset (then the accepted string is that of labels
of imported multisets); a computation can be considered successful if the system
is halting or also using states, like in automata theory, but with states defined
here in terms of the multisets present in the regions of the system; a system can
be deterministic or non-deterministic, etc.

We refer to [7] for further details about the many variants of accepting P
systems (sometimes called P automata), and to results in this area (mainly
universality), and we only point out here a recent result, which establishes a
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nice link with Chomsky hierarchy, part of a larger research topic which still
waits for extended efforts to be fully covered: looking for characterizations (or
at least representations via specified operations with languages) of families of
languages from classic language theory (Chomsky, Lindenmayer, Marcus hierar-
chies) in terms of membrane computing. This is a challenging question in general
in natural computing: it seems that the most (only?) “natural” classes of lan-
guages are the regular and the recursively enumerable ones, which have direct
and sometimes easy characterizations (e.g., in terms of splicing systems), while
the families of linear, context-free, or context-sensitive languages do not have a
direct counterpart in natural computing.

This result concerns a characterization of context-sensitive languages, recently
obtained in [13], using a restricted class of accepting symport/antiport P sys-
tems: one considers accepting one-membrane systems, with an input alphabet
Σ ⊆ O containing a distinguished symbol $ (the end marker), the environment
containing all objects from O − Σ (and no object from Σ), and rules of the
following four types:

1. (u, out; v, in), where u, v ∈ (V −Σ)∗ with |u| ≥ |v|.
2. (u, out; va, in), where u, v ∈ (V −Σ)∗ with |u| ≥ |v|, and a ∈ Σ. A rule of

this type is called a read-rule.

3. (u, out; v, in)|a, where u, v ∈ (V −Σ)∗, and a ∈ Σ (a is a promoter). Note
that there is no restriction on the relative lengths of u and v.

4. For every a ∈ Σ, there is at least one rule of the form (a, out; v, in) in the set
R1, where v ∈ (V − Σ)∗. Moreover, this is the only type of rules for which
a can appear on the left part of the rule.

Such a system accepts a string x = a1 . . . an$, where ai is in Σ − {$} for
1 ≤ i ≤ n, if its symbols are brought into the system in the order they appear in x
by means of read-rules, and, after reading the string completely, the computation
eventually halts.

P systems of this type characterize the context-sensitive languages; if some
of the restrictions 1–4 are removed or certain changes are made in the defin-
ition, then characterizations of regular or of recursively enumerable languages
are obtained.

The third idea mentioned above for defining a string associated with a com-
putation in a P system with symbol-objects is specific to membrane computing,
it has no counterpart in classic grammar and automata theory: in communica-
tive P systems (those with the computation based on moving objects from a
region to another one, like in symport/antiport P systems), we can consider a
distinguished object (a “traveler”), and the trajectory of this object through
the system provides a string, by recording certain events related to the traveler
journey, for instance, writing the symbol bi when the traveler enters membrane
i. When the computation halts, the trace-string is completed.

We do not discuss further the trace languages for standard P systems, but we
will consider this idea in more details for spiking neural P systems, in Section 6.
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4 Spiking Neural P Systems

The question of incorporating ideas from neuro-biology into membrane comput-
ing was formulated several times as a research topic, and there are several con-
tributions to this issue, including a chapter in [19]. Still, this research direction
is not at all explored as it deserves to be; the neurons functioning and especially
their cooperation in various constructions, the brain included, is a huge source
of ideas. Recent contributions were added to this topic by introducing so-called
spiking neural P systems (in short, SN P systems), which capture the important
idea of neural biology concerning the way the neurons communicate by means
of “spikes”, electrical impulses of identical intensity and shape, but occurring
at time moments which are carrying information in the distance between them.
We refer to [16] for details and further references about the biological processes
related to spiking and about the way they are used in neural computing (one
speaks in the last years about a neural computing of the “third generation”
based on spiking neurons).

The way the idea is modeled in terms of P systems is rather simple: one
considers only one type of objects, the spike, denoted by a, and neurons linked
by synapses (elementary membranes placed in the nodes of a directed graph),
containing spikes and rules for handling them. These rules are of two forms:

(1) E/ac → a; t, where E is a regular expression over {a}, c ≥ 1, and t ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any rule

E/ac → a; t of type (1) from the same neuron.

The rules of type (1) are firing (we also say spiking) rules, the rules of type
(2) are forgetting rules.

A neuron gets fired when using a rule E/ac → a; t, and this is possible only if
the neuron contains n spikes such that an ∈ L(E) and n ≥ r. This means that
the regular expression E “covers” exactly the contents of the neuron. The use
of a rule E/ac → a; t in a step q means firing in step q, consuming c spikes, and
spiking in step q+ t. That is, if t = 0, then the spike is produced immediately, in
the same step when the rule is used. If t = 1, then the spike will leave the neuron
in the next step, and so on. In the interval between using the rule and releasing
the spike, the neuron is assumed closed (in the refractory period), hence it cannot
receive further spikes, and, of course, cannot fire again. This means that if t ≥ 1
and another neuron emits a spike in any moment q, q+ 1, . . . , q+ t− 1, then its
spike will not pass to the neuron which has used the rule E/ac → a; t in step
q. In the moment when the spike is emitted, the neuron can receive new spikes.
This means that if t = 0, then no restriction is imposed, the neuron can receive
spikes in the same step when using the rule. Similarly, the neuron can receive
spikes in moment t, in the case t ≥ 1.

If a neuron σi spikes, its spike is replicated in such a way that one spike is
sent to each neuron σj such that there is a synapse from σi to σj (we write
(i, j) ∈ syn, with the set syn specified in advance), and σj is open at that
moment. If a neuron σi fires and either it has no outgoing synapse, or all neurons
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σj such that (i, j) ∈ syn are closed, then the spike of neuron σi is lost; the firing
is allowed, it takes place, but it produces no spike.

By using a forgetting rule as → λ, s spikes are simply removed (“forgotten”).
Like in the case of spiking rules, the left hand side of a forgetting rule must
“cover” the contents of the neuron, that is, as → λ is applied only if the neuron
contains exactly s spikes.

An SN P system is said to be finite if L(E) is a finite language for each rule
E/ac → a; t.

Note that each neuron uses at most one rule at a time – hence the neurons
work in a sequential manner (but the system itself is synchronized: in each time
unit, each neuron which can use a rule should do it).

One of the neurons is designated as the output neuron of the system and when
it spikes, besides spikes sent to other neurons along synapses, a spike is also sent
to the environment. In this way, the system produces a spike train, a sequence of
time units when we have spikes leaving the system. The number of steps elapsed
between two consecutive spikes can be considered as being computed by the
system, with many possibilities to define the computed set of numbers: taking
all intervals, taking only the interval between the first two spikes, considering
alternately the intervals (we take the first interval, we ignore the second one,
we take the third interval, and so on), considering all computations or only
the halting ones. In this way, the spiking neural P systems behave as number
computing devices. It is also possible to consider the spike train itself as the
output of a computation, codified as a binary sequence: we write 1 for a time unit
when the system sends a spike into the environment and 0 for a time unit when no
spike is sent out. In the non-halting case we get then an infinite binary sequence.
If also input neurons are considered, then we can work in the accepting case or
even with spiking neural P systems as transducers of binary strings/sequences.

We do not give here examples of SN P systems, because in the next sections
we will present specific P systems for various language processing tasks.

Many of the above mentioned possibilities of using a spiking neural P system
for computing numbers were considered in [14], [20], [21], and part of them were
also investigated in some detail. In particular, two main results were proved in
[14] for the case of considering only the distance between the first two spikes,
and then extended in [20] to many other cases:

1. arbitrary SN P systems are Turing complete,
2. finite SN P systems characterize the semilinear sets of numbers.

The universality result is obtained for systems with a small number of rules
in each neuron (at most two), and small numbers of spikes consumed in firing
and forgetting rules (at most three), but without any bound on the number of
neurons. Such bounds were produced in [17], starting from simulating (universal)
register machines as those from [15]: about 50–80 neurons suffice (this depends on
the type of rules used and on the definition of universality). Several improvements
of the results from [14], [20] in the form of rules (no delay, or no forgetting rules,
or particular forms of regular expressions) were given in [12].
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The paper [21] considers the SN P systems as string and (infinite) sequence
processors, for the case of the binary alphabet: both an input and an output neu-
ron are provided, with spikes coming from the environment to the input neuron;
the input sequence of bits is thus processed by the system, in the automaton
style (accepting or not the input, depending on whether the computation halts
or not), or in the transducer style (an output string is produced, which is thus
the translation of the input string). A tool-kit for handling binary strings is pro-
vided in [21]: computing Boolean operations, taking prefixes, suffixes, substrings,
computing a guided crossover, and so on.

Still, a lot of problems are open about SN P systems as string/sequence proces-
sors, for instance, in what concerns the case of infinite sequences, starting with
the necessary comparison of the family of sequences computed in this framework
with infinite sequences recognized by finite automata, by Turing machines, or
appearing in other areas (for instance, generated by L systems).

5 SN P Systems as Language Generators

A very natural way of using an SN P system is as a string generator, taking
the binary encoding of a spike trace associated with a halting computation as
the string generated by that computation. Instead of a formal definition, let us
examine an example from [3], the system Π1 from Figure 2. This also gives us the
opportunity to illustrate the way to graphically represent an SN P system: as a
directed graph, with the neurons as nodes and the synapses indicated by arrows;
an arrow also exits from the output neuron, pointing to the environment; in each
neuron we specify the rules and the spikes present in the initial configuration.

We have L(Π1) = {0n+41n+4 | n ≥ 0}. The reader can check that in n ≥ 0
steps when neuron σ1 uses the rule a2/a→ a; 0 the output neuron accumulates
2n + 6 spikes. When neuron σ1 uses the rule a2/a → a; 1, one more spike will
arrive in neuron σ9 (in step n+ 4). In this way, the number of spikes present in
neuron σ9 becomes odd, and the rule a(a2)+/a2 → a; 0 can be repeatedly used
until only one spike remains; this last spike is used by the rule a → a; 0, thus
n+ 4 occurrences of 1 are produced.

Let us denote by LSNPm(rulek, consp, forgq) the family of languages L(Π),
generated by SN P systems Π with at most m neurons, each neuron having at
most k rules, each of the spiking rules consuming at most p spikes, and each
forgetting rule removing at most q spikes. When using only finite systems, we
write LFSNPm(rulek, consp, forgq) for the corresponding family. As usual, a
parameter m, k, p, q is replaced with ∗ if it is not bounded.

Here are some of the results obtained in [3] (B denotes the binary alpha-
bet, B = {0, 1}, and FIN,REG,REC,RE are the families of finite, regular,
recursive, and recursively enumerable languages).

Theorem 1. (i) There are finite languages (for instance, {0k, 10j}, for any k ≥
1, j ≥ 0) which cannot be generated by any SN P system, but for any L ∈
FIN , L ⊆ B+, we have L{1} ∈ LFSNP1(rule∗, cons∗, forg0), and if L =
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1
a2

a2/a → a; 0
a2/a → a; 1

a → λ

2
a2

a2/a → a; 0

a → λ

3
a2

a2 → a; 0
a → λ

4

a → a; 0

5

a → a; 0

6

a → a; 0

7

a

a → a; 0

8

a

a → a; 0

9

a2

a(a2)+/a2 → a; 0
a → a; 0

10

a → a; 0

a3 → λ

a2 → λ

Fig. 2. An SN P system generating a non-regular language

{x1, x2, . . . , xn}, then we also have {0i+3xi | 1 ≤ i ≤ n} ∈ LFSNP∗(rule∗,
cons1, forg0).

(ii) The family of languages generated by finite SN P systems is strictly in-
cluded in the family of regular languages over the binary alphabet, but for any
regular language L ⊆ V ∗ there is a finite SN P system Π and a morphism
h : V ∗ −→ B∗ such that L = h−1(L(Π)).

(iii) LSNP∗(rule∗, cons∗, forg∗) ⊂ REC, but for every alphabet V = {a1, a2,
. . . ,ak} there are a morphism h1 : (V ∪ {b, c})∗ −→ B∗ and a projection h2 :
(V ∪ {b, c})∗ −→ V ∗ such that for each language L ⊆ V ∗, L ∈ RE, there is an
SN P system Π such that L = h2(h−1

1 (L(Π))).

These results show that the language generating power of SN P systems is rather
ex-centric; on the one hand, finite languages (like {0, 1}) cannot be generated,
on the other hand, we can represent any RE language as the direct morphic
image of an inverse morphic image of a language generated in this way. This
ex-centricity is due mainly to the restricted way of generating strings, with one
symbol added in each computation step. A natural idea to avoid this restriction is
to use extended spiking rules, as already considered in [17], i.e., rules of the form
E/ac → ap, with the meaning that c spikes are consumed and p are produced,
with p ≥ 0. In this way, a common generalization is obtained for both spiking
and forgetting rules – also a delay can be considered, but, because it was not
necessary in the proofs of the results below, this feature was not introduced for
extended rules.
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Such rules are used as in restricted SN P systems, and a language can now
be generated by associating the symbol bi with a step when the output neuron
sends out i spikes, with an important decision to take in the case i = 0: we
can either consider b0 as a separate symbol, or we can assume that emitting 0
spikes means inserting λ in the generated string. Thus, we both obtain strings
over arbitrary alphabets, not only over the binary one, and, in the case where we
ignore the steps when no spike is emitted, a considerable freedom is obtained in
the way the computation proceeds. This latter variant (with λ associated with
steps when no spike exits the system) is considered below.

We denote by LSNePm(rulek, consp, prodq) the family of languages L(Π),
generated by SN P systems Π using extended rules, with at most m neurons,
each neuron having at most k rules, each rule consuming at most p spikes and
producing at most q spikes. Again, the parameters m, k, p, q are replaced by ∗ if
they are not bounded.

The next results were obtained in [5], as counterparts of the results from
Theorem 1; as expected, the extended rules are useful, the obtained families
of languages are larger, and finite, regular, and recursively enumerable can be
directly obtained, without additional symbols and squeezing mechanisms.

Theorem 2. (i) FIN = LSNeP1(rule∗, cons∗, prod∗) and this result is sharp,
because LSNeP2(rule2, cons2, prod2) contains infinite languages.

(ii) LSNeP2(rule∗, cons∗, prod∗) ⊆ REG ⊂ LSNeP3(rule∗, cons∗, prod∗);
the second inclusion is proper, because LSNeP3(rule3, cons4, prod2) contains
non-regular languages; actually, the family LSNeP3(rule3, cons6, prod4) con-
tains non-semilinear languages.

(iii) RE = LSNeP∗(rule∗, cons∗, prod∗).

As in the case of symport/antiport P systems used in the accepting mode, it is
an open problem to find characterizations (even only representations) of other
families of languages in the Chomsky hierarchy.

6 Trace Languages of SN P Systems

The idea of following the traces of a distinguished object in its journeys through
the system can be considered also for SN P systems: we distinguish one of the
neurons of the system as the input one and in the initial configuration of the
system we “mark” one spike from this neuron – the intuition is that this spike has
a “flag” – and we follow the path of this flag during the computation, recording
the labels of the neurons where the flag is present in the end of each step. (When
presenting the spikes of a neuron, one of them is primed.) If a rule consumes the
marked spike, then one of the spikes which leave the neuron is marked (because
we may have several outgoing synapses and one spike goes along each of them,
the “flag” is taken by only one of the spikes which exit the neuron where the
rule was used). If a neuron uses a rule, but the marked spike is not consumed
(e.g., we have three spikes in a neuron, aaa′, and we use the rule a3/a → a; 0,
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then two spikes remain and one of them can be the marked one), then it remains
in the neuron.

The trace of the marked spike can be recorded as a string of symbols bi, with
bi associated with neuron σi. The set of all strings obtained in this way along all
halting computations of Π is denoted by T (Π). By TSNPm(rulek, consp, forgq)
we denote the family of languages T (Π), generated by systems Π with at most m
neurons, each neuron having at most k rules, each of the spiking rules consuming
at most p spikes, and each forgetting rule removing at most q spikes. A parameter
m, k, p, q is replaced with ∗ if it is not bounded.

Before recalling some results from [4], let us consider an example, the system
Π2 whose initial configuration is given in Figure 3. We have T (Π3) = (b7b6)+b7∪
(b7b6)+b7b6.
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1

a2

a2/a → a; 0
a2/a → a; 1

a → λ

2
a2

a2/a → a; 0

a → λ

3
a → a; 0

a2 → λ

4

a → a; 0

5

a → a; 0

6

a′
a → a; 0
a3 → λ
a2 → λ

7

a → a; 0
a3 → λ
a2 → λ

Fig. 3. The initial configuration of system Π2

The neurons σ6, σ7 exchange the marked spike among them as long as they
do not get “flooded” by neurons σ4, σ5,and this happens when a spike comes
from neuron σ3. In turn, this neuron spikes only in the step when neuron σ1
uses the rule a2/a → a; 1 (if neuron σ1 uses the rule a2/a → a; 0, then the
cooperation of neurons σ1, σ2 continues, both of them returning to the initial
state by exchanging spikes). When neurons σ6, σ7 have inside two or three spikes,
they forget them and the computation stops. Depending on the step when neuron
σ1 uses the rule a2/a → a; 1 (an odd or even step), the string ends with b7 or
with b7b6.

The trace families are again ex-centric, like in the case of languages generated
by SN P systems in the restricted case (the extended rules were not considered
yet also for SN P systems used as trace generators):

Theorem 3. (i) There are singleton languages which are not in TSNP∗(rule∗,
cons∗, forg∗).
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(ii) The family of trace languages generated by SN P systems by means of
computations with a bounded number of spikes present in their neurons is strictly
included in the family of regular languages, but for each regular language L ⊆ V ∗

there is an SN P system Π such that each neuron from any computation of Π
contains a bounded number of spikes, and L = h(∂r

c (T (Π)) for some coding h,
and symbol c not in V . In turn TSNP12(rule2, cons2, forg1)−REG �= ∅.

(iii) Every unary language L ∈ RE can be written in the form L = h(L′) =
(b∗1\L′) ∩ b∗2, where L′ ∈ TSNP∗(rule2, cons3, forg3), and h is a projection.

It is not know whether the last result above can be proved for languages over
arbitrary alphabets – maybe extended rules are useful/necessary in this respect.

7 Final Remarks

The aim of this paper was only to point out some of the several (direct) bridges
between membrane computing and formal language theory, especially consider-
ing those situations where P systems are used as language processing (generating,
accepting, translating) devices, with some further details given for the recently
introduced spiking neural P systems. Many topics remain to be investigated in
this area: improving existing results from the point of view of the complexity
of the used systems, extending these results to other classes of P systems or
to other families of languages, examining in a closer extent the case of infinite
sequences, looking for sub-universal systems and the properties of the associated
language families, and so on and so forth.

Returning to the initial question, whether or not membrane computing is part
of formal language theory, it should be now obvious that the answer is a qualified
yes (this is the same with a qualified no. . . ): the intersection/interaction of the
two research areas is considerable, in the benefit of both of them. New motiva-
tion and applications for old notions, tools, and results of formal language theory
arise, as well as new information (e.g., characterizations) about old families of
languages, while membrane computing takes a considerable advantage from us-
ing the well developed tools and techniques of formal language (and automata)
theory in investigating the “computing cell” (in the form modeled by P systems
of various types).
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The functioning of a living cell consists of a (huge) number of individual bio-
chemical reactions. These reactions are regulated, where the two main regula-
tion mechanisms are: facilitation/acceleration and inhibition/retardation. The
interaction between individual biochemical reactions takes place through their
influence on each other, and this influence is through facilitation or inhibition
(or both).

We present a formal model of reaction systems – its goal is to analyze/
understand, on an abstract level, some aspects of the functioning of a living
cell, and in particular to analyze the interaction between biomolecular reactions.
Therefore in the theory of reaction systems the formalization of an individual
reaction relies on the above mentioned two regulation mechanisms, while the
interaction between individual reactions does not have to be formalized: it is
there “for free”.

In this approach reactions are primary while structures are secondary: reac-
tions create states (rather than transform states as is the case in traditional
approaches in computer science). We also assume the “threshold” supply of ele-
ments (molecules) – if an element is present, then there is “enough” of it; thus
we perform a qualitative rather than quantitative analysis of functioning of re-
action systems. Moreover we do not assume permanency of elements but rather
their sustainability: if nothing happens to an element (it is not a reactant for
any active reaction), then it ceases to exist (“life must be sustained”).

Altogether we argue that the axioms/assumptions underlying models of bio-
chemical reactions and their interactions are very different from the axioms un-
derlying models of computation in computer science. Thus, although reaction
systems formalize (massively) concurrent systems, such as living cells, the basic
set up here is very different than, e.g., for Petri Nets.

We present the basic theory of reaction systems, and illustrate it through
examples coming both from biology and computer science. We demonstrate how
the investigation of (suitably defined) computations in reaction systems allows
one to understand their functioning. In particular one can define and investigate
in this framework topics such as malfunctioning, or the formation of functional
units (modules).

O.H. Ibarra and Z. Dang (Eds.): DLT 2006, LNCS 4036, p. 36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Abstract. We show that some language theoretic and logical charac-
terizations of recognizable word languages whose syntactic monoid is in
the variety DA also hold over traces. To this aim we give algebraic char-
acterizations for the language operations of generating the polynomial
closure and generating the unambiguous polynomial closure over traces.

We also show that there exist natural fragments of local temporal logic
that describe this class of languages corresponding to DA. All charac-
terizations are known to hold for words.

1 Introduction

Traces were introduced by Mazurkiewicz as a generalization of words to de-
scribe the behavior of concurrent processes [4]. Since then traces have become a
rather popular setting to study concurrency. A lot of aspects of traces and trace
languages have been researched, see [1] for an overview.

Over words it has turned out that finite semigroups are a powerful technique
to refine the class of recognizable languages [2]. Two natural operations on classes
of languages are the polynomial closure and the unambiguous polynomial clo-
sure. For particular classes of languages, so called language varieties, it has been
shown that there exist algebraic counterparts in terms of the so-called Mal’cev
product [10]. In Section 3 (resp. Section 4) we will show that this correspondence
between the Mal’cev product and the polynomial closure (resp. the unambiguous
polynomial closure) for restricted varieties also holds over traces.

In Section 5 we tighten these results in the particular case of the class DA
of finite monoids to get two language theoretic characterizations of the class of
trace languages whose syntactic monoid is in DA. In Section 6 we show that
over traces the fragments of local temporal logic TL[XF,YP], TL[XF,YP,M] and
TL[Xa,Ya] also express exactly these languages. All three characterizations are
known to hold for words [11, 12].

2 Preliminaries

A set S is a semigroup if it is equipped with an associative binary operation. The
set S forms a monoid if it is a semigroup and if there exists a neutral element,
i.e. an element denoted by 1 and satisfying 1a = a = a1 for all a ∈ S. An element

O.H. Ibarra and Z. Dang (Eds.): DLT 2006, LNCS 4036, pp. 37–48, 2006.
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e of a semigroup is called idempotent if e2 = e. A mapping η : S → T between
two semigroups S and T is a semigroup homomorphism if η(ab) = η(a)η(b)
for all a, b ∈ S. If furthermore S and T are monoids and η(1) = 1, then η is
monoid homomorphism. A relation τ ⊆ S×T is a relational semigroup morphism
between semigroups S and T if τ(a) �= ∅ and τ(ab) ⊆ τ(a)τ(b) for all a, b ∈ S
where τ(a) = { c ∈ T | (a, c) ∈ τ }. In the context of monoids we additionally
require 1 ∈ τ(1) and then τ is called a relational monoid morphism. If there is
no confusion or if the statement holds in either case we omit the terms relational,
semigroup and monoid and only use the words morphism and homomorphism.
As for functional homomorphisms, we also use the notation τ : S → T for
morphisms. For two (homo)morphisms η : S → T and ν : S → R we define their
product η × ν : S → T ×R : a �→ (η(a), ν(a)).

The graph of a morphism τ : S → T is defined as graph(τ) = { (a, c) |
c ∈ τ(a) }. It is easy to see that graph(τ) is a subsemigroup (resp. submonoid) of
S×T . For any relational morphism τ : S → T the projections π1 : graph(τ) → S
and π2 : graph(τ) → T satisfy τ(a) = π2(π−1

1 (a)) for all a ∈ S, i.e. τ = π2 ◦π−1
1 .

The condition τ(a) �= ∅ for all a ∈ S implies that π1 is onto. In fact, whenever
we have two homomorphisms α : R → S and β : R → T and α is onto, the
composition β ◦ α−1 : S → T forms a relational morphism [6].

An ordered semigroup is a semigroup S equipped with a partial order relation
≤ such that a ≤ b implies ca ≤ cb and ac ≤ bc for all a, b, c ∈ S. Every semigroup
S forms also an ordered semigroup (S,=). For homomorphisms between ordered
semigroups η : (S,≤) → (T,�) we additionally require a ≤ b⇒ η(a) � η(b) for
all a, b ∈ S. More details can be found in [7].

We are interested in the interplay between classes of finite monoids and classes
of recognizable subsets of infinite monoids. The connection between them is the
syntactic congruence. Let L be a subset of a monoid M. Then the syntactic
congruence ∼L⊆ M×M of L is defined by

p ∼L q ⇔ (∀u, v ∈ M : upv ∈ L⇔ uqv ∈ L) .

The natural homomorphism μL : M → M/∼L : p �→ [p]∼L
is called the syn-

tactic homomorphism of L. The monoid M(L) = M/∼L is called the syntactic
monoid of L. The syntactic quasiordering ≤L of L is defined by p ≤L q ⇔
(∀u, v ∈ M : uqv ∈ L⇒ upv ∈ L). The relation ≤L induces a partial order on
M(L) such that (M(L),≤L) forms an ordered monoid. It is called the syntactic
ordered monoid of L.

Equations are one possibility to describe classes of finite semigroups. Let Ω
be a finite set and let w, v ∈ Ω+ (resp. Ω∗ for monoids). A semigroup S satisfies
the equation w = v, if for all homomorphisms η : Ω+ → S we have η(w) = η(v).
In a finite semigroup the unique idempotent power of an element a is denoted
by aω. We also allow the ω-operator in equalities and define η(wω) = η(w)ω .
By �w = v � we denote the set of finite semigroups (resp. finite monoids) satis-
fying w = v. Analogously, we can define the class of finite ordered semigroups
satisfying an inequality w ≤ v.

The next possibility we will need in order to define classes of finite semigroups
is the Mal’cev product. Let V and W be two classes of finite semigroups. A
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semigroup S is contained in the Mal’cev product W M©V of V by W if there
exists a semigroup T ∈ V and a relational morphism τ : S → T such that for
each idempotent e ∈ T the set τ−1(e) forms a semigroup in W.

Let Σ be a finite alphabet and I ⊆ Σ × Σ be a symmetric and irreflexive
relation. The trace monoid generated by (Σ, I) is the quotient M(Σ, I) = Σ∗/ ∼I

where ∼I is the congruence generated by { (ab, ba) | (a, b) ∈ I }, i.e. for v, w ∈
Σ∗ we have v ∼I w if and only if v can be transformed into w using only
commutations of contiguous letters a and b with (a, b) ∈ I. The elements of
M(Σ, I) are called traces, I is called the independence relation and D = Σ2 \ I
is the dependence relation. Let w ∈ Σ∗. By [w]I we denote the trace [w]I =
{ v ∈ Σ∗ | v ∼I w }. The word w ∈ Σ∗ is called a word representative of a trace
t ∈ M(Σ, I) if t = [w]I . As for words, |t| ∈ N is the length of the trace t ∈ M(Σ, I)
and alph(t) ⊆ Σ is its alphabet, i.e. the set of letters which occur in it. To each
trace t we can associate a graph.

Let w be a word representative of a trace t. With t we can associate a graph
(Vt, <t, labelt) where Vt = { ν | ν is a position of w } is the set of vertices and

labelt : Vt → Σ : ν �→ “letter of w at position ν”

is a labeling of the vertices. Let

→t = { (ν, χ) ∈ V 2
t | ν occurs before χ in w and (labelt(ν), labelt(χ)) ∈ D }.

The set of edges <t is now defined as the transitive closure of →t. The relation
<t is a (strict) partial order on Vt. Up to isomorphism, the definition of this
graph is independent of the choice of the word representative. The linearizations
of this graph are exactly the word representatives of t. Therefore, by abuse of
notation we will identify the word representative w, the trace t and its graph
(Vt, <t, labelt).

3 Polynomial Closure

In the following, we fix the trace monoid M(Σ, I) over a non-empty finite al-
phabet Σ. A class of finite monoids V is called variety if it is closed under
finite products, if it is closed under taking submonoids and if it is closed un-
der homomorphic images [6]. We will also use this notion if V is a class of
finite ordered monoids [7]. By Com we denote the class of finite commutative
monoids �xy = yx � and by J1 we denote the class of idempotent and commu-
tative monoids

�
x2 = x

�
∩Com.

Lemma 1. Let V be a variety of monoids with J1 ⊆ V and let M0, . . . ,Mn ∈ V.
For all i ∈ { 0, . . . , n } let μi : M(Σ, I) → Mi be homomorphisms. Then there
exists a monoid N ∈ V and a homomorphism η : M(Σ, I) → N such that for
all x, y ∈ M(Σ, I) satisfying η(x) = η(y) the following conditions hold:

(a) For all homomorphisms μi, 0 ≤ i ≤ n, we have μi(x) = μi(y).
(b) alph(x) = alph(y).
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(c) Let x′ and y′ be connected components of x and of y respectively such that
alph(x′) = alph(y′). Then we have η(x′) = η(y′).

(d) If η(x) is idempotent then η(x′) is idempotent for every connected component
x′ of x.

Proof. The power set 2Σ of Σ using union ∪ as operation forms a commutative
and idempotent monoid. We set

N = 2Σ ×
∏

Γ⊆Σ

M0 × · · · ×Mn.

Since 2Σ ∈ J1 ⊆ V and since V is a variety, we have N ∈ V. Next we define

η = alph×
∏

Γ⊆Σ

((μ0 × · · · × μn) ◦ πΓ ) : M(Σ, I) → N,

where πΓ is the natural projection M(Σ, I) → M(Γ, Γ 2 ∩ I) : x �→ πΓ (x).
Note that M(Γ, Γ 2 ∩ I) ⊆ M(Σ, I). Condition (a) is verified in the components
of N and ν corresponding to Γ = Σ and condition (b) is fulfilled by reason
of the first component. Let x′ and y′ be connected components of x and of
y with alph(x′) = alph(y′). Let Γ ⊆ Σ and let i ∈ { 0, . . . , n }. To conclude
(c) we have to show μi(πΓ (x′)) = μi(πΓ (y′)). Since x′ = πalph(x′)(x) we have
πΓ (x′) = πΓ (πalph(x′)(x)) = πΓ ′(x) with Γ ′ = Γ ∩ alph(x′). A similar argument
for y′ and y and η(x) = η(y) implies μi(πΓ (x′)) = μi(πΓ ′(x)) = μi(πΓ ′ (y)) =
μi(πΓ (y′)). Now let η(x) be idempotent. This means that every component of
η(x) is idempotent and since every component of η(x′) is also a component of
η(x), we have that η(x′) is also idempotent. �

We say that a trace t1 is a factor of a trace t2 if there exist traces s1 and s2 such
that t2 = s1t1s2.

Lemma 2. Let a ∈ Σ, let t0, t1 ∈ M(Σ, I) and let x ∈ M(Σ, I) be connected.
If x|Σ|+m is a factor of t0at1 for m ∈ N then there exist m0,m1 ∈ N such that
m0 +m1 = m and xmi is a factor of ti for i = 0 and i = 1.

Proof. The proof is similar to the proof that x∗ is recognizable if x ∈ M(Σ, I)
is connected [5, Proposition 6.3.11].

Since x is connected, between any two letters of alph(x) we have an undirected
path in the dependence graph (Σ,D) of length at most |Σ| such that all vertices
on this path are in alph(x). Directed paths following the same labels also exist
in x|Σ| between all vertices of the first x and all vertices of the last x in this
product. There could be some x’s that have vertices in t0 as well as vertices in
at1. The above argument shows that starting with the first x with this property
we could lose at most |Σ| − 1 many of the x’s of x|Σ|+m as factors of t0 or at1.
The letter a could be a factor of one x. It follows that there remain m many x’s
as factors of either t0 or t1. �
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For a set V of trace languages over M(Σ, I) we define the polynomials PolV over
V as the set of trace languages that are finite unions of languages of the form

L0a1L1 · · ·anLn,

where n ∈ N and Li ∈ V for all 0 ≤ i ≤ n. We say that a set V of trace lan-
guages over M(Σ, I) corresponds to a class of monoids V, if V = {L ⊆ M(Σ, I) |
M(L) ∈ V }, resp. V = {L ⊆ M(Σ, I) | (M(L),≤L) ∈ V } for ordered
monoids V.

Theorem 1. Let V be a variety of monoids such that J1 ⊆ V and let V be the
set of trace languages corresponding to V. Then the syntactic ordered monoid of
every language L ∈ PolV is in �xωyxω ≤ xω � M©V.

Proof. We modify the proof for words in [10]. Let L = L0a1L1 · · ·anLn, where
Li ∈ V for all 0 ≤ i ≤ n. Let η : M(Σ, I) → N be as in Lemma 1 with
Mi = M(Li) for i ∈ { 0, . . . , n }. Let (M(L),≤L) be the syntactic ordered monoid
of L and μ : M(Σ, I) → M(L) its syntactic homomorphism. We obtain the
relational morphism τ = η ◦ μ−1 : M(L)→ N .

Let e ∈ N be idempotent, let x, y, u, v ∈ M(Σ, I) such that η(x) = e = η(y)
and letm ≥ n |Σ|+1. The trace x can be decomposed into connected components
x = x1 · · ·x� such that alph(xi) × alph(xj) ⊆ I for all 1 ≤ i �= j ≤ �. Lemma 1
(b) implies alph(x) = alph(y). Hence, the trace y can also be decomposed into
connected components y = y1 · · · y� such that alph(yj) = alph(xj) for all 1 ≤
j ≤ �. Suppose uxmv ∈ L. By applying Lemma 2 up to n times we can conclude
that for every j ∈ { 1, . . . , � } there exists i ∈ { 0, . . . , n } and a factorization
uxmv = z0z1xjz2z3 such that

z0 ∈ L0a1L1 · · ·Li−1ai

z1xjz2 ∈ Li

z3 ∈ ai+1Li+1 · · · anLn.

By Lemma 1 we have that μi(xj) = μi(yj) is idempotent and therefore we have
z1xjx

k1
j yjx

k2
j z2 ∈ Li for all k1, k2 ∈ N. By applying this pumping argument to

all connected components of x, by a suitable choice of the exponents we can
conclude uxmyxmv ∈ L.

Thus for all m ≥ n |Σ| + 1 we have μ(xmyxm) ≤L μ(xm) and therefore
τ−1(e) ∈ �xωyxω ≤ xω �. This shows (M(L),≤L) ∈ �xωyxω ≤ xω � M©V. This
Mal’cev product forms a variety of ordered semigroups. Language classes corre-
sponding to varieties are closed under finite unions. Hence, we can conclude that
PolV is a subset of the trace languages corresponding to �xωyxω ≤ xω � M©V. �

By πI : Σ → M(Σ, I) : w �→ [w]I we denote the canonical projection from Σ∗

to M(Σ, I).

Lemma 3. Let η : Σ∗ → M be a homomorphism from Σ∗ to a commutative
monoid M . Then there exists a unique homomorphism ν : M(Σ, I) → M such
that ν ◦ πI = η.
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The proof of the following lemma can be found in [2] as a special case of Propo-
sition 1.1, page 186.

Lemma 4. Let L ⊆ M(Σ, I) be a trace language and let η : Σ∗ →M be the syn-
tactic homomorphism of π−1

I (L). Then M is isomorphic to the syntactic monoid
of L.

Let V be a variety of finite monoids. We say that V is the corresponding
∗-variety if V = {K ⊆ Σ∗ | M(K) ∈ V }. As for sets of trace languages, we
define PolV as the (word) languages that are finite unions of languages of the
form K0a1K1 · · ·anKn, where n ∈ N and Ki ∈ V for all 0 ≤ i ≤ n. For a partial
converse of Theorem 1 we will use the following theorem from [10].

Theorem 2 (Pin/Weil, 1997). Let V be a variety of finite monoids, let V be
the corresponding ∗-variety and let K ⊆ Σ∗. If the syntactic ordered monoid of
K is in �xωyxω ≤ xω � M©V, then K ∈ PolV.

For commutative varieties we can state this theorem for traces.

Theorem 3. Let V ⊆ Com be a variety of finite commutative monoids, let V
be the set of trace languages corresponding to V and let L ⊆ M(Σ, I) be a trace
language. If the syntactic ordered monoid of L is in �xωyxω ≤ xω � M©V, then
L ∈ PolV.

Proof. Let K = π−1
I (L). By Theorem 2 we can conclude that

K =
⋃

1≤i≤m

Ki,0 ai,1 Ki,1 · · · ai,ni Ki,ni

for m,n1, . . . , nm ∈ N, ai,j ∈ Σ and Ki,j ⊆ Σ∗ such that M(Ki,j) ∈ V. By
Lemma 3 we have π−1

I πI(Ki,j) = Ki,j and by Lemma 4 we can conclude that
the syntactic monoid of Li,j = πI(Ki,j) is in V. Hence

L = πI(K) = πI

⎛⎝ ⋃
1≤i≤m

Ki,0 ai,1 Ki,1 · · · ai,ni Ki,ni

⎞⎠
=

⋃
1≤i≤m

πI (Ki,0) ai,1 πI (Ki,1) · · · ai,ni πI (Ki,ni)

=
⋃

1≤i≤m

Li,0 ai,1 Li,1 · · · ai,ni Li,ni ∈ PolV .

�
Corollary 1. Let J1 ⊆ V ⊆ Com be a variety of finite monoids and let
V be the corresponding variety of trace languages. Then PolV corresponds to
�xωyxω ≤ xω � M©V.

Let V be a set of trace languages. By coPolV we denote the set of trace languages
L whose complement L is in PolV . Since the syntactic ordered monoid of the
complement L of a trace language L is (M(L),≤L) = (M(L),≤−1

L ) we obtain
the following corollary.
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Corollary 2. Let J1 ⊆ V ⊆ Com be a variety of finite monoids and let V be the
corresponding trace languages. Then coPolV corresponds to �xωyxω ≥ xω � M©V.

A class V of trace languages is a language variety if it is closed under boolean
operations, under inverse homomorphism and under quotients. A left quotient
of L is a−1L = { t | at ∈ L } for a ∈ Σ. Right quotients are symmetric. It is well
known that a set of languages that corresponds to a variety of monoids forms a
language variety [2, page 186f]. Since

�xωyxω ≤ xω � M©V ∩ �xωyxω ≥ xω � M©V = �xωyxω = xω � M©V

and since � xωyxω = xω � M©V is a variety if V is a variety [9, 10], we obtain the
following corollary.

Corollary 3. Let J1 ⊆ V ⊆ Com be a variety of finite monoids and let V be
the corresponding variety of trace languages. Then PolV ∩ coPolV is a (trace)
language variety that corresponds to the variety � xωyxω = xω � M©V.

4 Unambiguous Polynomial Closure

For a position ν of t ∈ M(Σ, I) we define the following factors:

pre(ν) = {χ ∈ t | χ <t ν } is the past of ν,
par(ν) = {χ ∈ t | ν �<t χ, χ �<t ν, ν �= χ } is the parallel part of ν,
suf(ν) = {χ ∈ t | ν <t χ } is the future of ν.

We now have the following two factorizations t = pre(ν) label(ν) par(ν) suf(ν)
and t = pre(ν) par(ν) label(ν) suf(ν). We say that a product L = L1aL2 of trace
languages L1, L2 ⊆ M(Σ, I), a ∈ Σ is left unambiguous if for all t ∈ L there
exists a unique position ν in t such that

– label(ν) = a and
– pre(ν) ∈ L1 and par(ν) suf(ν) ∈ L2.

Right unambiguous products are defined symmetrically, i.e. the parallel part
par(ν) is related to L1. A product L1aL2 is unambiguous if it is left unambiguous
or right unambiguous. Let V be a set of trace languages. Then we define UPolV
as the closure of V under boolean operations and unambiguous products. Note
that the unambiguous product for traces is not associative.

Theorem 4. Let V be a variety of monoids such that J1 ⊆ V and let V be the
set of trace languages corresponding to V. Then the syntactic monoid of every
trace language in UPolV is in � xωyxω = xω � M©V.

Proof. By LI we denote the semigroup variety � xωyxω = xω �. Let L = L1aL2
be a left unambiguous product of L1 and L2 and let their syntactic monoids be
M1,M2 ∈ LI M©V. Let η : M(Σ, I)→ N be as in Lemma 1 and let M(L) be the
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syntactic monoid of L and μ : M(Σ, I) → M(L) its syntactic homomorphism.
We obtain the relational morphism τ = η ◦ μ−1 : M(L) → N . Since LI M©V
forms a variety [6] and since LI M©(LI M©V) = LI M©V, see [8], it is sufficient
to show that for all idempotents e ∈ N we have τ−1(e) ∈ LI. The theorem
then follows by left-right symmetry and from the fact that classes of languages
corresponding to varieties of monoids are closed under boolean operations [2].

Let e2 = e ∈ N , let x, y, u, v ∈ M(Σ, I) such that η(x) = e = η(y) and let
m ≥ |Σ|+ 1 such that μ(x)m is idempotent. We will show that uxmv ∈ L if and
only if uxmyxmv ∈ L. The direction from left to right is the same as in Theorem
1. Suppose uxmyxmv ∈ L. Then there exists a left unambiguous factorization
uxmyxmv = z1az2 with z1 ∈ L1 and z2 ∈ L2. Let x = x1 · · ·x� and y = y1 · · · y�

be factorizations into connected components such that alph(xj) = alph(yj) for
all 1 ≤ j ≤ �. Suppose the connected component x1 of x from the left xm

block matches with a factor of z1 and the same connected component x1 of x
from the right xm block matches with a factor of z2. Since η(x1) = η(y1) is
idempotent, we can arbitrarily pump x1 and y1 at these two positions without
changing membership to L. The possibility of pumping at both position leads to
two different factorizations of uxmyxmy1x

m
1 v ∈ L. This contradicts the choice

of L1 and L2 such that L is left unambiguous. The same argument holds for all
connected components of x.

Together with Lemma 2 it follows that for every index j ∈ { 1, . . . , � } of a
connected component there exists i ∈ { 1, 2 } such that the last occurrence of
xj in the left xm block and the first occurrence of xj in the right xm block in
uxmyxmv are factors of zi. Hence, the component yj of y lies between these
two occurrences of xj , i.e. xjyjxj is a factor of zi. Since η(xjyjxj) = η(xjxj),
we can remove all connected components of y without changing membership
to L. Therefore, uxmxmv ∈ L and by idempotency of μ(x)m we can conclude
uxmv ∈ L. �

In the next section we will present a converse of the previous theorem for the
variety V = J1.

5 The Variety DA

The variety DA is defined as DA = � (xy)ωx(xy)ω = (xy)ω �. It is known that
DA = �xωyxω = xω � M©J1, see [6].

A factorization t = t−at+ is a left factorization if a �∈ alph(t−) and if t− = sb
implies (a, b) ∈ D, i.e. in this factorization a is the first occurrence of the letter
a in t and no minimal element of t− is independent of a. Symmetrically, we say
that a factorization t = t−at+ is a right factorization if a �∈ alph(t+) and if
t+ = bs implies (a, b) ∈ D.

Definition 1. We define the relation ≡A,k ⊆ M(Σ, I)2 for A ⊆ Σ and k ∈ N:

– t ≡A,0 s if alph(t) � A � alph(s) or alph(t) ⊆ A ⊇ alph(s).
– t ≡A,k s for k > 0 if alph(t) � A � alph(s) or the following three conditions

hold:
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• alph(t) = alph(s) ⊆ A.
• For all a ∈ alph(t) and all left factorizations t = t−at+ and s = s−as+

the conditions t− ≡A\{a},k−1 s− and t+ ≡A,k−1 s+ hold.
• For all a ∈ alph(t) and all right factorizations t = t−at+ and s = s−as+

the conditions t− ≡A,k−1 s− and t+ ≡A\{a},k−1 s+ hold.

It is clear that for all A ⊆ Σ and all k ∈ N the relation ≡A,k is an equivalence
relation of finite index. The analog of the following lemma in the case of words
was shown in [12].

Lemma 5. Let γ ⊆ M(Σ, I)2 be a congruence of finite index such that the
monoid M(Σ, I)/γ is in DA. Then there exists k ∈ N such that ≡Σ,k⊆ γ.

It follows that every trace language L with M(L) ∈ DA is the disjoint union of
≡A,k-classes. We define the set of trace languages A = {A∗ | A ⊆ Σ }. Clearly,
A is a subset of the trace languages corresponding to J1.

Lemma 6. Let A ⊆ Σ and k ∈ N. Every equivalence class of ≡A,k is in UPolA.

For every set of letters A ⊆ Σ we have

{ t ∈ M(Σ, I) | alph(t) = A } =
⋃

{a1,...,an}=A

A∗a1A
∗ · · · anA

∗,

where n = |A|. Therefore, the language variety corresponding to J1 is contained
in PolA. Together with Corollary 3 and Theorem 4 we can conclude:

Corollary 4. The language variety UPolA = PolA∩ coPolA corresponds to the
variety DA.

6 Temporal Logic

In this section we introduce two characterizations of DA with temporal logics.
In this paper, a temporal formula is a term of the form

ϕ ::= a | ¬ϕ | (ϕ1 ∨ϕ2) | (ϕ1 ∧ϕ2) | XFϕ | YPϕ | Mϕ | Xaϕ | Yaϕ

where a ∈ Σ. The operators XF, YP, M, Xa and Ya are called temporal operators.
The letter X comes from the word neXt, Y stands for Yesterday, F for Future,
P for Past and M for soMetime. By TL[XF,YP] we denote the set of temporal
formulae where XF and YP are the only temporal operators and in the fragment
TL[XF,YP,M] we additionally allow the M operator. By TL[Xa,Ya] we denote
the set of temporal formulae where all temporal operators are of the form Xa or
Ya for a ∈ Σ. Next we define, when a trace t = (V,<, label) at position ν ∈ V
models a temporal formula:
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t, ν |= a ⇔ label(ν) = a, for a ∈ Σ.
t, ν |= ¬ϕ ⇔ not t, ν |= ϕ.

t, ν |= ϕ1 ∨ϕ2 ⇔ t, ν |= ϕ1 or t, ν |= ϕ2.

t, ν |= ϕ1 ∧ϕ2 ⇔ t, ν |= ϕ1 and t, ν |= ϕ2.

t, ν |= XFϕ ⇔ ∃χ ∈ V : ν <χ and t, χ |= ϕ.

t, ν |= YPϕ ⇔ ∃χ ∈ V : χ<ν and t, χ |= ϕ.

t, ν |= Mϕ ⇔ ∃χ ∈ V : t, χ |= ϕ.

t, ν |= Xaϕ ⇔ ∃χ ∈ V : ν <χ and t, χ |= a∧ϕ and(
∀ξ ∈ V : ν < ξ <χ⇒ label(ξ) �= a

)
.

t, ν |= Yaϕ ⇔ ∃χ ∈ V : χ<ν and t, χ |= a∧ϕ and(
∀ξ ∈ V : χ<ξ <ν ⇒ label(ξ) �= a

)
.

The usage of “alphabetic filters” (as in Xa and Ya) has been introduced in [3]
for local temporal logic over traces.

An outer temporal formula is a boolean combination of formulae of the form
XFϕ, YPϕ, Mϕ, Xaϕ or Yaϕ where ϕ is an arbitrary temporal formula. Next we
define when a trace t = (V,<, label) models an outer temporal formula. Boolean
combinations are defined straightforwardly.

t |= XFϕ ⇔ ∃ν ∈ V : t, ν |= ϕ.

t |= YPϕ ⇔ ∃ν ∈ V : t, ν |= ϕ.

t |= Mϕ ⇔ ∃ν ∈ V : t, ν |= ϕ.

t |= Xaϕ ⇔ ∃ν ∈ V : t, ν |= a∧ϕ and(
∀ξ ∈ V : ξ <ν ⇒ label(ξ) �= a

)
.

t |= Yaϕ ⇔ ∃ν ∈ V : t, ν |= a∧ϕ and(
∀ξ ∈ V : ν < ξ ⇒ label(ξ) �= a

)
.

Note that XFϕ, YPϕ and Mϕ as outer formulae are equivalent. The idea is that
when evaluating XF and Xa we start at a position in front of the trace and when
evaluating YP and Ya we start at a position behind the trace. The trace language
generated by an outer temporal formula ϕ is

L(ϕ) = { t ∈ M(Σ, I) | t |= ϕ }.

We say that a trace language L ⊆ M(Σ, I) is expressible in TL[XF,YP] (resp.
in TL[XF,YP,M] or TL[Xa,Ya]) if there exists an outer temporal formula ϕ ∈
TL[XF,YP] (resp. TL[XF,YP,M] or ϕ ∈ TL[Xa,Ya]) such that L = L(ϕ).

Lemma 7. Let ϕ be an outer temporal formula in TL[XF,YP,M]. Then the syn-
tactic monoid of L(ϕ) is in DA.

Lemma 8. Let ϕ be an outer temporal formula in TL[Xa,Ya]. Then the syntac-
tic monoid of L(ϕ) is in DA.
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We will show that all trace languages L with M(L) ∈ DA can be expressed by
a formula in TL[XF,YP]. By Lemma 5 it suffices to show that all equivalence
classes of ≡A,k are expressible in TL[XF,YP].

Lemma 9. Let A ⊆ Σ and k ∈ N. Every equivalence class of ≡A,k is expressible
in TL[XF,YP].

Lemma 10. Let A ⊆ Σ and k ∈ N. Every equivalence class of ≡A,k is express-
ible in TL[Xa,Ya].

In the next theorem we summarize the characterizations of trace languages whose
syntactic monoid is in the variety DA.

Theorem 5. Let L ⊆ M(Σ, I). Then the following are equivalent:

(i) M(L) ∈ DA.
(ii) L ∈ UPolA.
(iii) L ∈ PolA and L ∈ PolA.
(iv) L is expressible in TL[XF,YP].
(v) L is expressible in TL[XF,YP,M].
(vi) L is expressible in TL[Xa,Ya].

Proof. The equivalence of (i), (ii) and (iii) is Corollary 4. The direction “(i) ⇒
(iv)” follows from Lemma 5 and Lemma 9. Since TL[XF,YP] ⊆ TL[XF,YP,M]
we have “(iv) ⇒ (v)”. The implication “(v) ⇒ (i)” is Lemma 7. The direction
“(i) ⇒ (vi)” follows from Lemma 5 and Lemma 10 and the implication “(vi) ⇒
(i)” is Lemma 8. �

7 Conclusion

We have given an algebraic characterization of PolV and PolV ∩ coPolV in the
case that V corresponds to a variety of commutative monoids that contains the
monoid (2Σ ,∪, ∅) over subsets the alphabet Σ. We have also shown that all trace
languages in UPolV satisfy a particular algebraic property if V corresponds to
a variety that contains the monoid (2Σ ,∪, ∅). That this property is sufficient
for UPolV has been shown in the case that V corresponds to J1. This leads to
two language-theoretic characterizations of the variety DA: PolA∩ coPolA and
UPolA where A = {A∗ | A ⊆ Σ }. Then we have given two logical characteriza-
tions of DA: the fragments TL[XF,YP] and TL[Xa,Ya] and we have shown that
additionally allowing the operator M does not change the expressive power of
the first fragment.

Two interesting open problems are whether it is possible to proof that the
algebraic characterization of PolV also holds for larger classes of trace languages
V and whether it is possible to give a language-theoretic characterization of
PolV ∩ coPolV in terms of disjoint unions of unambiguous polynomials as for
words.

Acknowledgement. The author would like to thank Martin Müller and Pascal
Tesson for many helpful discussions and the anonymous referees for valuable
comments.
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10. Jean-Éric Pin and Pascal Weil. Polynominal closure and unambiguous product.
Theory Comput. Syst, 30(4):383–422, 1997.

11. Pascal Tesson. Personal communication.
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Abstract. We introduce weighted automata over infinite words with
Muller acceptance condition and we show that their behaviors coincide
with the semantics of weighted restricted MSO-sentences. Furthermore,
we establish an equivalence property of weighted Muller and weighted
Büchi automata over certain semirings.
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1 Introduction

One of the cornerstones of automata theory is Büchi’s theorem [6] on the co-
incidence of the class of regular languages of infinite words with the family of
languages definable by monadic second order logic (MSO logic for short). This
led to the development of several models of automata acting on infinite words,
like Büchi, Muller, Rabin and Streett, cf. [29, 33, 34] for surveys; it also led to
practical applications in model checking and for non-terminating processes, cf.
[1, 25, 26]. On the other hand, Schützenberger [32] introduced finite automata
with weights which can model quantitative aspects of transitions like use of re-
sources, reliability or capacity. Schützenberger characterized the behavior of such
automata as rational formal power series. For the theory of weighted automata,
see [3, 21, 24, 31] for surveys. Recently, weighted automata were applied in digital
image compression [7, 17, 18, 19] as well as in speech-to-text processing [27, 28].

It is the goal of this paper to extend Büchi’s theorem mentioned above into
the context of weighted automata, thereby obtaining a quantitative version. Fur-
thermore, we obtain an equivalence result to a model investigated recently by
Ésik and Kuich [16]. The last few years weighted automata over infinite words
have attracted the interest of several researchers. This effort is not a simple
generalization of the finitary case since convergence problems arise depending
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on the underlying semiring. This issue is dealt with either by considering spe-
cial classes of automata [8, 11] or by restricting the underlying semirings so that
convergence problems can be solved [12, 16, 20, 30].

Very recently, Droste and Gastin [10] extended the result of Büchi and Elgot
[5, 14] to weighted automata over finite words. They introduced an MSO logic
with weights and described the semantics of the formulas obtained as formal
power series. The main result of their paper states that the recognizable formal
power series over commutative semirings coincide with the series definable by
certain weighted MSO-sentences.

In this paper, we will introduce weighted Muller automata acting on infinite
words, and we will extend the weighted MSO logic of [10] to infinite words.
We describe the behavior of weighted Muller automata as formal power series
on infinite words. Our first main result states the coincidence of these ω-Muller-
recognizable series with the semantics of a restricted weighted MSO logic and also
with the semantics of a restricted existential MSO logic. Furthermore, we prove
an equivalence to the important model of weighted Büchi automata investigated
in Ésik and Kuich [16]. They have characterized the behaviors of weighted Büchi
automata precisely as the ω-rational formal power series; for further work on this
model, see [22, 23]. Combining these results, we thus obtain a robust notion of
weighted automata, logics and rational series on infinite words. As in [16], we
assume our semiring of weights to permit infinite sum and product operations.
Such ”complete” semirings have been investigated in detail in the literature,
cf. [4, 13, 21]. However, we derive from this a version of our result for semirings
which are not complete; this includes all Boolean algebras and also max-min
semirings used for capacity models. In particular, when considering the Boolean
semiring, we obtain Büchi’s result as a very special consequence.

Nextwebrieflydescribe the structure of our paper. In Section 2,we introduce the
notions of totally commutative complete semirings and weighted Muller automata
and we state their basic properties. In Section 3 we recall weighted MSO logic from
[10], but we interpret the semantics of weighted MSO-formulas as formal power se-
ries over infinite words. The main result of the paper in Section 4 states that a for-
mal power series is Muller recognizable iff it is definable in our restricted weighted
MSO logic iff it is definable in existential restricted weighted MSO logic. Its proof
requires, in particular, a construction of specific weighted Muller automata for the
universal quantifier. Then in Section 5, we relate our weighted Muller automata to
the weighted Büchi automata of Ésik and Kuich [16], and we show that these two
models are equivalent. Finally, in Section 6, we deal with bi-aperiodic semirings
which were introduced by Droste and Gastin in [9, 10]. We show that our main
result remains true if the underlying semiring is just commutative and weakly bi-
aperiodic. Büchi’s classical theorem follows as a very special case.

2 Semirings and Weighted Muller Automata

In this section, we introduce totally commutative complete semirings, infinitary
formal power series and weighted Muller automata. The reader is referred to
[3, 13, 21, 24, 31] for semirings, and to [29, 33, 34] for classical Muller automata.
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Let (K,+, ·, 0, 1) be a complete semiring[13, 21, 16], i.e, a semiring that per-
mits infinite sums extending the associativity, the commutativity and the dis-
tributivity laws of the finite sum operation. ThenK is called totally complete[15],
if it is endowed with countably infinite product operations satisfying for all se-
quences (ai | i ≥ 1) of elements of K the following conditions:

a1 ·
∏
i≥1

ai+1 =
∏
i≥1

ai,
∏
i≥1

ai =
∏
i≥1

(ani−1+1 · · · · · ani),∏
i≥0

1 = 1,
∏
j≥1

∑
ij∈Ij

aij =
∑

(i1,i2,...)∈I1×I2×...

∏
j≥1

aij

where 0 = n0 ≤ n1 ≤ n2 ≤ . . . and I1, I2, . . . are arbitrary index sets.
Furthermore, we will call a totally complete semiring totally commutative

complete if it is commutative and satisfies the statement:

∏
j∈J

⎛⎝∏
aij

ij∈Ij

⎞⎠ =
∏
i≥0

ai

where
⋃

j∈J

Ij = N and Ij ∩ Ij′ = ∅ for j �= j′.

Concrete examples of totally commutative complete semirings are the semi-
ring (N ∪ {∞},+, ·, 0, 1) of extended natural numbers [16], the fuzzy semiring
F = ([0, 1], sup, inf, 0, 1) [30, 23], and each completely distributive lattice (cf. [2])
with the operations supremum and infimum. Further examples will be given in
Section 6.

Let A be a finite alphabet. As usual we denote by Aω the set of all infinite
words over A. An infinite word w = a0a1 . . . ∈ Aω is written as w = w(0)w(1) . . .
with w(i) = ai, i ≥ 0. We shall denote the set of natural numbers N also by ω.

Given a finite alphabet A and a semiring K, an infinitary formal power series
or series for short, is a mapping S : Aω → K. The class of all power series over
A and K is denoted by K 〈〈Aω〉〉 . The sum S + T , the scalar products kS and
Sk, the Hadamard product S " T for S, T ∈ K 〈〈Aω〉〉 and k ∈ K, as well as the
characteristic series 1L : Aω → K of L ⊆ Aω, are defined in K 〈〈Aω〉〉 pointwise
as in the finitary case.

Consider two alphabets A,B and an homomorphism h : A∗ → B∗. Then h can
be extended to a mapping h : Aω → Bω in the obvious way. For any power series
T ∈ K 〈〈Bω〉〉 the series h−1(T ) ∈ K 〈〈Aω〉〉 is defined by (h−1(T ), u) = (T, h(u))
for u ∈ Aω. Furthermore, if h is non-deleting, i.e., h(a) �= ε for each a ∈ A, and K
is complete, then for any S ∈ K 〈〈Aω〉〉 the series h(S) ∈ K 〈〈Bω〉〉 is specified by
(h(S), w) =

∑
u∈h−1(w)

(S, u) for w ∈ Bω. The homomorphism h is strict alphabetic,

if h(a) ∈ B for each a ∈ A.
For the rest of this section, let A be a finite alphabet and K be a totally

complete semiring. We shall simply denote the operation · by concatenation.

Definition 1. A weighted Muller automaton (WMA for short) over A and K
is a quadruple A = (Q, in, wt,F), where Q is the finite state set, in : Q→ K is
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the initial distribution, wt : Q×A×Q→ K is a mapping assigning weights to
the transitions of the automaton, and F ⊆ 2Q is the family of final state sets.

Let w = a0a1 . . . ∈ Aω. A path of A over w is an infinite sequence of transitions
Pw := (ti)i≥0, so that ti = (qi, ai, qi+1) for all i ≥ 0. The weight of Pw is defined
by weight(Pw) := in(q0) ·

∏
i≥0

wt(ti). The path Pw is called successful if the set

of states that appear infinitely often along Pw constitute a final state set. The
behavior of A is the formal power series ‖A‖ : Aω → K whose coefficients are
determined by (‖A‖ , w) =

∑
Pw

weight(Pw) for w ∈ Aω, where the sum is taken

over all successful paths Pw of A over w. A series S : Aω → K is said to be
Muller recognizable if there is a WMA A so that S = ‖A‖ . We shall denote the
family of all such series over A and K by KM−rec 〈〈Aω〉〉 .

The next result states closure properties of the family KM−rec 〈〈Aω〉〉 .

Theorem 1. The class KM−rec 〈〈Aω〉〉 is closed under:

– sum and scalar products; furthermore, if K is totally commutative complete,
then KM−rec 〈〈Aω〉〉 is also closed under Hadamard products,

– non-deleting homomorphisms,
– inverse image of strict alphabetic homomorphisms.

Proposition 1. The characteristic series 1L : Aω → K of any ω-recognizable
language L ⊆ Aω is Muller recogizable.

We will call a power series S : Aω → K a Muller recognizable step function
if S =

∑
1≤j≤n

kj1Lj where kj ∈ K and Lj ⊆ Aω (1 ≤ j ≤ n and n ∈ N) are

ω-recognizable languages. Then by Theorem 1 and Proposition 1, S is Muller
recognizable.

3 Weighted Monadic Second Order Logic

Weighted MSO logic was introduced by Droste and Gastin in [10] in order to
obtain a logical characterization of recognizable formal power series over finite
words.

Let A be a finite alphabet and V a finite set of first and second order vari-
ables. An infinite word w ∈ Aω is represented by the relational structure (ω,≤,
(Ra)a∈A) where Ra = {i | w(i) = a} for a ∈ A. A (w,V)-assignment σ is a
mapping associating first order variables from V to elements of ω, and second
order variables from V to subsets of ω. If x is a first order variable and i ∈ ω,
then σ[x → i] denotes the (w,V ∪ {x})-assignment which associates i to x and
acts as σ on V \ {x}. For a second order variable X and I ⊆ ω, the notation
σ[X → I] has a similar meaning. In order to encode pairs (w, σ) for all w ∈ Aω

and any (w,V)-assignment σ, we use an extended alphabet AV = A × {0, 1}V
(cf. [33, 34, 10])
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It is not difficult to see that the set NV = {(w, σ) ∈ Aω
V | σ is a valid

(w,V)-assignment} is ω-recognizable. Let now ϕ be an MSO-formula [33, 34].
We shall write Aϕ for AFree(ϕ) and Nϕ = NFree(ϕ). The fundamental Büchi
theorem [6] states that for Free(ϕ) ⊆ V the language LV(ϕ) = {(w, σ) ∈ NV |
(w, σ) |= ϕ} defined by ϕ over AV is ω-recognizable. We simply write L(ϕ) =
LFree(ϕ)(ϕ). Conversely, each ω-recognizable language L ⊆ Aω is definable by
an MSO-sentence ϕ, i.e., L = L(ϕ).

Now we turn to weighted logics.

Definition 2. The syntax of formulas of the weighted MSO logic is given by

ϕ := k | Pa(x) | ¬Pa(x) | x ≤ y | ¬(x ≤ y) | x ∈ X | ¬(x ∈ X)
| ϕ ∨ ψ | ϕ ∧ ψ | ∃x � ϕ | ∃X � ϕ | ∀x � ϕ | ∀X � ϕ

where k ∈ K, a ∈ A. We shall denote by MSO(K,A) the set of all such weighted
MSO-formulas ϕ.

Next we represent the semantics of the formulas in MSO(K,A) as formal power
series over the extended alphabet AV and the semiring K. We assume K to be
a totally commutative complete semiring.

Definition 3. Let ϕ ∈ MSO(K,A) and V be a finite set of variables with
Free(ϕ) ⊆ V. The semantics of ϕ is a formal power series ‖ϕ‖V ∈ K 〈〈Aω

V〉〉 .
Consider an element (w, σ) ∈ Aω

V . If σ is not a valid assignment, then we put
‖ϕ‖V (w, σ) = 0. Otherwise, we inductively define ‖ϕ‖V (w, σ) ∈ K as follows:

- ‖k‖V (w, σ) = k

- ‖Pa(x)‖V (w, σ) =
{

1 if w(σ(x)) = a
0 otherwise

- ‖x ≤ y‖V (w, σ) =
{

1 if σ(x) ≤ σ(y)
0 otherwise

- ‖x ∈ X‖V (w, σ) =
{

1 if σ(x) ∈ σ(X)
0 otherwise

- ‖¬ϕ‖V (w, σ) =
{

1 if ‖ϕ‖V (w, σ) = 0
0 if ‖ϕ‖V (w, σ) = 1 ,

provided that ϕ is of the form
Pa(x), (x ≤ y) or (x ∈ X)

- ‖ϕ ∨ ψ‖V (w, σ) = ‖ϕ‖V (w, σ) + ‖ψ‖V (w, σ)
- ‖ϕ ∧ ψ‖V (w, σ) = ‖ϕ‖V (w, σ) · ‖ψ‖V (w, σ)
- ‖∃x � ϕ‖V (w, σ) =

∑
i∈ω

‖ϕ‖V∪{x} (w, σ[x→ i])

- ‖∃X � ϕ‖V (w, σ) =
∑

I⊆ω

‖ϕ‖V∪{X} (w, σ[X → I])

- ‖∀x � ϕ‖V (w, σ) =
∏
i∈ω

‖ϕ‖V∪{x} (w, σ[x→ i]) and

- ‖∀X � ϕ‖V (w, σ) =
∏

I⊆ω

‖ϕ‖V∪{X} (w, σ[X → I]).

The reader may notice that the product in universal second order quantification
is uncountable. But this is not a problem since later we exclude it from our
constructions. Also as in [10], we have restricted negation to atomic formulas.
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The reason is that if K is not a Boolean algebra, then it is difficult to define the
semantics of the negation of an arbitrary formula. Our restriction is not essential
in comparison to classical MSO logics, since any MSO-formula ϕ is equivalent
(both logically and in the sense of defining the same ω-language) to one in which
negation is applied only to atomic formulas. We simply write ‖ϕ‖ for ‖ϕ‖Free(ϕ) .

If ϕ has no free variables, i.e., if it is a sentence, then ‖ϕ‖ ∈ K 〈〈Aω〉〉 . Next, we
present several examples of possible interpretations for weighted formulas, for
details see [10].

(i) Consider the semiring K = (N∪ {∞},+, ·, 0, 1) and assume that ϕ does not
contain constants k ∈ K. Then we may interpret ‖ϕ‖ (w, σ) as the number
of proofs we have that (w, σ) satisfies formula ϕ.

(ii) The formula ∃x � Pa(x) counts how often (depending on the semiring) the
letter a occurs in the word.

(iii) For any formula ϕ over the fuzzy semiring F, we have that ‖ϕ‖ (w, σ) �= 0
iff (w, σ) satisfies ϕ.

(iv) Let K be an arbitrary Boolean algebra (B,∨,∧,− , 0, 1). In this case, infi-
nite sums correspond to suprema and infinite products to infima. For any
formula ϕ, we can define the semantics of ¬ϕ, by ‖¬ϕ‖ (w, σ) := ‖ϕ‖ (w, σ).
Especially, for K = B the 2-valued Boolean algebra our semantics coincides
with the usual semantics of classical MSO-formulas, identifying characteris-
tic series with their supports.

The reader may observe that the above definition is valid for each formula
ϕ ∈MSO(K,A) and each finite set V of variables containing Free(ϕ). According
to the next proposition the semantics ‖ϕ‖V depends only on Free(ϕ).

Proposition 2. Let ϕ ∈ MSO(K,A) and V be a finite set of variables such
that Free(ϕ) ⊆ V. Then

‖ϕ‖V (w, σ) = ‖ϕ‖ (w, σ|Free(ϕ))

for each (w, σ) ∈ Aω
V , where σ is a valid (w,V)-assignment. Furthermore, ‖ϕ‖ is

Muller recognizable iff ‖ϕ‖V is Muller recognizable.

Let now Z ⊆ MSO(K,A). A series S : Aω → K is called Z-definable if there is
a sentence ϕ ∈ Z so that S = ‖ϕ‖ .

It has been proved in [10] that universal quantifiers do not preserve in general
the recognizability property of power series over finite words. Thus the authors
worked on a restricted framework of weighted MSO logics, which we also adopt
here. More precisely, a formula ϕ ∈MSO(K,A) will be called restricted (cf. [10])
if it contains no universal quantification of the form ∀X �ψ, and whenever ϕ con-
tains a universal first order quantification ∀x � ψ, then ‖ψ‖ is a Muller recogniz-
able step function. The subclass of all restricted formulas of MSO(K,A) will be
denoted by RMSO(K,A). Moreover, a formula ϕ ∈ RMSO(K,A) is restricted
existential if it is of the form ∃X1, . . . , Xn �ψ with ψ ∈ RMSO(K,A) and ψ con-
tains no set quantification. All such restricted existential formulas will compose
the class REMSO(K,A). We let Krmso 〈〈Aω〉〉 (resp. Kremso 〈〈Aω〉〉) comprise
all series from K 〈〈Aω〉〉 which are definable by some sentence in RMSO(K,A)
(resp. in REMSO(K,A)).
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4 The Main Result

In this section we establish our main result:

Theorem 2. Let A be an alphabet and K any totally commutative complete
semiring. Then

KM−rec 〈〈Aω〉〉 = Krmso 〈〈Aω〉〉 = Kremso 〈〈Aω〉〉 .
Proof. Let us present a sketch of the proof. First, using Theorem 1 and Propo-
sition 1, we show by induction on the structure of RMSO-formulas that Krmso

〈〈Aω〉〉 ⊆ KM−rec 〈〈Aω〉〉 . The most difficult case arises with first order univer-
sal quantification. Let W = Free(ϕ) and V = Free(∀x � ϕ) = W \ {x}. Let also
‖ϕ‖ =

∑
1≤j≤n

kj1Lj with ω-recognizable languages Lj ⊆ Aω
W (1 ≤ j ≤ n). We

claim that ‖∀x � ϕ‖ is Muller recognizable. Without any loss, we can assume
that the family (Lj)1≤j≤n is a partition of Aω

W . We distinguish two cases.

Case 1: x ∈ W.
We consider the alphabet Ã = A × {1, . . . , n}, and the language L̃ ⊆ Ãω

V to be
the collection of all words (w, v, σ) ∈ Ãω

V , so that for all i ∈ ω and j ∈ {1, . . . , n},
then v(i) = j implies (w, σ[x → i]) ∈ Lj . The languages Lj are ω-recognizable
by deterministic Muller automata, and from these we construct a deterministic
Muller automaton Ã recognizing L̃. In the sequel, we convert Ã to a WMA A
over ÃV , and we show that ‖∀x � ϕ‖ = h(‖A‖), where h is the projection of Ãω

V
toAω

V . Thus by Theorem 1 the series ‖∀x � ϕ‖ is Muller recognizable.

Case 2: If x /∈ W, then we consider the formula ϕ′ = ϕ ∧ (x ≤ x), and the
result comes by Case 1.

Now we state the converse inclusion. Given a WMA A over A and K we
effectively construct a RMSO(K,A)-formula ψ representing the paths of A.
Next we equip ψ with weights, so that the semantics ‖ϕ‖ of the obtained formula
ϕ takes as values the weights of the corresponding paths of A. Finally, from ϕ
we obtain a formula ξ in REMSO(K,A) whose semantics equals the behavior
of the automaton A.

5 Weighted Büchi Automata

In this section, we consider weighted automata over infinite words with Büchi
acceptance condition which were introduced by Ésik and Kuich [16]. We show
their equivalence to our model with Muller acceptance condition.

Let A be any alphabet and K be a totally complete semiring.

Definition 4. ([16]) A weighted Büchi automaton (WBA for short) over A and
K is a quadruple A = (Q, in, wt, F ), where Q is the finite state set, in : Q→ K
is the initial distribution, wt : Q×A×Q→ K is a mapping assigning weights
to the transitions of A, and F is the final state set.

Given an infinite word w = a0a1 . . . ∈ Aω, a path Pw of A over w and its weight
are defined as for weighted Muller automata. The path Pw is called successful
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if at least one final state appears infinitely often. The behavior of A is the
infinitary power series ‖A‖ : Aω → K, with coefficients specified for w ∈ Aω by
(‖A‖ , w) =

∑
Pw

weight(Pw), where the sum is taken over all successful paths Pw

of A over w. A series S : Aω → K is called ω-recognizable if there is a WBA
A such that S = ‖A‖. The class of all ω-recognizable series over A and K is
denoted by Kω−rec 〈〈Aω〉〉 .
Theorem 3. Let A be an alphabet and K any totally complete semiring. Then

Kω−rec 〈〈Aω〉〉 = KM−rec 〈〈Aω〉〉 .

6 Bi-aperiodic Semirings

In this section we state our main result for weakly bi-aperiodic [9, 10] and com-
mutative semirings. A semiring (K,+, ·, 0, 1) is called bi-aperiodic if there exists
an integer m ≥ 0 such that for all a ∈ K (m + 1)a = ma and am+1 = am. All
distributive lattices with 0 and 1 are bi-aperiodic semirings with supremum and
infimum as operations. Furthermore, all Boolean algebras, and the reals with
max-min or min-max, constitute bi-aperiodic semirings. In this case, for any
a ∈ K,m ≥ 0 as above, and any infinite index set I, we can define the infinite
sum and product of a’s by letting

∑
i∈I

a = ma and
∏
i∈I

a = am. Now assume

that our semiring K is finite, bi-aperiodic and commutative. Then we can also
define the infinite sum and product of any family of elements of K, by splitting
them suitably and then taking the corresponding finite sums and products. We
obtain:

Proposition 3. Each finite bi-aperiodic commutative semiring (K,+, ·, 0, 1) is
totally commutative complete.

Next, a semiring (K,+, ·, 0, 1) is called weakly bi-aperiodic iff for each element a ∈
K there exists m ≥ 0 such that (m+ 1)a = ma and am+1 = am. Trivially, each
bi-aperiodic semiring is weakly bi-aperiodic and each finite weakly bi-aperiodic
semiring is bi-aperiodic. We refer the reader to [10] for examples of weakly bi-
aperiodic semirings. Furthermore,

Example 1. Let 0 < c < 1 and K = {0} ∪ [c, 1]. We define in K the truncated
multiplication ·c in the following way: for x �= 0 and y �= 0, x ·c y := x · y if
x · y ≥ c and x ·c y := c if x · y ≤ c. The semiring (K,max, ·c, 0, 1) is called
the truncated probabilistic semiring. Obviously, it is weakly bi-aperiodic but not
aperiodic.

Next we state that

Theorem 4. Let A be an alphabet and K any weakly bi-aperiodic commutative
semiring. Then

KM−rec 〈〈Aω〉〉 = Krmso 〈〈Aω〉〉 = Kremso 〈〈Aω〉〉 .
Corollary 1 (Büchi’s Theorem). An infinitary language is ω-recognizable iff
it is definable by a MSO-sentence.
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7 Conclusion

We introduced weighted Muller automata over totally complete semirings. We
verified that the family of their behaviors coincides with the class of infinitary
formal power series obtained as semantics of weighted restricted MSO-sentences,
provided that the underlying semiring is totally commutative complete and also
with the family of behaviors of weighted Büchi automata investigated by Ésik
and Kuich [16]. We do not know if this family coincides with the class of series
specified by all weighted MSO-sentences. Also, the question arises whether The-
orem 2, in particular the construction of a WMA A for a given MSO-formula ϕ
can be made effective. The problem is the universal quantifier: Given a WMA
for ϕ as described in the proof of Theorem 2, how do we obtain the values kj

and WMA for the languages Lj? In the case of finite words and given a field K,
Droste and Gastin [10] could use results from the literature on formal power se-
ries to obtain a construction. Therefore, also in our situation we should consider
specific semirings.
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13. S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press 1974.
14. C. Elgot, Decision problems of finite automata design and related arithmetics,

Trans. Amer. Math. Soc. 98(1961) 21-52.
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Abstract. We adapt the notion of delayed simulation to alternating
parity automata and parity games. On the positive side, we show that
(i) the corresponding simulation relation can be computed in polyno-
mial time and (ii) delayed simulation implies language inclusion. On the
negative side, we point out that quotienting with respect to delayed sim-
ulation does not preserve the language recognized, which means that
delayed simulation cannot be used for state-space reduction via merging
of simulation equivalent states. As a remedy, we introduce finer, so-called
biased notions of delayed simulation where we show quotienting does pre-
serve the language recognized. We propose a heuristic for reducing the
size of alternating parity automata and parity games and, as an evidence
for its usefulness, demonstrate that it is successful when applied to the
Jurdziński family of parity games.

1 Introduction

The motivation for studying simulation relations for automata is, in general,
two-fold: First, simulation relations are an appropriate means for comparing the
structure of automata. They formalize the idea that one automaton is capable
of mimicking the behavior of another automaton. In other words, they are use-
ful for identifying structural similarities of automata. This is also true in the
context of transition systems and processes, in fact, simulation relations were
introduced in a wider context [1]. Second, simulation relations have proved to be
very useful for efficiently reducing the size of (finite-state) automata, the basic
idea being to merge states which simulate each other. This method is also known
as quotienting, and it is a well-established method for reducing the number of
states of a given Büchi automaton, especially in the context of generating small
Büchi automata from formulas in linear temporal logic, see [2, 3, 4, 5, 6, 7, 8, 9].

The objective of the work presented in this paper is to extend the notion of
simulation to alternating parity automata (also known as alternating Rabin chain
automata), see [10, 11], and to identify how simulation can be used for state-
space reduction. From the simpler scenario with Büchi automata it is known,
see [12, 13], that it is reasonable to distinguish different types of simulations:
direct, delayed, and fair simulation. Direct simulation is less interesting from the
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point of view of state-space reduction, because it yields the finest of the three
relations and thus pays off the least. Fair simulation, on the other hand, is too
coarse, for quotienting with respect to it may change the recognized language
[13, 14]. That is why we focus on delayed simulation.

There are two major technical problems to overcome for delayed simulation.
The first problem is that a priori it is not at all clear how the different priorities
of the states of a parity automaton should be taken into account in a definition
of simulation where delays are allowed. We try to give a definition as general
as possible in the sense that the resulting simulation relation is as coarse as
possible. Our approach is game-theoretic, just as in [13], and allows us to prove
that our notion has the basic properties of a simulation relation. When it comes
to quotienting, our definition, however, turns out to be too general: quotienting
does not preserve the language recognized, which is then the second technical
problem to overcome. We describe two ways of strengthening our notion of de-
layed simulation, so-called biased simulations, for which we can then show that
quotienting still works.

To achieve our goal of developing an efficient heuristic for reducing the state
spaces of alternating parity automata, we combine quotienting with respect to
the biased relations with basic simplification methods and simplification meth-
ods involving our general delayed simulation relation. The heuristic we propose
turns out to be successful when applied to parity games (a parity game is sim-
ply an alternating parity automaton over a unary alphabet): It reduces parity
games which have been shown to be difficult instances for a certain game solving
algorithm quite fast to games with just two positions, see [15].

The paper is structured as follows. In Sect. 2, we briefly describe our notation
and terminology. In Sect. 3, we then introduce our general definition of delayed
simulation for alternating parity automata, describe its main properties, and
explain why quotienting does not work. In Sect. 4, we explain how the biased
variants of the general delayed simulation are obtained and how they can be
used for quotienting. Before we conclude, we describe our heuristic for state-
space reduction in Sect. 5.

The proofs of most of the results are very involved; the reader is referred to [16]
for details. For background on games and accepting/winning conditions, see [17].

2 Basic Notation and Terminology

An infinite game is a tuple

G = (P, P0, P1, pI , Z,W ) (1)

where P is a set of positions, P0 ⊆ P are the positions of Player 0, P1 ⊆ P are
the positions of Player 1 such that P = P0 ∪ P1 and P0 ∩ P1 = ∅, pI ∈ P is
an initial position, Z ⊆ P × P is the set of moves, and W ⊆ Pω is the winning
condition (for Player 0). For convenience, we require that the set of moves is
complete, that is, for every p ∈ P there is some p′ ∈ P such that (p, p′) ∈ Z is a
move.
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A play of such a game is an infinite path π = p0p1p2 . . . through the game
graph (P,Z) starting in pI . It is winning for Player 0 if π ∈W .

A parity game is an infinite game as in (1) where W is specified indirectly
by a priority function Ω : P → ω which is required to have a finite image. The
winning condition associated with Ω, denoted W (Ω), is the set which contains a
sequence p0p1p2 . . . if min{m | ∃∞i(Ω(pi) = m)} (which is well-defined because
Ω is required to have a finite image) is even. That is, Player 0 wins if the
minimum priority occurring infinitely often is even.

An alternating parity automaton (APA) is a tuple

Q = (Q,Σ, qI , Δ,E, U,Ω) (2)

where Q is a finite set of states, Σ is an alphabet, qI ∈ Q is the initial state,
Δ ⊆ Q×Σ ×Q is the transition relation, E ⊆ Q is the set of existential states,
U ⊆ Q is the set of universal states such that E ∪ U = Q and E ∩ U = ∅, and
Ω : Q → ω is the priority function. Without loss of generality, we require that
Δ is complete, that is, for every q ∈ Q, a ∈ Σ there must exist a state q′ ∈ Q
such that (q, a, q′) ∈ Δ.

Acceptance of an APA is best explained using games. Given an APA Q as
in (2) and an ω-word w0w1w2 · · · ∈ Σω, the word game

G(Q, w) = (P, P0, P1, pI , Z,Ω
′) (3)

is the parity game where P = Q × ω, P0 = E × ω, P1 = U × ω, pI = (qI , 0),
Z = {((q, i), wi, (q′, i+ 1) | i ∈ ω ∧ (q, wi, q

′) ∈ Δ} and Ω′((q, i)) = Ω(q).
In this game Player 0 and Player 1 are called Automaton and Pathfinder,

respectively, following the terminology from [18]. The word w is accepted by Q
if Automaton has a winning strategy in G(Q, w). The set of all words accepted
by Q is denoted L(Q).

We will use the following ordering on natural numbers (also used in, e. g.,
[19]), which reflects the parity winning condition. The reward order � is the
total order on ω defined by m � n if and only if m is even and n is odd,
or m and n are even and m ≤ n, or m and n are odd and n ≤ m. That is,
0 ≺ 2 ≺ 4 ≺ . . . ≺ 5 ≺ 3 ≺ 1. When n ≺ m, we will say n is better than m, while
terms like minimum and smaller than will always be used w. r. t. the standard
order ≤.

3 Delayed Simulation for the Parity Condition

On a very abstract level, delayed simulation can be explained as follows. A state
s simulates a state q directly, if everything that can be done starting from q
can be mimicked step-by-step starting from s. Here, mimicking means that the
simulating step must be as good as (with respect to acceptance) the simulated
step. For delayed simulation, direct simulation is relaxed: A step need not be
simulated directly, but a finite delay is allowed.

Delays lead to “pending obligations”, every one of which has to be fulfilled
eventually. Our definition of delayed simulation will therefore have mechanisms
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for keeping track of pending obligations and for checking that pending obligations
have been fulfilled.

3.1 Formal Definition of Delayed Simulation

Suppose Q and S are APA’s of the form Q = (Q,Σ, qI , Δ,E
Q, UQ, ΩQ) and

S = (S,Σ, sI , Δ
S , ES , US , ΩS). We want to define what it means for Q to be

simulated by S in a delayed fashion. We do this by first describing an infi-
nite game, named simulation game and denoted Gde(Q,S), where Player 0 and
Player 1 are called Duplicator and Spoiler, respectively. We then say that S
simulates Q if Duplicator wins the game.

The idea of the game, similar to other game-based definitions of simulation,
see, e.g., [13], is as follows. Throughout the game, there is one pebble on a state
of Q and another pebble on a state of S. The game proceeds in rounds in such
a way that in every round first Spoiler chooses a letter and then Spoiler and
Duplicator move the pebbles along transitions labeled with the chosen letter ac-
cording to rules which depend on the modes of the states the pebbles are on. The
outcome of a play are two infinite sequences of states in Q and S, respectively.
Duplicator wins the play if each obligation built up during the course of the
game is eventually fulfilled. For an easier formal description, information about
the pending obligations will be built into the game graph.

Formally, Gde(Q,S) = (P, PDu, PSp, pI , Z,W ) with components defined as fol-
lows. The positions contain information on where the pebbles are on, whether
Spoiler has already chosen a letter and if so, which letter, what the pending oblig-
ations are, and who is going to move next and where (if that cannot be deduced
from the other components). We use the elements of K = Ωq(Q)∪Ωs(S)∪{√} to
describe the pending obligations in terms of a priority to be met by Duplicator,
where the check mark stands for “all obligations fulfilled”.

The set of all positions is the union of P 0, P 1, and P 2 defined by

P 0 = Q× S ×K , P 1 = Q× S ×K ×Σ ,

P 2 = Q× S ×K ×Σ × {Sp,Du} × {Q,S} ,

where positions in P i describe configurations of the game at the beginning of a
round, after Spoiler has chosen a letter, and after one of the players has moved
and one player is still to move, respectively; a position in P 2 explicitly specifies
who is to move and which pebble.

The initial position is determined by: If ΩQ(qI) ≺ ΩS(sI), then the initial
position is given by pI = (qI , sI ,min{ΩQ(qI), ΩS(sI)}), else it is pI = (qI , sI ,

√
).

Depending on the modes of the states the pebbles are on at the beginning of
a round, the players move according to the following table:

q s 1st player plays on 2nd player plays on
EQ ES Sp Q Du S
EQ US Sp Q Sp S
UQ ES Du S Du Q
UQ US Sp S Du Q
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For instance, if both, q and s, are existential, Spoiler moves first on Q and then
Duplicator moves on S.

The table explains why PDu is defined by

PDu = (UQ × ES ×K ×Σ) ∪ (Q× S ×K ×Σ × {Du} × {Q,S})

and that PSp is defined to be the set of the remaining positions.
The important part of a move is how the pending obligations are updated. To

describe this, we define a function γ : ω × ω × (ω ∪ {√}) → ω ∪ {√} as follows.
First, we set γ(i, j,

√
) =

√
if j � i, and γ(i, j,

√
) = min{i, j} otherwise. When

the third argument is a natural number k, we set

γ(i, j, k) =

⎧⎨⎩
√

, if
{
j � i, i odd, i ≤ k, or
j � i, j even, j ≤ k,

min{i, j, k} , otherwise.
(4)

For instance, the first clause says that if Duplicator is supposed to meet k, q has
priority i, s has priority j, then it is enough when j � i and i ≤ k for an odd i.

That is, we store an obligation min{i, j} if the priority i of Q is better than
the priority j of S. One possibility to meet this obligation in a future round
is that the priority i of Q in that round is odd and less than or equal to the
obligation (especially, i is at most as good as the obligation) while at the same
time, j is at least as good as i. In that case, the stored obligation no longer is
a witness for a, so to say superior acceptance behavior of Q as compared to S,
which means it can be erased. Symmetrically, the obligation can be met by a
small even value of j in S.

The set Z of all moves is the union of the sets Z0, Z1, and Z2 defined be-
low, where 2pl(q, s) and 2au(q, s) are determined by the above table (last two
columns):

Z0 = {((q, s, k), (q, s, k, a)) | (q, s, k) ∈ P 0 ∧ a ∈ Σ} ,

Z1 = {((q, s, k, a), (q′, s, k, a, 2pl(q, s), 2au(q, s)) | q ∈ EQ ∧ (q, a, q′) ∈ ΔQ}
∪ {((q, s, k, a), (q, s′, k, a, 2pl(q, s), 2au(q, s)) | q ∈ UQ ∧ (s, a, s′) ∈ ΔS},

Z2 = {((q, s, k, a, x,Q), (q′, s, γ(Ω(q′), Ω(s), k))) | x ∈ {Sp,Du} ∧ (q, a, q′)∈ΔQ}
∪ {((q, s, k, a, x,S), (q, s′, γ(Ω(q), Ω(s′), k))) | x ∈ {Sp,Du} ∧ (s, a, s′)∈ΔS}.

A play π = p0p1p2 . . . of the delayed simulation game is a win for Duplicator
iff there are infinitely many i such that the check mark occurs in the third
component of pi (every obligation is eventually satisfied), that is, the winning
condition can be expressed as a Büchi condition and, of course, as a parity
condition.

If Duplicator has a winning strategy in Gde(Q,S), we write Q ≤de S and say
“S de-simulates Q”. By abuse of notation, when q and q′ are states of the same
automaton Q, we write q ≤de q

′ and say q′ de-simulates q if Q[q] ≤de Q[q′] where
Q[q] and Q[q′] are obtained from Q by making q and q′, respectively, the initial
state.
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3.2 Basic Properties of ≤de

Delayed simulation for APA’s has a number of useful and important properties,
which we now describe. We start with some definitions.

We say that a relation ≤ between automata implies language containment if
Q ≤ S implies L(Q) ⊆ L(S). This is one of the basic properties one expects of
a simulation relation.

The dual of an APA Q, denoted Q̃, is obtained from Q by exchanging the
roles of existential and universal states and replacing Ω by Ω+1. (Observe that
˜̃Q is the same as Q modulo reducing all priorities by 2. Also, L(Q̃) = Σω\L(Q).)

Theorem 1 (properties of delayed simulation)
1. On APA’s, the relation ≤de

(a) is a preorder (reflexive and transitive) and
(b) implies language containment.

2. The relation ≤de can be computed in time O(n3l2m) and space O(mnl) on
an APA with n states, m transitions, and l priorities.

3. For APA’s Q and S, we have Q ≤de S iff S̃ ≤de Q̃.

The proof of the transitivity of ≤de is quite technical; it involves a notion of
strategy composition, in analogy to what is explained in [20]. Since the delayed
simulation game has a Büchi winning condition, it can be solved using the ap-
proach of [12], which gives the desired bound on the running time and space.

3.3 Quotienting is a Problem for ≤de

Recall that a major motivation for studying simulation relations is state-space
reduction, the basic idea being that states that simulate each other are merged
and thus incurring a reduction in the number of states. This process is usually
referred to as quotienting.

More precisely, let ≤ be a preorder on the state space of an automaton Q and
≡ the corresponding equivalence relation defined by q ≡ q′ iff q ≤ q′ and q′ ≤ q.
Then the states of a quotient of Q with respect to ≤ are the equivalence classes of
≡. But this does not fully determine a quotient. In addition, one has to specify:
how the equivalence classes are connected by transitions, for any automaton;
how the the set of equivalence classes is partitioned into universal and existential
classes, for any alternating automaton; how priorities are assigned to equivalence
classes, for any parity automaton. The overall objective is to define a quotient in
such a way that it is simulation equivalent to the given automaton—we call this
a simulation preserving quotient—and recognizes the same language. (Formally,
two APA’s Q and S are simulation equivalent if Q ≤ S and S ≤ Q.)

Several quotients have been discussed in the literature for various types of
automata and simulation relations, for instance, naive quotients, where every
transition in the given automaton induces a transition in the quotient
(representative-wise), minimax quotients, and semi-elective quotients, see, for
instance, [20].

Unfortunately, it turns out to be quite difficult to find a working definition of
a simulation preserving quotient with respect to delayed simulation. In fact, it is



Simulation Relations for Alternating Parity Automata and Parity Games 65

Q

qI 2

q1 2

q2 1 q3 3 aa
a

a

a

a

Q′
q̄I 2

q̄2 1 q̄3 3

a

a

a

a

a

Fig. 1. An APA Q and a naive delayed simulation quotient Q′

not at all clear how such a quotient should be defined, as we will argue in what
follows. Note that in all the examples below not even the language is preserved.

For a start, consider the APA Q in Figure 1. As usual, existential states are
shown as diamonds (there are no universal states). The labels of the states give
the name and the priority of a state. It is easy to check that qI ≡de q1 <de q2 <de

q3. The automaton Q′ in Figure 1 is a naive quotient of Q where the equivalence
class of a state q with respect to ≡ is denoted q̄.

Now observe that L(Q) is empty, while L(Q′) = {aω}. Further, note that
|Σ| = 1 (the automaton is merely a parity game), all states have the same
mode, only states in the same strongly connected component (SCC) are merged,
and there are only three different priorities, which shows the situation is not
complicated at all.

For Q, one gets a simulation-equivalent quotient if the transition (q̄I , a, q̄I) is
removed from S. This might suggest to use a minimax quotient as advocated
in [20] for alternating Büchi automata and direct simulation. But note that, in
general, minimax quotients do not even work for alternating Büchi automata and
delayed simulation. In addition, the semi-elective quotient introduced in [20] for
alternating Büchi automata and delayed simulation does not work for alternating
parity automata, because in semi-elective quotients, transitions originating from
existential states must not be removed, which means the semi-elective quotient
of Q does not preserve the language.

The studies on alternating Büchi automata might suggest an approach in
which existential states retain only their maximal transitions provided their pri-
ority is even. This would be correct for Q, but we have other examples that
exclude this approach as well, see [16].

4 Biased Delayed Simulations

We have just seen that our delayed simulation relation makes it difficult to merge
equivalent states. As a remedy, we present two simulation relations, denoted
≤e

de and ≤o
de, and corresponding quotienting constructions that are simulation

preserving.
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4.1 Definition and Basic Properties

The relations ≤e
de and ≤o

de are finer than ≤de. They are defined just as ≤de with
the only difference that the function γ which accumulates the pending obligations
is replaced by variants, γe and γo, respectively. These functions coincide with γ
except for the following cases:
– if j � i, i odd, i ≤ k, and (j odd or k < j), then γ(i, j, k)e = k, and
– if j � i, j even, j ≤ k, and (i even or k < i), then γ(i, j, k)o = k.

That is, in the case of ≤e
de (e reminiscent of “even”) , once the value of the

priority memory is not
√

, it will change back to the value
√

only if this is
triggered by a small even priority in the simulating automaton, while small odd
priorities in the simulated automaton are ignored.

We call≤e
de and≤o

de the even-biased delayed simulation relation and odd-biased
delayed simulation relation, respectively.

These two new relations have all basic properties of a simulation relation:

Theorem 2 (properties of biased delayed simulations)
1. On APA’s, the simulation relations ≤e

de and ≤o
de

(a) are preorders (reflexive and transitive),
(b) imply language containment, and
(c) are at least as fine as ≤de.

2. The relations ≤e
de and ≤o

de can be computed in time O(n3l2m) and space
O(mnl) on an APA with n states, m transitions, and l priorities.

3. For APA’s Q and S, we have Q ≤e
de S iff S̃ ≤o

de Q̃.

The proofs are similar to the proofs of the assertions in Theorem 1, but in some
places even more complicated because of the asymmetry in the two definitions.

We note that, in general, ≤e
de and ≤o

de are strictly finer than ≤de, and even
the reflexive-transitive closure of ≤l

de ∪ ≤r
de is strictly finer than ≤de.

4.2 Quotienting

We next present the quotients which can be used with the biased delayed simula-
tion relations; they are enhanced versions of the semi-elective quotient introduced
in [20] for alternating Büchi automata.

Let Q be an APA as in (2), ≤ a preorder on its state space, and ≡ the
corresponding equivalence relation. The min semi-elective quotient of Q with
respect to ≤ is

Qse
min = (Q/≡, Σ, q̄I , Δ

min, Emin, Umin, Ωmin) (5)

defined by

Δmin = {(q̄, a, q̄′) | (q, a, q′) ∈ Δ, q ∈ E} ∪ {(q̄, a, q̄′) | q̄ ⊆ U ∧ q′ ∈ mina(q)} ,

Umin = {q̄ | q̄ ⊆ U} , Emin = {q̄ | q̄ ∩ E �= ∅} ,

Ωmin : q̄ �→ min{Ω(q′) | q′ ∈ q̄} ,
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where mina(q) = {q′ | (q, a, q′) ∈ Δ ∧ ∀q′′((q, a, q′′) ∈ Δ ∧ q′′ ≤ q′ → q′ ≤ q′′)},
that is, mina(q) denotes the set of minimum a-successors of q. The max semi-
elective quotient is defined in the same way with the only exceptions that min
is replaced by max and the roles of U and E are exchanged.

We next apply these quotients to our biased delayed simulations. Given an
APA Q, the even semi-elective quotient of Q is the min semi-elective quotient
with respect to ≤e

de, and the odd semi-elective quotient of Q is the max semi-
elective quotient with respect to ≤o

de, denoted Qe
de and Qo

de, respectively.

Theorem 3 (even and odd semi-elective quotients) For every APA Q,
the even and odd semi-elective quotients of Q are simulation preserving, in par-
ticular, L(Q) = L(Qe

de) = L(Qo
de).

The proof of this theorem is similar to the proof of the correctness of other
quotients, but, technically, it is more involved.

We mention that, in general, Q �≡o
de Qe

de and Q �≡e
de Qo

de. Therefore, there is
no obvious way to combine the two quotients or to perform one after the other
without recomputing one of the biased simulation relations.

5 A Simulation-Based Simplification Algorithm

We conclude by describing a heuristic for reducing the number of states of a
given APA. There are three parts to this heuristic: the quotienting procedures
from the previous section; simplification methods based on the general delayed
simulation relation from Sect. 3; basic simplification methods.

5.1 Basic Simplification Methods

There are two basic simplification methods. To describe them, let Q be an APA
as in (2) and let q � q′ denote that there is a path from q to q′ (with any
labeling).

Reachability reduction. Remove all states q where qI �� q.
Normalization. Repeatedly redefine Ω by Ω(q) := Ω(q)− 2 for a state q such

that Ω(q) ≥ 2 and there is no state q′ with Ω(q′) = Ω(q)− 1 in the same SCC.
Clearly, these methods are correct, that is, they do not change the language

of the given APA. Also, they can be implemented quite efficiently.

5.2 Delayed Simplifications

Next, we describe simplification methods based on delayed simulation. Let q̄ be
the equivalence class of a state q with respect to the equivalence relation ≡de

corresponding to ≤de.
Homogenization. Redefine Ω by Ω(q) = min{Ω(q′) | q ≡de q

′}.
Stretching. For every equivalence class C of ≡de choose μ(C) ∈ C such that

there exists no q′ ∈ C satisfying μ(C) � q′ �� μ(C), that is, a maximum
representative with respect to reachability. Replace every transition (q, a, q′) by
(q, a, μ(q̄′)).
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0-1-minimaxing. For every q ∈ E with Ω(q) = 0, remove every transition
(q, a, q′) where q′ /∈ maxa(q). Symmetrically, for every q ∈ U with Ω(q) = 1,
remove every transition (q, a, q′) where q′ /∈ mina(q).

In addition, repeatedly remove a transition (q, a, q′) with q ∈ E if there exists
q′′ �= q′ such that (q, a, q′′) is a transition, q′ ≤de q

′′, and Ω(q′′) = 0. Symmetri-
cally, repeatedly remove a transition (q, a, q′) with q ∈ U if there exists q′′ �= q′

such that (q, a, q′′) is a transition, q′ ≥de q
′′ and Ω(q′′) = 1.

Reachability minimaxing. For every q ∈ E remove a transition (q, a, q′) if there
exists a transition (q, a, q′′) such that q′ ≤de q

′′ and q′′ �� q. Symmetrically, for
every q ∈ U remove a transition (q, a, q′) if there exists a transition (q, a, q′′)
such that q′ ≥de q

′′ and q′′ �� q.
We prove that all these methods are correct. It is easy to see that they can

be implemented quite efficiently, once ≤de has been computed.

5.3 Heuristic for State-Space Reduction

The simplification methods described above can be combined in many different
reasonable ways to reduce the number of states of a given APA, but they only
allow to remove states and edges. For a good state-space reduction heuristic, we
need to combine them with quotienting as described in the previous section. One
reasonable way to do this, which has proved to be useful, is the following:

State-Space Reduction Heuristic SSRH for an APA Q
1. Choose a cut-off threshold t > 0.
2. Normalize the APA.
3. Compute ≤de and perform the delayed simplifications from Subsec-

tion 5.2 in the same order as described. Delete unreachable states
whenever possible (reachability reduction).

4. Compute ≤e
de and ≤o

de and pass to the even or the odd semi-elective
quotient, whichever results in fewer states. (See remark at the end of
Sect. 4.)

5. Let t := t − 1. If t > 0 and the number of states has been reduced,
then go to (2), that is, start all over again, else stop.

Parity games are APA’s over a unary alphabet. Thus they are useful for testing
how well SSRH performs. In general, one cannot expect that SSRH, even when
restricted to parity games, will give perfect results, because the computational
complexity of determining the winner in a parity game is still unknown. The
best one knows is that it belongs to UP ∩ co-UP.

We have studied how SSRH performs when applied to the Jurdziński fam-
ily of parity games, {Hm,n}m,n, which have proved to be hard for Jurdziński’s
algorithm for solving parity games, see [15].

Our algorithm performs well on this family:

Theorem 4 For every choice of m and n and for t = 2, on input Hm,n, SSRH
yields a parity game with two positions in a number of steps polynomial in the
input size.
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6 Conclusion

We have shown how the concept of delayed simulation can be adapted to al-
ternating parity automata, that it is hardly useful for state-space reduction via
quotienting, but that it can also be modified appropriately in order to arrive at
a useful state-space reduction heuristic.

One interesting question that we do not know how to answer is whether there
is an intermediate relation ≤ such that (≤e

de ∪ ≤o
de) ⊆ ≤ ⊆ ≤de and where

quotienting is simulation preserving. Also, it would be useful to have a rigorous
proof that quotienting with respect to ≤de does not work; one would have to
come up with an APA Q such that no APA with fewer states accepts the same
language, but where two different states simulate each other.
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Abstract. A partial function F : Σ∗ → Ω∗ is called a simple function
if F (w) ∈ Ω∗ is the output produced in the generation of a word w ∈ Σ∗

from a nonterminal of a simple context free grammar G with output
alphabet Ω. In this paper we present an efficient algorithm for testing
equivalence of simple functions. Such functions correspond also to one-
state deterministic pushdown transducers. Our algorithm works in time
polynomial with respect to |G|+v(G), where |G| is the size of the textual
description of G, and v(G) is the maximum of the shortest lengths of
words generated by nonterminals of G.

1 Introduction

The decidability problem of equivalence for functions defined by different classes
of deterministic push-down automata and pushdown transducers (dpdt) was
studied extensively, see for example [8, 11], leading eventually to a proof of the
decidability of the equivalence problem for deterministic pushdown transducers.
The main issue was decidability, and little was said about the effective algorithms
for the equivalence of pushdown transducers.

In this paper we present an efficient and easy to implement algorithm for
deciding the equivalence of simple functions, i.e., functions defined by one-state
dpdts. Simple functions were initially defined in [5] as the semantic domain of
a network packet classification engine developed at IDT Canada, Inc. Simple
functions are applied by IDT Canada to perform packet classification at wire
speed. Classification policies are described with the aid of a class of context
free grammars and implemented as so called Concatenation State Machines, a
hardware implementation of single-state dpdts. In order to manage large sets
of those classification policies in memory, it is useful to be able to identify if
two classification policies are semantically the same. This was our motivation to
investigate the problem of the equivalence of simple functions from a practical
point of view and to develop an efficient and easy to implement algorithm for
this task. The algorithm we propose in this paper is a nontrivial extension of
the simple languages equivalence algorithms from [2, 7, 1] to the case of simple
functions.

Simple functions can be seen as a proper extension of sequential functions
(functions realized by deterministic finite transducers) and simple languages.
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Simple languages were introduced in [9] as languages recognized by a dpda with
a single state, also called simple dpda, or, equivalently, as languages generated
by simple grammars. We extend the definition of simple grammars to functions
defined by grammars with output.

A simple function grammar is formally described by a 4-tuple:

G = (Σ,Ω,N, P ),

where Σ,Ω,N are disjoint sets of input symbols, output symbols, and nontermi-
nals, and P ⊂ N ×Σ × (N ∪Ω)∗ is a finite set of production rules with output.
Moreover, we require that for given X ∈ N and a ∈ Σ there is at most one
α ∈ (N ∪Ω)∗, such that (X, a, α) ∈ P .

Each production can be written as A → sα, where α ∈ (N ∪ Ω)∗. We also
write A s−→ α. The relation s−→ is extended in the following way.

We write α1
s−→ α2, iff α1 = β1Aβ2, β1 ∈ Ω∗, A ∈ N, α2 = β1γβ2 and

A→ s γ is a production. Intuitively, relation α1
s−→ α2 corresponds to a single-

step leftmost derivation.
For w = s1s2 . . . sn and αi ∈ (N ∪Ω)∗ we write α0

w−→ αn iff

α0
s1−→ α1, α1

s2−→ α2, α2
s3−→ α3, . . . αn−1

sn−→ αn.

For w ∈ Σ∗ we write:

β = Derived(α,w) ⇔ α
w−→ β, where β ∈ (N ∪Ω)∗.

If there is no derivation α
w−→ u for any u then we write Derived(α,w) = ⊥.

The input-output relation corresponding to a sequence α ∈ (N ∪Ω)∗ is defined
in the following way:

FG(α) def= { (w, u) ∈ Σ∗ ×Ω∗ | u = Derived(α,w), u �= ⊥ }.

A relation FG(α), for any given α ∈ (Ω ∪ N)∗, over input and output strings,
which can be defined by a simple function grammar, is called a simple function.
We use also function terminology, i.e., FG(α)(w) = u iff (w, u) ∈ FG(α).

The domain of a simple function is a simple language, i.e., if Ω is empty then
G is just a simple grammar.

We define the simple function equivalence problem as follows.

Input
a simple function grammar G and two nonterminals A,B ∈ N ;

Output
SUCCESS if FG(A) = FG(B), and FAILURE otherwise.

Example 1. Let us consider the simple grammar with output G = ({0, 1}, {a, b},
{S1, S2, A1, A2}, P ), where P is given by rules:

S1 → 0aS1A1b, S1 → 1, A1 → 1, S2 → 0aS2A2, S2 → 1, A2 → 1b
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and consider the equivalence problem ”FG(S1) = FG(S2) ?”. We have SUCCESS
since FG(S1) = FG(S2). For w which are not of the form 0n1n+1, FG(S1)(w)
and FG(S2)(w) are both undefined. Otherwise, we have:

FG(S1)(0n1n+1) = FG(S2)(0n1n+1) = anbn.

Let α ∈ (N∪Ω)∗. By ||α|| we denote the shortest-word complexity of α defined
as the length of a shortest w ∈ Σ∗ such that FG(α)(w) is defined. The shortest-
word complexity of grammar G is defined as v(G) def= max{||A|| | A ∈ N }. |G|
denotes the size of the textual description of G.

Our main result is the constructive proof of the following theorem.

Theorem 1. Assume A,B are two nonterminals of a simple grammar G with
output. Then we can test if FG(A) = FG(B) in time polynomial with respect to
|G|+ v(G).

2 Free Group over Ω and Properties of Simple Functions

In the course of the algorithm we consider, as intermediate data, output se-
quences which are to be compensated later. For example we could know that
the output for A is the same as for B, except for a prefix u that must be cut
off from every output for B. Then, we formally write uA = B, or equivalently
A = u−1B. This motivates the introduction of the free group Ω⊗ over the
output alphabet Ω. The concept of this group and the operation Derived of
taking a syntactic remainder are among our basic tools. First we introduce some
basic properties and definitions related to the free group over Ω.

By ε we denote an empty sequence. Simple functions together with concate-
nation defined by fg

def= {(x1x2, y1y2) | (x1, y1) ∈ f, (x2, y2) ∈ g}, constitute a
monoid with {(ε, ε)} acting as unit1 and with ⊥ def= {} acting as zero. More de-
tails about simple functions seen as a monoid can be found in [5]. We will write
w and u instead of {(w, ε)} and {(ε, u)}, with w ∈ Σ∗ and u ∈ Ω∗, respectively.
In particular, the unit function {(ε, ε)} will be denoted by ε.

Let f, g be simple functions. By g−1f we will denote the unique, if it exists,
simple function h such that f = gh.

As mentioned above, for technical reasons we extend the image of simple
functions to the free group generated by Ω, denoted by Ω⊗, so w−1f would
be such that w(w−1f) = f , for all w ∈ Ω⊗. More precisely, Ω⊗ def= (Ω ∪
Ω)∗/{aa=aa=ε|a∈Ω}, where Ω is a copy of Ω with bijection : Ω �→ Ω playing the
role of the inverse. Therefore, apart from monoid properties, i.e., x(yz) = (xy)z,
xε = εx = x, we have aa = aa = ε, for every a ∈ Ω. For example, (abc)−1 = cba,
or bc(abc)−1 = a.

Given two strings u, v over Ω ∪ Ω, we write u = v to say that they are
equivalent in Ω⊗. When we want to underline that u and v are identical as
strings, we write u ≡ v. A usual way of representing an element of Ω⊗, i.e., an
1 The unit simple function corresponds to FG(ε).
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equivalence class over (Ω ∪ Ω)∗, is to choose the shortest string from the class
(such a word does not contain subwords aa or aa, for any a ∈ Ω). Given a string
u ∈ (Ω ∪Ω)∗, by reduce(u) we denote the shortest string over Ω ∪Ω, such that
reduce(u) = u.

If reduce(u) ≡ u then u is called reduced. The reduced form can be easily
computed in linear time with respect to |u|. We say that u ∈ Ω⊗ is not primitive
if there is an x ∈ Ω⊗ and k > 1 such that u = xk; otherwise u is primitive. For
every u there exists a unique primitive x ∈ Ω⊗, denoted root(u), and a k > 0,
denoted power(u), such that u = xk.

Lemma 1. Let u ∈ (Ω ∪ Ω)∗. There is an algorithm for calculating power(u)
and root(u) running in O(n), where n = |u|.

Proof. We assume that u is given in the reduced form. Let u be written as
u1u2u

−1
1 , where u1 is the maximal length prefix of u such that its inverse is a

suffix of u. The value of u1 can be easily computed in linear time. Note that u is
a power of a primitive word x iff u2 is a power of a primitive word y such that
x = u1yu

−1
1 . By the choice of u2, the first and the last symbols of y are not inverse

of each other, therefore reduce(yk) ≡ yk for all k ≥ 1 and u2 can be treated
as a word in a free monoid generated by the alphabet (Ω ∪Ω). In this context,
computing power(u2) and root(u2) can be done by finding the occurrences of
u2 in the word u2u2 using any linear time pattern matching algorithm (see [4]
for details), from which we can deduce the values of power(u) and root(u). �

Lemma 2. Let X ⊆ Ω∗, r1, r2 ∈ Ω⊗, such that |X | ≥ 2, r1X = Xr2, and r1, r2
being primitive. For every u, v ∈ Ω⊗, uX = Xv iff power(u) = power(v) and
(root(u), root(v)) ∈ {(r1, r2), (r−1

1 , r−1
2 )}.

Proof. Firstly, we show that in Ω⊗, uw = wv iff u = st, v = ts and w = (st)ks
for some s, t ∈ Ω⊗ and k ∈ Z. Furthermore, if u and v are primitives, then s
and t are unique. Using these facts, it is straightforward to prove the if part of
the lemma.

Secondly, we observe that if uX = Xv then root(u)X = Xroot(v) and
power(u) = power(v). We elaborate a deterministic method of finding primitive
words s and t from two words w1, w2 ∈ X such that r1 = st, r2 = ts and
wi = (st)kis, for i ∈ 1, 2 and ki ∈ Z. Hence, there exists exactly one (modulo
inverse) pair of primitive words r1 and r2 such that r1X = Xr2. �

Example 2. Note that, if |X | = 1 then the lemma is not true. E.g., for X = {ε},
uX = Xu for all u ∈ Ω⊗.

From this point on, we extend the definition of the output alphabet to Ω ∪ Ω
and we will assume G = (Σ,Ω ∪Ω,N, P ) is a simple grammar with output.

We distinguish two types of sequences α over N ∪Ω ∪Ω: α is of output type
if α ∈ (Ω ∪ Ω)∗; and α is of general type, when α is of form uAα′, for some
u ∈ (Ω ∪Ω)∗, A ∈ N , and α′ ∈ (N ∪Ω ∪Ω)∗. In the case of general type of α,
we refer to u, A, and α′ by OutPref(α), First(α), and Tail(α), respectively.
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Example 3. Let α = baabaAbaCAb, where a, b ∈ Ω, then First(α) = A,
OutPref(α) = baaba, and Tail(α) = baCAb.

For every simple function FG(A), denoted by minFG(A) the unique element
(w, u) ∈ FG(A) such that w ∈ Σ∗ is the shortest and lexicographically small-
est input word generated by G from A. For every nonterminal A ∈ N we can
precompute (wA, uA) def= minFG(A) in time polynomial with respect to ||A||.

Moreover, we compute the set SingleOut(G) ⊆ N of all non-terminals, each
of them producing only one output string, i.e.,

SingleOut(G) def= {A ∈ N | ∀(x, y), (x′, y′) ∈ FG(A), y = y′}.

Lemma 3. We can calculate SingleOut(G) in time O(|G|+ v(G)).

Proof. We assume G to be reduced. Associate with each rule A→ aα an integer
value nA→aα, initialized to the number of occurrences of different nonterminals
which are in α, and associate also a boolean flag which can take either the value
marked or unmarked, initially set to unmarked. Furthermore, assume that we
have for each A ∈ N a reference to all the rules B → aα such that α = α1Aα2,
for some α1, α2. We also associate a word wA to each A, initially set to nil, and
a boolean flag specifying whether or not we have found that A produces more
than one output. This information can be precomputed in O(|G|).

Following this preprocessing, we can find for each nonterminal whether it
generates more than one output word by iterating the following procedure:

Consider all the unmarked rules A → aα ∈ P such that nA→aα = 0. If
there is no such rule, terminate. Otherwise, set each such rule as marked.
Then, for each of these rules, we know that wB �= nil for every nonter-
minal B in α, and we can easily compute a word w′ for A.
If A already has an output word wA �= w′ associated with it, we have
found that A generates more than one output word and we can mark it as
such. We also recursively propagate this information to any nonterminal
B such that B → aα, with α = α1Aα2 (unless B is already marked
as such), since B must necessarily generate at least 2 different output
words.
Otherwise, if wA = nil, set wA := w′ and subtract 1 from nB→aα.

This procedure takes time O(|G| + v(G)) since we consider an occurrence of a
nonterminal in a rule a constant number of times. �

Proposition 1. Let G = (Σ,Ω ∪ Ω,N, P ) be a simple function grammar, α,
α′, β, β′ ∈ (N ∪Ω ∪Ω)∗ such that ||α|| ≤ ||β||, A ∈ N , and u, v ∈ (Ω ∪Ω)∗.

1. FG(α)=FG(β) iff (α, β ∈ (Ω∪Ω)∗ and α = β) or ∀a ∈ Σ FG(Derived(α, a))
= FG(Derived(β, a))

2. FG(αα′) = FG(ββ′) iff FG(αγ) = FG(β) and FG(α′) = FG(γβ′),
where (wα, uα) = minFG(α) and γ = u−1

α Derived(β,wα).
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Proof. The first “if and only if” statement is obvious. The second statement
follows from the fact that the monoid of simple functions is cancellative. The
following cases are possible:

1. γ is such that FG(αγ) = FG(β), i.e., FG(γ) = (FG(α))−1FG(β). In this case
the “if and only if” statement is straightforward.

2. If FG(αγ) �= FG(β) then (FG(α))−1FG(β) is not defined, and thus, assuming
||α|| ≤ ||β||, FG(αα′) cannot be equal to FG(ββ′). �

Corollary 1. Let G be a simple function grammar, α, β ∈ (N∪Ω∪Ω)∗, A ∈ N ,
and u, v ∈ (Ω ∪Ω)∗.

FG(uAα) = FG(vAβ) iff FG(α) = FG(γβ) and FG(uAγ) = FG(vA),

where (wA, uA) = minFG(A) and γ = (uuA)−1Derived(vA,wA) = u−1
A u−1vuA.

Notice that A ∈ SingleOut(G) implies FG(uAγ) = FG(vA).

3 Equivalence Algorithm

The algorithm Equivalence which checks for the equality of A and B, consists
of constructing a relation R ⊂ (N ∪ Ω ∪ Ω)+ × (N ∪ Ω ∪ Ω)+, which implies
FG(A) = FG(B). In terminology of [3], R would be called self-proving relation.
In our case R will consist of two relations D, called decomposition relation, and
C, called conjugation relation.

Let ≤ be a total order over nonterminals verifying A ≤ B ⇒ ||A|| ≤ ||B||.

Decomposition Relation and Unfolding. Decomposition relation is a par-
tial mapping D : N → (N ∪ Ω ∪ Ω)+ such that D(A) ∈ ({X ∈ N | X <
A} ∪Ω ∪Ω)+, i.e., D(A) contains only nonterminals smaller than A. By D∗(β)
we denote the complete unfolding of β. This means that if (A,α) ∈ D then A is
replaced in β by α, such an operation is iterated until the resulting string β sta-
bilizes. e.g., if D = {(A,BcB), (B,Cb)} with A,B,C ∈ N and a, b, c ∈ (Ω ∪Ω),
then D∗(aAA) = aCbcCbCbcCb.

Conjugation Relation. The relation C contains conjugation equations of form
r1A = Ar2, where A ∈ N and r1, r2 ∈ Ω⊗. In C we will keep only reduced non-
trivial conjugation equations, i.e., we will assume that the nonterminal A present
in the equation generates at least two different elements, A /∈ SingleOut(G), and
that r1 and r2 are primitive and reduced. By Lemma 2, it is enough to keep in C
only one such conjugation equation per A. Hence, the size of conjugation relation
|C| is bounded by |N |.

Description of the Algorithm. The algorithm is presented in Fig. 1. Intu-
itively, the algorithm constructs R = C ∪ D, maintaining a list Q of equations
on sequences over N ∪ Ω ∪ Ω, called targets. The targets are processed within
a while-loop one by one until the set Q becomes empty, which is equivalent to



Equivalence of Functions Represented by Simple Context-Free Grammars 77

Algorithm Equivalence(A, B); {A, B ∈ N ;}
{the algorithm returns SUCCESS iff FG(A) = FG(B)}

Q := {(A, B)}; C := ∅; D := ∅;
while Q is not empty do:

(α1, α2) := delete(Q);
If α1 = ⊥ and α2 = ⊥ then start the next iteration.
If α1 = ⊥ or α2 = ⊥ then return FAILURE.

α1 ← D∗(α1), α2 ← D∗(α2) — Unfolding α1 and α2 by D.
Simplify (α1, α2) by eliminating the common prefix.
If α1 = α2 = ε then start the next iteration. (1)
If α1 or α2 is of output type then return FAILURE. (2)

— Comment: At this stage α1 and α2 are of general type, i.e.,
α1 = u1Aα′

1 and α2 = u2Bα′
2, and they differ syntactically

on the first (nonterminal or output) symbol.

u1 ← OutPref(α1), A ← First(α1), α′
1 ← Tail(α1)

u2 ← OutPref(α2), B ← First(α2), α′
2 ← Tail(α2)

— Comment: Without loss of generality, assume A ≤ B.
(wA, uA) ← min FG(A); γ ← u−1

A u−1
1 Derived(u2 B, wA)

If γ = ⊥ then return FAILURE. (3)
Add (α′

1, γα′
2) to Q. (4)

If A = B then:
If A ∈ SingleOut(G) then start the next iteration.
If power(u−1

1 u2) 	= power(γ) then return FAILURE. (5)
x ← root(u−1

1 u2), y ← root(γ)
— Comment: Equation u1Aγ = u2A corresponds to conjuga-

tion u−1
1 u2A = Aγ, and, by Lemma 2, to xA = Ay.

If (r1A, Ar2) is in C then
If (x = r1 and y = r2) or (x = r−1

1 and y = r−1
2 ) then

start the next iteration else return FAILURE.
Add (xA,Ay) to C
For each a ∈ Σ do:

β1 ← Derived(xA,a), β2 ← Derived(Ay,a), Add (β1, β2) to Q

else — Comment: A < B (6)

Add (B, u−1
2 u1Aγ) to D

For each a ∈ Σ do:
β1 ← Derived(B, a), β2 ← Derived(u−1

2 u1Aγ, a), Add (β1, β2) to Q
end {of while}
return SUCCESS.

Fig. 1. Simple Function Equivalence algorithm

a proof that the initial equation is true, or until a counter-example disproving
the equivalence is found and FAILURE is reported. Intuitively, the processing of a
target (α1, α2) from Q is as follows. Firstly, the target is normalized through the
unfolding by D and the removal of the common prefix from D∗(α1) and D∗(α2).
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If the normalized target is trivialy true or false it is immediatly treated as such.
Otherwise, the target, which can be written (u1Aα

′
1, u2Bα

′
2), is split right after

the first nonterminals creating new targets (u1Aγ, u2B) and (α′1, γα′2), assuming
A ≤ B. The second target is put back into Q for a later processing. The former
target (u1Aγ, u2B) is considered immediatly, and is processed according to its
format: if A = B, it is added to C unless it is already present, in which case it
is compared to the existing value; if A �= B, it is added to D. If the target is
added to either C or D, the target is also derived by all terminal symbols and
the resulting targets are added to Q.

3.1 Correctness of the Equivalence Algorithm

In order to demonstrate that the algorithm is correct we will show that:

1. The algorithm always terminates.
2. The validity of the set of equations corresponding to Q∪D∪C is an invariant

at every iteration of the while loop.
3. The value FAILURE is reported only if the chosen target (α1, α2) ∈ Q is such

that FG(α1) �= FG(α2).
4. If FG(α1) �= FG(α2) for some (α1, α2) ∈ Q then FAILURE is reported.

Let ||Q|| denote the shortest-word complexity of Q, i.e.,

||Q|| def=
∑
{||α||+ ||β|| | (α, β) ∈ Q}.

At every iteration which does not add anything to D nor to C, the value ||Q||
strictly decreases. The algorithm terminates since the number of insertions into
D and C is bounded, hence ||Q|| eventually decreases to 0 or FAILURE is reported.

The invariant of point 2 follows from Proposition 1, Corollary 1, and Lemma 2.
Point 3 can be checked by examining all five FAILURE reports present in the

algorithm. First two are obvious. The third occurrence follows from Proposi-
tion 1(2). The forth and fifth ones follow from Lemma 2.

The last point, item 4, stating that FAILURE is reported whenever Q con-
tains a pair of sequences which are not equivalent, is argued using the following
proposition.

Proposition 2. Let α1, α2 ∈ (N ∪Ω ∪Ω)∗ and w ∈ Σ∗ such that FG(α1)(w) �=
FG(α2)(w). If at some point of the execution of the algorithm (α1, α2) appears
in Q then the algorithm reports FAILURE.

Proof. By induction on the length of w.
If |w| = 0 then α1 or α2 is in (Ω ∪ Ω)∗. Therefore, if α1 �= α2 then FAILURE

is reported in (2).
Assume that FAILURE is reported whenever FG(α1)(w) �= FG(α2)(w) with

|w| < k.
Consider α1 and α2 such that FG(α1)(w) �= FG(α2)(w) and |w| = k. There

are three cases with respect to the shape of α1 and α2 (we will often write just
α, for α ∈ (N ∪Ω ∪Ω)∗, as an abbreviation for FG(α)):
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– α1 or α2 is of constant type.
We report FAILURE in (2).

– α1 = u1Aα
′
1 and α2 = u2Aα

′
2.

Let γ = (xu1ux)−1u2A, where (x, ux) = minA.
Since α1(w) �= α2(w), there exists a ∈ Σ, wA, w

′ ∈ Σ∗ such that awAw
′ = w,

awA ∈ L(A).
If α′1(w

′) �= γα2(w′) then, by induction since |w′| < k and the fact that
(α′1, γα2) is added to Q, the algorithm reports FAILURE.
Otherwise, i.e., if α′1(w

′) = γα2(w′) then we have:

u1Aα
′
1(awAw

′) �= u2Aα
′
2(awAw

′)
u1A(awA)α′1(w

′) �= u2A(awA)α′2(w
′)

u1A(awA)γ �= u2A(awA)
u−1

1 u2A(awA) �= Aγ(awA)

By Lemma 2, the inequality holds if and only if power(u−1
1 u2) �= power(γ)

or a−1root(u−1
1 u2)A(wA) �= a−1Aroot(γ)(wA).

The inequality power(u−1
1 u2) �= power(γ) is checked for in (5) and FAILURE

is reported. Otherwise, (a−1root(u−1
1 u2)A, a−1Aroot(γ)) is added to Q.

Hence, by the induction hypothesis, the program eventually reports failure,
since |wA| < k.

– α1 = u1A1α
′
1 and α2 = u2A2α

′
2 with A1 < A2.

Let γ = (xu1ux)−1u2A2, where (x, ux) = minA1.
If γ = ⊥ then in (3) we report FAILURE. Otherwise, we have two cases to
consider:
• One of A1 and L(A2), but not both, is not defined for any prefix of w.

Let aw1 be the prefix of w such that A1(aw1) or A2(aw1) is defined.
In such a case, a−1u1A1γ(w1) �= a−1u2A2(w1), which is equivalent to
a−1u−1

2 u1A1γ(w1) �= a−1A2(w1).
• There exist w1 and wγ such that A1(aw1) and A2(aw1wγ). Hence, w =
aw1wγw

′ with a ∈ Σ.
If α′1(wγw

′) �= γα′2(wγw
′) then, by induction hypothesis, the algorithm

will report FAILURE.
Otherwise, α′1(wγw

′) = γα′2(wγw
′), and therefore

u1A1α
′
1(aw1wγw

′) �= u2A2α
′
2(aw1wγw

′) implies
u1A1(aw)γ(wγ)α′2(w

′) �= u2A2(aw1wγ)α′2(w
′),

i.e., u1A1(aw)γ(wγ) �= u2A2(aw1wγ). �

3.2 Complexity

The efficiency of the algorithm follows from the fact that the number of insertions
into D and C is polynomial.

Proposition 3. The algorithm Equivalence(A,B) works in polynomial time
with respect to |G|+ v(G).
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Proof. Let k def= max{|α| | (A → aα) ∈ P}, i.e., the length of a longest rule in
P . Therefore, for any A ∈ N , (w, u) ∈ FG(A) implies that |u| ≤ k|w|.

Since the number of insertions into D and C is O(|N |), in the worst case Q can
contain O(|N ||Σ|) targets (α, β). Notice that for all (α, β) ∈ Q, min(||α||, ||β||) ≤
k v(G). At that point no more targets can be added to Q. Therefore, the number
of iterations of the while loop is O(|N | |Σ| k v(G)).

Since the precomputing phase (calculating minFG(A), for all A ∈ N , and
calculating SingleOut(G), Lemma 3) takes polynomial time in |G|+ v(G), and
all operations in the algorithm are proportional to the size of the arguments
(Lemma 1), the overall running time of the algorithm is polynomial. �

3.3 Trace History of the Algorithm

Let G = ({0, 1}, {a, b}, {S, T,X, Y, Z}, P ) be a simple grammar with output,
where P is given by productions:

S → 1bZbaab, T → 1Y baaY, X → 0abba, X → 1aY ba,
Y → 0bbaXab, Y → 1bZbaab, Z → 0baXaY, Z → 1ZbaaY .

We show how Equivalence(S, T ) is computed.
We start by precomputing minFG(A), for A ∈ {S, T,X, Y, Z}:

(wS , uS) = (wT , uT ) = (10000, bbaabbaabbaabbaabbaab),
(wX , uX) = (0, abba), (wY , uY ) = (00, bbaabbaab), and
(wZ , uZ) = (0000, baabbaabbaabbaab).

We set X < Y < Z < S < T since ||X || = 1, ||Y || = 2, ||Z|| = 4, ||S|| =
||T || = 5. We have also to precompute SingleOut(G), which in our case is empty.

The initialization step sets Q = {(S, T )}, C = {}, and D = {}.
The first iteration of the main while loop begins by retrieving the target

(α1, α2) = (S, T ) from Q. The target is first simplified using D which does
not change its state since D is empty. The longest common prefix of α1 and α2
is then removed, which again does not modify the target since S and T have
no common prefix. Both α1 and α2 are of general type, therefore they are
decomposed as u1.A.α

′
1 = ε.S.ε and u2.B.α

′
2 = ε.T.ε. Then, since (wS , uS) =

(10000, bbaabbaabbaabbaabbaab) we compute
γ = (bbaabbaabbaabbaabbaab)−1Derived(T, 10000) = ε,

and add (ε, ε) to Q.
Finally, since the first nonterminal of α1 and α2 are different (i.e. S �= T ) and

T > S, we add (T, S) to D. We also compute Derived(T, 0) = ⊥, Derived(S, 0)
= ⊥, Derived(T, 1) = Y baaY and Derived(S, 1) = bZbaab, from which we set
Q = Q ∪ {(⊥,⊥), (Y baaY, bZbaab)}. This completes the iteration.

The full trace of the execution of the algorithm has been summarized in Fig. 2.
The underlined elements in column Q are the targets (α1, α2) considered by the
algorithm during the iteration. Column “simplified (α1, α2)” corresponds to the
result of the simplification by D followed by the removal of the longest common
prefix; the result is written in the form (u1.A.α

′
1, u2.B.α

′
2). Column C contains

the conjugation equations added (black ones) or checked for (gray ones) in the
iteration. The last column, D, contains the decomposition added in the iteration.
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Q simplified (α1, α2) γ C D
(S, T ) (ε.S.ε, ε.T.ε) ε (T, S)

(ε, ε), (⊥, ⊥),
(Y baaY, bZbaab)

(ε, ε)

(⊥,⊥), (Y baaY, bZbaab)

(Y baaY, bZbaab) (ε.Y.baaY, b.Z.baab) bY (Z, bY bY )

(baaY, bY baab),
(baXaY, baXaY ),
(ZbaaY,ZbaaY )

(baa.Y.ε, b.Y.baab) baab (aabbY, Y baab)

(baXaY, baXaY ),
(ZbaaY,ZbaaY ),
(ε, ε), (aXab, bbaXab),
(aabZbaab, bZ)

(ε, ε)

(ZbaaY,ZbaaY ),
(ε, ε), (aXab, bbaXab),
(aabZbaab, bZ)

(ε, ε)

(ε, ε), (aXab, bbaXab),
(aabZbaab, bZ)

(ε, ε)

(aXab, bbaXab),
(aabZbaab, bZ)

(a.X.ab, bba.X.ab) abba (abbaX,Xabba)

(aabZbaab, bZ), (ab, ab),
(abbaabba,abbaabba),
(abbaaY ba, aY baabba)

(aabb.Y.bY baab, ε.Y.bY ) baab (bbaaY, Y baab)

(ab,ab),
(abbaabba,abbaabba),
(abbaaY ba, aY baabba),
(bY baab, baaY )

(ε, ε)

(abbaabba,abbaabba),
(abbaaY ba, aY baabba),
(bY baab, baaY )

(ε, ε)

(abbaaY ba, aY baabba),
(bY baab, baaY )

(bbaa.Y.ba, ε.Y.baabba) baab (aabbY, Y baab)

(bY baab, baaY ),
(ba, ba)

(b.Y.baab, baa.Y.ε) baab (bbaaY, Y baab)

(ba, ba),(baab, baab) (ε, ε)

(baab, baab) (ε, ε)

empty Return SUCCESS

Fig. 2. Execution of Equivalence proving FG(S) = FG(T ). In each iteration the
active pair (α1, α2) is underlined.
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4 Conclusions

We showed an algorithm which tests the equality of two simple functions for a
grammar G in time polynomial with respect to |G| + v(G) (the shortest-word
complexity of G). In practical situations this algorithm works in polynomial time
with respect to the size of G, since usually v(G) is polynomial with respect to
the size |G| of the grammar. However it is theoretically possible that v(G) is
exponential with respect to |G|. Our algorithm is a first step towards a fully
polynomial (with respect only to |G|) time algorithm.
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Abstract. Analysis by reduction is a method used in linguistics for
checking the correctness of sentences of natural languages. This method
is modelled by restarting automata. Here we introduce and study a new
type of restarting automaton, the so-called t-sRL-automaton, which is
an RL-automaton that is rather restricted in that it has a window of
size 1 only, and that it works under a minimal acceptance condition. On
the other hand, it is allowed to perform up to t rewrite (that is, delete)
steps per cycle. Here we study the gap-complexity of these automata.
The membership problem for a language that is accepted by a t-sRL-
automaton with a bounded number of gaps can be solved in polynomial
time. On the other hand, t-sRL-automata with an unbounded number of
gaps accept NP-complete languages.

1 Introduction

The original motivation for introducing the restarting automaton was the desire
to model the so-called analysis by reduction of natural languages. Analysis by
reduction is usually presented by finite samples of sentences of a natural language
and by sequences of their correct reductions (e.g., tree-banks) (see, e.g., [7]).

From a theoretical point of view the restarting automaton can be seen as a
tool that yields a very flexible generalization of analytical grammars. On the
other hand, the restarting automaton can be considered as a generalization and
a refinement of the pushdown automaton (see, e.g., [9]) and the contraction
automaton [13].

Up to now all models of restarting automata studied in the literature accept at
least all deterministic context-free languages. Hence, they can be used to analyze
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only language classes above the level of deterministic context-free languages. In
particular, regular languages or even finite languages are of too small a degree of
complexity to be studied by restarting automata. However, in (corpus) linguis-
tics essentially finite (though very large) approximations of infinite languages
are often studied. As the motivation for restarting automata is derived from
linguistic considerations, this is a shortcoming of the model.

Here we propose a way to remedy this situation. We introduce a new variant of
the restarting automaton, the so-called simple RL-automaton ( sRL - automaton),
that is rather restricted in various aspects to ensure that its expressive power is
limited. However, by admitting that t (≥ 1) delete operations may be performed
in each cycle, the expressive power of the obtained model of the restarting au-
tomaton is parametrized by t, and hence, we obtain an infinite hierarchy of
automata and therewith of language classes. Then we study the number of gaps
generated during a reduction as a complexity measure for t-sRL-automata that is
inspired by linguistic considerations (see, e.g., [2, 3]). This measure is related to
the notion of j-monotonicity considered in [11], and it yields an infinite hierarchy
of automata and language classes. In contrast to the situation for 2-monotone
restarting automata, which accept NP-complete languages [5], it turns out that
a bounded number of gaps implies that only feasible languages are accepted,
that is, languages that are recognizable in polynomial time. However, with an
unbounded number of gaps these automata still accept NP-complete languages.

The paper is structured as follows. After introducing the simple RL - auto-
maton in Section 2, we will establish an infinite hierarchy based on the
parameter t of delete operations that are permitted per cycle. In Section 3 var-
ious notions of monotonicity are presented for sRL-automata, and it is shown
that sRL-automata can simulate standard RL-automata, preserving the type of
monotonicity. In particular, this implies that t-right-left-monotone sRL-automata
accept NP-complete languages. Then in Section 4 the gap-complexity is intro-
duced, and it is shown that with bounded gap-complexity sRL-automata only
accept feasible languages. The paper closes with a characterization of regular
languages in terms of a special type of sRL-automata.

2 The t-sRL-Automaton

Here we describe in short the type of restarting automaton we will be dealing
with. More details on restarting automata in general can be found in [9].

An sRL-automaton (simple RL-automaton) M is a (in general) nondetermin-
istic machine with a finite-state control Q, a finite input alphabet Σ, and a head
(window of size 1) that works on a flexible tape delimited by the left sentinel
c and the right sentinel $. For an input w ∈ Σ∗, the initial tape inscription is
cw$. To process this input M starts in its initial state q0 with its window over
the left end of the tape, scanning the left sentinel c. According to its transition
relation, M performs move-right steps which shift the window one position to
the right, thereby possibly changing the state of M , move-left steps which shift
the window one position to the left, thereby possibly changing the state of M ,
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and delete steps, which delete the content of the window, thus shortening the
tape, change the state, and shift the window to the right neighbour of the symbol
deleted. Of course, neither the left sentinel c nor the right sentinel $ must be
deleted. At the right end of the tape M either halts and accepts, or it halts and
rejects, or it restarts, that is, it places its window over the left end of the tape
and reenters the initial state. It is required that before the first restart step and
also between any two restart steps, M executes at least one delete operation.

A configuration of M is a string αqβ where q ∈ Q, and either α = λ and
β ∈ {c} ·Σ∗ · {$} or α ∈ {c} ·Σ∗ and β ∈ Σ∗ · {$}; here q represents the current
state, αβ is the current content of the tape, and it is understood that the window
contains the first symbol of β. A restarting configuration is of the form q0cw$,
where w ∈ Σ∗.

We observe that any finite computation of an sRL-automaton M consists of
certain phases. A phase, called a cycle, starts in a restarting configuration, the
window is moved along the tape by performing move-right, move-left, and (at
least one) delete operations until a restart operation is performed and thus a new
restarting configuration is reached. If no further restart operation is performed,
each finite computation necessarily finishes in a halting configuration – such a
phase is called a tail. We assume that no delete operation is executed in a tail
computation.

We use the notation u &c
M v to denote a cycle of M that begins with the

restarting configuration q0cu$ and ends with the restarting configuration q0cv$;
the relation &c∗

M is the reflexive and transitive closure of &c
M .

An input w ∈ Σ∗ is accepted by M , if there is an accepting computation which
starts with the (initial) configuration q0cw$. By L(M) we denote the language
consisting of all words accepted by M ; we say that M recognizes (accepts) the
language L(M). By S(M) we denote the simple language accepted by M , which
consists of all words that M accepts by tail computations. Obviously, S(M)
is a regular sublanguage of L(M). By RS(M) we denote the reduction system
RS(M) := (Σ∗,&c

M , S(M)) that is induced by M . Observe that, for each w ∈ Σ∗,
we have w ∈ L(M) if and only if w &c∗

M v holds for some word v ∈ S(M).
We say that M is an sRR-automaton if M does not use any move-left steps.

By sRL (sRR) we denote the class of all sRL-automata (sRR-automata). A t-sRL-
automaton (t ≥ 1) is an sRL-automaton which uses at most t delete operations
in a cycle, and similarly we obtain the t-sRR-automaton. By L(A) we denote the
class of languages that are accepted by automata of type A (A-automata), and
by L≤n(A) we denote the class of finite languages that are accepted by automata
of type A and that do not contain any words of length exceeding the number n.

On the set of input words Σ∗, we define a partial ordering ≤ as follows:

u ≤ v if and only if u is a scattered subword of v.

By < we denote the proper part of ≤. Obviously, ≤ is well-founded, that is,
there do not exist infinite descending sequences with respect to < .

For L ⊆ Σ∗, let Lmin := {w ∈ L | u < w does not hold for any u ∈ L }, that
is, Lmin is the set of minimal words of L. It is well-known that Lmin is finite
for each language L (see, e.g., [8]). We say that an sRL-automaton M accepting
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the language L works with minimal acceptance if it accepts in tail computations
exactly the words of the language Lmin, that is, S(M) = Lmin. Thus, each word
w ∈ L � Lmin is reduced to a word w′ ∈ Lmin by a sequence of cycles of M .
We will use the prefix min- to denote sRL-automata that work with minimal
acceptance.

Here we will mainly be interested in t-sRL-automata with minimal acceptance.
In this way we will achieve similarities between certain classes of finite and infi-
nite languages recognized by sRL-automata, as an sRL-automaton with minimal
acceptance is forced to perform sequences of cycles even for accepting a regular
language. In fact, this is even true for most finite languages.

Example 1. Let t ≥ 1, and let L<t> := {at, λ}. Then L<t>
min = {λ}. Hence, an

sRL-automaton for the language L<t> that works with minimal acceptance must
execute the cycle at &c λ, which means that it must execute t delete operations
during this cycle. Hence, it is a t-sRL-automaton.

Concerning the relationship between sRR- and sRL-automata, we have the fol-
lowing important result which generalizes a corresponding result for RLWW-
automata from [10].

Theorem 1. For each integer t ≥ 1 and each t-sRL-automaton M , there ex-
ists a t-sRR-automaton M ′ such that the reduction systems RS(M) and RS(M ′)
coincide.

Observe that, in each cycle, M ′ executes its up to t delete operations strictly
from left to right, while M may execute them in arbitrary order.

Proof. Each cycle of a computation of M consists of (up to) 2t + 2 phases. In
phases 1, 3, . . . , 2i + 1, . . . , 2t + 1, M shifts its window across the tape by exe-
cuting move-left and move-right steps, in phases 2, 4, . . . , 2i, . . . , 2t, M executes
a delete operation, and in phase 2t + 2, M performs a restart step. Thus, the
sRR-automaton M ′ must guess the positions of the delete steps and the crossing
sequences of M corresponding to the move-phases. As within a move-phase M
need not visit the same tape cell twice while being in the same state, we see that
the corresponding crossing sequence is bounded in length. Hence, M ′ can indeed
guess the (up to) t + 1 crossing sequences and verify that they are consistent
with each other and with the chosen delete operations. �

Based on Theorem 1 we can describe a t-sRL-automaton by meta-instructions of
the form

(c ·E0, a1, E1, a2, E2, . . . , Es−1, as, Es · $),

where 1 ≤ s ≤ t, E0, . . . , Es are regular languages (often represented by regular
expressions), called the regular constraints of this instruction, and a1, . . . , as ∈ Σ
correspond to letters that are deleted by M during one cycle. On trying to
execute this meta-instruction starting from a configuration q0cw$, M will get
stuck (and so reject), if w does not admit a factorization of the form w =
v0a1v1a2 . . . vs−1asvs such that vi ∈ Ei for all i = 0, . . . , s. On the other hand,
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if w admits factorizations of this form, then one of them is chosen nondeter-
ministically, and q0cw$ is transformed into q0cv0v1 . . . vs−1vs$. In order to also
describe the tails of accepting computations, we use accepting meta-instructions
of the form (c · E · $,Accept), where E is a regular language. Actually we can
require that there is only a single accepting meta-instruction for M . If M works
with minimal acceptance, then this accepting meta-instruction is of the form
(c · L(M)min · $,Accept).

Example 2. Let t ≥ 1, and let LRt := { c0wc1wc2 . . . ct−1w | w ∈ {a, b}∗ }, where
Σ0 := {a, b} and Σt := {c0, c1, . . . , ct−1}∪Σ0. We obtain a t-sRR-automaton Mt

for the language LRt through the following sequence of meta-instructions:

(1) (cc0, a,Σ∗0 · c1, a,Σ∗0 · c2, . . . , Σ∗0 · ct−1, a,Σ
∗
0 · $),

(2) (cc0, b, Σ∗0 · c1, b, Σ∗0 · c2, . . . , Σ∗0 · ct−1, b, Σ
∗
0 · $),

(3) (cc0c1 . . . ct−1$,Accept).

It follows easily that L(Mt) = LRt holds, and that Mt works with minimal
acceptance. Actually, the automaton Mt is even deterministic. Observe that the
language LRt cannot be accepted by an r-sRL-automaton for any r < t. First
of all, LRt cannot possibly be accepted by tail computations only, as it is not
regular. However, by executing r < t many delete steps a word w ∈ LRt will
necessarily be transformed into a word w′ �∈ LRt, which will then not lead to
acceptance.

We emphasize the following properties of restarting automata, which are used
implicitly in proofs. They play an important role in linguistic applications of
restarting automata (e.g., for the analysis by reduction, grammar-checking, and
morphological disambiguation).

Definition 1. (Correctness Preserving Property)
A t-sRL-automaton M is (strongly) correctness preserving if u ∈ L(M) and
u &c∗

M v imply that v ∈ L(M).

Definition 2. (Error Preserving Property)
A t-sRL-automaton M is error preserving if u �∈ L(M) and u &c∗

M v imply that
v �∈ L(M).

The following facts are easily verified.

Fact 3. 1. Each t-sRL-automaton is error preserving.
2. Each deterministic t-sRL-automaton is correctness preserving.
3. There exist nondeterministic t-sRL-automata which are not correctness pre-

serving.

From the witness languages L〈t〉 of Example 1 and LRt of Example 2 we
obtain the following hierarchy results. Here the prefix det- is used to denote
deterministic automata.
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Corollary 1. For each suffix Y ∈ {sRR, sRL}, and each integer t ≥ 2,
(a) L(det-(t− 1)-Y) ⊂ L(det-t-Y) and

L((t − 1)-Y) ⊂ L(t-Y).
(b) L(min-det-(t− 1)-Y) ⊂ L(min-det-t-Y) and

L(min-(t− 1)-Y) ⊂ L(min-t-Y).
(c) L≤n(min-det-(t− 1)-Y) ⊂ L≤n(min-det-t-Y) and

L≤n(min-(t− 1)-Y) ⊂ L≤n(min-t-Y) for each n ≥ t.

Example 3. There exists a 1-sRR-automaton Mcopy that accepts the language

LR′2 := LR2 · {a, b, λ} = { c0wc1wx | w ∈ {a, b}∗, x ∈ {a, b, λ} }.

Mcopy is given through the following sequence of meta-instructions:

(1) (cc0c1$,Accept),
(2) (cc0 · ({a, b}2)∗, a, c1 · ({a, b}2)∗ · a$),
(3) (cc0 · ({a, b}2)∗, b, c1 · ({a, b}2)∗ · b$),
(4) (cc0 · ({a, b}2)∗ · c1 · ({a, b}2)∗, a, $),
(5) (cc0 · ({a, b}2)∗ · c1 · ({a, b}2)∗, b, $),
(6) (cc0 · ({a, b}2)∗ · {a, b}, a, c1 · ({a, b}2)∗ · {a, b} · a$),
(7) (cc0 · ({a, b}2)∗ · {a, b}, b, c1 · ({a, b}2)∗ · {a, b} · b$),
(8) (cc0 · ({a, b}2)∗ · {a, b} · c1 · ({a, b}2)∗ · {a, b}, a, $),
(9) (cc0 · ({a, b}2)∗ · {a, b} · c1 · ({a, b}2)∗ · {a, b}, b, $).

It is easily seen that Mcopy accepts the language LR′2 working with minimal
acceptance. On the other hand, the language LR′2 is not even growing context-
sensitive. Assume to the contrary that this language is growing context-sensitive.
Then there exists a nondeterministic shrinking two-pushdown automaton A that
accepts this language [1]. Consider the language Lcopy := {ww | w ∈ {a, b}∗ }.
Given an input x ∈ {a, b}∗, a shrinking two-pushdown automaton B can simply
insert c0 at the beginning and c1 somewhere inside the word x, producing the
word c0x1c1x2, where the position for the latter insertion is chosen nondetermin-
istically. While doing so the automaton verifies whether x is of even length. In
the negative it will reject x, in the positive case it will simulate A for the input
c0x1c1x2. This will lead to acceptance if and only if x1 = x2. Thus, the shrinking
two-pushdown automaton B accepts the language Lcopy. This, however, contra-
dicts the fact that Lcopy is not growing context-sensitive (see, e.g., [1]).

As a consequence we obtain the following incomparability results.

Theorem 2. The language classes
⋃

t∈N+
L(min-t-sRL) and

⋃
t∈N+

L(t-sRL) are
incomparable under inclusion to the class CFL of context-free languages and to
the class GCSL of growing context-sensitive languages.

Proof. Already the class L(min-1-sRR) contains a language that is not growing
context-sensitive, as shown by the example above. On the other hand, it is shown
in [4] that the context-free language L2 := { anbn | n ≥ 0 } ∪ { anbm | m >
2n ≥ 0 } is not accepted by any RRW-automaton. The argument is based on
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the observation that in each cycle an RRW-automaton M for L2 would have to
guess whether to remove a factor of the form aibi or a factor of the form aib2i

for some integer i > 0. Using pumping techniques it can then be shown that
M violates the Error Preserving Property. The same argument also works for
t-sRL-automata, that is, L2 is not accepted by any t-sRL-automaton. �

As we have seen above, t-sRL-automata accept some languages that are quite
complicated in comparison to the context-free languages. However, we do not yet
have a characterization for the expressive power of t-sRL-automata in general.
The following result shows that this question has been solved at least for the
special case of a single-letter alphabet.

Theorem 3. Let M be a t-sRL-automaton. If L(M) ⊆ {a}∗, then L(M) is
regular.

Proof. By Theorem 1 we can assume that M is a t-sRR-automaton. Further, as
M does not accept any word containing a letter other than a, we can assume
that the tape alphabet of M consists of the letter a only.

Assume that M is defined by the meta-instructions

Ii := (c ·E(i)
0 , a, E

(i)
1 , a, E

(i)
2 , . . . , E

(i)
si−1, a, E

(i)
si
· $) (1 ≤ i ≤ r)

and I0 := (c · S0 · $,Accept), where all E(i)
j and S0 are regular expressions. We

now define another t-sRR-automaton M ′ through the meta-instruction I0 and
the meta-instructions I ′i, 1 ≤ i ≤ r, where I ′i is defined as

I ′i := (c ·E(i)
0 · E(i)

1 ·E(i)
2 · · ·E(i)

si−1 ·E(i)
si
, asi → λ, $).

Here asi → λ is used as a shorthand for the fact that si copies of the symbol a
are deleted that are next to each other.

To complete the proof we establish the following two claims.

Claim 1. L(M ′) = L(M).

Proof. Obviously, M ′ and M accept the same words in tail computations. Thus,
it suffices to show that M ′ and M execute the same cycles. Assume that u &c

M v
is a possible cycle of M . Then there exists an index i ∈ {1, . . . , r} such that
the tape content c · u · $ is transformed into c · v · $ by meta-instruction Ii.
Hence, u can be factored as u = u0au1au2 . . . usi−1ausi such that uj ∈ E

(i)
j

for all 1 ≤ j ≤ si and v = u0u1u2 . . . usi−1usi . It is now immediate that by
applying meta-instruction I ′i, M

′ can execute the cycle u &c
M ′ v. Analogously, if

u &c
M ′ v by meta-instruction I ′i , then also u &c

M v by meta-instruction Ii. Thus,
the languages L(M) and L(M ′) coincide. �

Claim 2. L(M ′) = L(A) for a nondeterministic finite-state acceptor A.

Proof. We present a nondeterministic finite-state acceptor A that, given a word
w = an as input, accepts if and only if there exists a sequence of cycles

w = wm &c
M ′ wm−1 &c

M ′ · · · &c
M ′ w1 &c

M ′ w0 ∈ S0.
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For each i = 1, . . . ,m, there exists a meta-instruction I ′ji
= (c · E′ji

, asji → λ, $)
of M ′ such that wi = wi−1 · asji and wi−1 ∈ E′ji

. Thus, scanning its input tape
from left to right, A will simultaneously simulate finite-state acceptors for the
languages E′i, 1 ≤ i ≤ r, and S0. When it recognizes a prefix that belongs to
S0, then it decides nondeterministically whether this is the string w0. In the
affirmative it aborts the simulation of the finite-state acceptor for S0, guesses an
index k ∈ {1, . . . , r} such that the finite-state acceptor for E′k is now in a final
state, and continues with simulating the finite-state acceptors for the languages
E′i (1 ≤ i ≤ r) for sk steps. Then A again guesses an index k′ ∈ {1, . . . , r}
such that the finite-state acceptor for E′k′ is now in a final state, and continues,
otherwise, it halts and rejects. This process continues until A either rejects, or
until the input has been read completely. If � is the last index guessed, then A
accepts if, since passing through a final state of the finite-state acceptor for the
language E′�, exactly s� copies of the letter a have been read. It is now immediate
that L(A) = L(M ′). �

Thus, the language L(M) is regular. �

Further, we have at least the following inclusion results.

Theorem 4. DCFL ⊂
⋃

t∈N+
L(min-det-t-sRL) ⊂

⋃
t∈N+

L(min-t-sRL).

Proof. Each deterministic context-free language L is accepted by some right-
monotone deterministic RR-automatonM [4]. IfM has a window of size k, then it
can be simulated by a deterministic k-sRL-automatonM ′. M ′ scans its tape from
left to right until it detects a factor that is to be rewritten byM . Then it moves its
window back by k−1 positions, and deletes the up to k symbols that M deletes in
this cycle. By some additional cycles each word from the regular language S(M)
can then be reduced to a minimal word. Thus, DCFL ⊆

⋃
t∈N+

L(min-det-t-sRL).
The language L := { anbnc, anb2nd | n ≥ 0 }, which is not deterministic

context-free, is easily seen to be accepted by a deterministic 3-sRL-automaton
that works with minimal acceptance.

Thus, it follows that DCFL ⊂
⋃

t∈N+
L(min-det-t-sRL).

Using similar arguments as in the proof of Theorem 2 it can be shown that the
language L := { anbm | 0 ≤ n ≤ m ≤ 2n } is not accepted by any deterministic
t-sRL-automaton. However, it is accepted by the 3-sRL-automaton M that is
given through the following meta-instructions:

(c · a∗, a, {λ}, b, b∗ · $), (c · a∗, a, {λ}, b, {λ}, b, b∗ · $), (c · $,Accept).

This shows that
⋃

t∈N+
L(min-det-t-sRL) ⊂

⋃
t∈N+

L(min-t-sRL). �

3 Monotonicity

Finally we turn to the notion of monotonicity for t-sRL-automata. Let M be a
t-sRL-automaton. A configuration C = αqβ of M in which a delete operation is
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to be applied is called a delete configuration of M . The number |β| is called the
right distance of C, denoted by Dr(C), and the number |α| is the left distance
of C, denoted by Dl(C).

We say that a sequence of delete configurations S = (C1, C2, · · · , Cn) is right-
monotone if Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn), that it is left-monotone if
Dl(C1) ≥ Dl(C2) ≥ . . . ≥ Dl(Cn), and that it is right-left-monotone if it is
simultaneously right- and left-monotone. It is called j-right-monotone, j-left-
monotone or j-right-left-monotone for some integer j ≥ 1, if it can be parti-
tioned into at most j interleaved subsequences S1, S2, . . . , Sj such that each of
these subsequences is right-monotone, left-monotone or right-left-monotone, re-
spectively. A computation of M is called j-right-monotone, j-left-monotone or
j-right-left-monotone if the corresponding sequence of delete configurations is
j-right-monotone, j-left-monotone or j-right-left-monotone, respectively.

An sRL-automaton M is called t-right-monotone (t-left-monotone, t-right-
left-monotone) if it is a t-sRL-automaton and each of its computations is t-
right-monotone (t-left-monotone, t-right-left-monotone). We will use the prefixes
t-right-mon-, t-left-mon-, and t-right-left-mon- to denote the classes of t-right-, t-
left-, and t-right-left-monotone sRL-automata, respectively.

For example, the deterministic t-sRR-automaton Mt of Example 2 is t-right-
left-monotone. Concerning the j-right-, j-left-, and j-right-left-monotone (stan-
dard) RL-automata considered in [11] we have the following result.

Theorem 5. For each prefix Y ∈ {right-left-mon, right-mon, left-mon} and all
integers j, k ≥ 1, if M is a j-Y-RL-automaton with a window of size k, then
there exists a (j · k)-Y-sRL-automaton M ′ such that RS(M) = RS(M ′) holds.

Proof. Let M be a j-Y-RL-automaton over Σ with a window of size k. Then the
sequence of cycles of each computation of M can be divided into j interleaved
subsequences that are all Y-monotone. We describe an sRL-automaton M ′ that
simulates the computations of M cycle by cycle. Within its finite-state control
M ′ realizes a buffer of size k that it will use to store the content of the window
of M . When M performs a rewrite step u → v, then |u| ≤ k, and v is obtained
from u by deleting up to k symbols of u. Hence, M ′ can simulate this rewrite
step by executing up to k delete steps, each deleting a single symbol. It follows
that M ′ is a k-sRL-automaton, and that RS(M ′) = RS(M). Further, if M is
j-Y-monotone, then we consider M ′ as a (j ·k)-sRL-automaton, and it is obvious
that as such M ′ is (j · k)-Y-monotone. �

From the proof above we see that a (standard) RL-automaton with a window of
size k can be simulated by a k-sRL-automaton.

It is known that, for all three types of monotonicity, the language classes
(L(j-Y-RL))j≥1 form a strict hierarchy (see [12] Theorem 7 (a)). In fact, this
remains true when we restrict our attention to RL-automata with read/write
windows of size two. Further, it is shown in [5] that already 2-right-monotone R-
automata accept NP-complete languages. In fact, this result extends to right-left-
monotonicity, as there are even 2-right-left-monotone R-automata that accept
NP-complete languages [6]. However, as neither the proof in [5] nor the proof in
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[6] gives the size of the window of the R-automaton constructed explicitly (it is
rather large due to the encoding used), we only obtain the following complexity
result for sRL-automata.

Corollary 2. There exists an integer t ≥ 1 such that L(t-right-left-mon-sRL)
contains NP-complete languages.

4 The Gap-Complexity

Let M be a t-sRL-automaton, let w ∈ Σ∗ be an input word, and let w &c
M

w1 &c
M · · · &c

M wn be an initial part of a computation of M on input w. In
each cycle M deletes up to t symbols from the tape content of the current
restarting configuration. Instead of deleting symbols we can replace them by a
special symbol �, thus obtaining a word w′i for each i = 1, . . . , n. The word wi

is obtained from w′i by deleting all �-symbols. The gap-number of wi denotes
the number of factors from �+ that occur in w′i. The gap-number of the above
computation of M is the maximum of the gap-numbers of w1, . . . , wn. The gap-
complexity of M on input w ∈ L(M) is the minimal gap-number of M over
all accepting computations of M on input w. Finally, we say that M has gap-
complexity c, if the gap-complexity of M on each input w ∈ L(M) is at most c.

The 1-sRR-automaton Mcopy for the language LR′2 of Example 3 has gap-
complexity 2, while the deterministic t-sRR-automaton Mt of Example 2 has
gap-complexity t. Indeed, the accepting computation of Mt on the input w =
c0abac1abac2 . . . ct−1aba can be described by the following sequence of words
with �-symbols:

c0�bac1�bac2 . . . ct−1�ba, c0�2ac1�2ac2 . . . ct−1�2a, c0�3c1�3c2 . . . ct−1�3.

Observe that a part of a computation of a t-sRL-automaton M that has c gaps
in each configuration is necessarily c-right-left-monotone. In this way the gap-
complexity can be seen as a variation of the notion of j-right-left-monotonicity.
From the examples above we obtain the following hierarchy results.

Proposition 1. For all c ∈ N+, the class of languages accepted by sRL-automata
with gap-complexity c is properly contained in the class of languages accepted by
sRL-automata with gap-complexity c+ 1.

On the other hand, the t-sRL-automaton of Corollary 2, although being t-right-
left-monotone, has unbounded gap-complexity. In fact, we have the following pos-
itive result on the complexity of languages that are accepted by t-sRL-automata
with bounded gap-complexity.

Theorem 6. If M is a t-sRL-automaton with gap-complexity c, then the mem-
bership problem for the language L(M) can be solved in time O(n2c+1+min(t,2c)).

Proof. Let w ∈ Σ∗ be an input word of length n. With M , w, and the number
c we associate a graph G

(c)
M (w) = (V,E) as follows. The set V of vertices cor-

responds to the set of all words over Σ ∪ {�} of length n that can be obtained
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from w by replacing symbols from Σ by �-symbols, and that have gap-number
at most c. Within a word of length n there are

(
n+1
2c

)
positions to place c gaps.

Hence, we see that the number of vertices V is in the order of O(n2c). The vertex
w is called the initial vertex of G(c)

M (w), and a vertex v′ ∈ V is a final vertex if
the word v := ΠΣ(v′) (that is, the projection onto Σ∗) belongs to the set S(M).

Now a directed edge leads from a vertex u′ ∈ V to a vertex v′ ∈ V , if M
can execute the cycle u &c

M v, where u and v are obtained from u′ and v′,
respectively, by deleting the �-symbols. As the graph G

(c)
M (w) contains O(n2c)

many vertices, it is clear that G(c)
M (w) contains at most O(n2c) many outgoing

edges for any node. Moreover, as M can delete at most t symbols in a cycle, the
number of outgoing edges for any node cannot exceed O(nt). Thus, the graph
G

(c)
M (w) can be computed from w and c in time O(n2c+1+min(t,2c)).
Now w ∈ L(M) if and only if a final vertex v′ can be reached from the initial

vertex w in the graph G
(c)
M (w). This can be checked in time O(|V | + |E|), that

is, in time O(n2c+1+min(t,2c)). �

Thus, for t-sRL-automata, bounded gap-complexity separates those automata
that accept feasible languages from those that accept NP-complete languages.

Corollary 3. It is decidable in polynomial time whether a t-sRL-automaton M
accepts a given word w with gap-complexity at most c.

Proof. As in the proof of Theorem 6 we can associate with M , w, and the
constant c a graph G

(c)
M (w). Now M has an accepting computation for input w

with gap-complexity at most c if and only if a final vertex v′ can be reached from
the initial vertex w in the graph G

(c)
M (w). As this can be checked in polynomial

time, this proves our result. �

For a t-sRL-automaton M and an integer c ≥ 1, we can thus define the language
Lgap(M, c) := {w ∈ L(M) |M accepts w with gap-complexity at most c }.

From Corollary 3 we see that the membership problem for languages of this
form is decidable in polynomial time.

5 Analyzing Regular Languages

It is straightforward to see that each finite language is accepted by some t-sRL-
automaton working with minimal acceptance. However, as seen in Example 1
the value of t depends on the particular language considered. Also all regular
languages are accepted by t-sRL-automata. In fact, we have the following obvi-
ous result, where an sRL-automaton M is said to have the mr(k)-property if it
executes at most k right-move operations in any cycle or tail.

Theorem 7. A language L is regular if and only if there exists an integer t ≥ 1
and a deterministic t-sRL-automaton M with the mr(t)-property such that M
accepts L working with minimal acceptance.
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The above result implies in particular that all regular languages are accepted by
sRL-automata with bounded gap-complexity. It should be interesting to classify
regular languages with respect to the smallest value t for which they are accepted
in this way, and with respect to the size of the description of these automata.

Acknowledgement. The authors wish to thank Hartmut Messerschmidt for
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also want to thank an anonymous referee for a very thorough and helpful report.
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In: E. Csuhaj-Varjú, C. Kintala, D. Wotschke, G. Vaszil (eds.), DCFS 2003, Proc.,
MTA SZTAKI, Budapest, 2003, 303–312.
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Abstract. This paper addresses the longstanding problem of the recog-
nition limitations of classical LALR(1) parser generators by proposing
the usage of noncanonical parsers. To this end, we present a definition of
noncanonical LALR(1) parsers, NLALR(1). The class of grammars ac-
cepted by NLALR(1) parsers is a proper superclass of the NSLR(1) and
LALR(1) grammar classes. Among the recognized languages are some
nondeterministic languages. The proposed parsers retain many of the
qualities of canonical LALR(1) parsers: they are deterministic, easy to
construct, and run in linear time. We argue that they could provide the
basis for a range of powerful noncanonical parsers.

1 Introduction

Testimonies abound on the shortcomings of classical LALR(1) parser generators
like YACC [1]. The problem lies in the large expressivity gap between what can be
specified using the context-free grammar they are fed with, and what can actually
be parsed by the LALR(1) automaton they produce. Transforming a grammar
until its LALR(1) parser becomes deterministic is arduous, and can obfuscate
the attached semantics; moreover, some languages are simply not deterministic.

The expressivity gap vanishes when general parsers [2, 3] are preferred. Such
a choice is however done at the expense of the detection of ambiguities. While
this might seem acceptable for well established languages, for which the scrutiny
of many implementors has pinpointed all ambiguous constructs, there always
remains a risk of runtime problems if an unexpected ambiguity appears. The
avoidance of such problems is clearly a desirable guarantee, thus motivating our
option of restricting to some subclass of the unambiguous grammars.

This paper advocates an almost forgotten way of diminishing the expressivity
gap: the usage of noncanonical parsers. We apply it to LALR(1) parsing by
means of a generic construction. Therefore, we also allow immediate application
to other LR-based parsing methods.

Noncanonical parsers have been thoroughly investigated on a theoretical level
[4]. Surprisingly, there are very few practical noncanonical parsing methods, and
their formal study remains largely unexplored. Indeed, the only one of clear
practical interest is an extension to SLR(1) parsing [5]. Noncanonical parsers
are however a powerful means of reducing the expressivity gap, while still reject-
ing any ambiguous syntax. In this they can be compared to LALR(k) parsers
with k > 1 [6], or, to a larger extent, to parsers allowing unbounded regular
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lookaheads [7, 8, 9]. Like the latter, noncanonical parsers can recognize nonde-
terministic languages. The classes of grammars accepted by both methods are
incomparable in general, but the class of languages accepted by noncanonical
parsers is strictly wider than the one accepted by regular lookahead parsers [4].
And there is a winning argument in favor of noncanonical parsers: they can also
increase the size of their lookahead window, possibly to an unbounded length [10].
This point motivates our study of noncanonical LALR(1) parsers, since NSLR(1)
parsers are unfit for such extensions: their lookahead computation is not
contextual.

Also in contrast with NSLR(1), our definitions rely on a prefix equivalence re-
lation: we use the LR(0) equivalence so that the resulting parsers are LALR(1),
but coarser equivalences could just as easily be used. Our specific choice of
LALR(1) parsers can be explained by their wide adoption, their practical rele-
vance, and the existence of efficient and broadly used algorithms for their gen-
eration [11]. We express our computations in the same framework and obtain a
simple and efficient practical construction. The additional complexity of gener-
ating a NLALR(1) parser instead of a LALR(1) or a NSLR(1) one, as well as
the increase of the parser size and the overhead on parsing performances are all
quite small. Therefore, the improved parsing power comes at a fairly reasonable
price.

The paper is organized as follows: Section 2 briefly introduces noncanonical
parsing; Section 3 recalls the formal details of the canonical LALR(1) definition,
which will be extended for its noncanonical counterpart in Section 4. We refer
the interested reader to a separate research report [12] for a complete study,
including grammar classes comparisons, alternative definitions for noncanonical
LALR-based parsers, a concrete example of application, and omitted proofs.

Notation. The basic terminology, definitions, and notational conventions used
in this paper are classical [13, 14]. Our context-free grammars are reduced and
augmented to G′ = 〈N ′, T ′, P ′, S′〉 = 〈N ∪ {S′}, T ∪ {$}, P ∪ {S′→S$}, S′〉. As
usual, A,B,C, . . . denote nonterminals in N ′; a, b, c, . . . denote terminals in T ′;
u, v, w, . . . denote strings in T ′∗; X,Y, Z denote symbols in V ′; α, β, γ, . . . denote
strings in V ′∗; ε is the empty string or empty sequence; k :α is the prefix of
length k of string α. Rightmost derivations are denoted by ⇒

rm
, whereas leftmost

derivations are denoted by ⇒
lm

.

2 Noncanonical Parsing

A bottom-up parser reverses the derivation steps which lead to the terminal
string it parses. For most bottom-up parsers, including LALR ones, these deriva-
tions are rightmost, and therefore the reduced phrase is the leftmost one, called
the handle of the sentential form.

Noncanonical parsers allow the reduction of phrases which may not be han-
dles [13]. A noncanonical parser is able to suspend a reduction decision where its
canonical counterpart would not be deterministic, explore the remaining input,
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perform some reductions, resume to the conflict point and use nonterminals—
resulting from the reduction of a possibly unbounded amount of input—in its
lookahead window to infer its parsing decisions.

q1:

B→a·{a}A→a·{b, a} q5:
A→a·

q4:

D→·bD→·aD
S→A·D

S→AD·q10:

S→BC·{$}
C→C·A
A→·a
q6:

D→a·D
D→·aD

D→·b
q8:

D

a

A

S

B

A

S′→·S$
S→·BC

S→·AD

A→·a
B→·a

q11:q0:

a

C

q9:
S→B·C
C→·CA

C→·A
A→·a

q3:

C→CA·
D→b·

q12:
D→aD·

q2:
S′→S·$

accept

$

a

a
b

q7:
C→A·

b

a

D

A

(a) LALR(1) automaton

S$

AD

aDa·

aD

b

S$

BC

CAa·
a

CA

A a

a

(b) Derivation trees

Fig. 1. The conflict position in state q1 for G1

2.1 Parsing Example

Consider for instance grammar G1 with rules S→BC |AD, A→a, B→a, C→CA |
A, D→aD |b, generating the language LG1 = aa+ | aa∗b.

The state q1 in the automaton of Figure 1a is inadequate: the parser is unable
to decide between reductions A→a and B→a when the lookahead is a. We see
on the derivation trees of Figure 1b that, in order to choose between the two
reductions, the parser has to know if there is a b at the very end of the input. This
need for an unbounded lookahead makes G1 non-LR. A parser using a regular
lookahead would solve the conflict by associating the distinct regular lookaheads
a∗b and a+$ with the reductions to A and B respectively.

However, we notice that a single lookahead symbol (D or C) is enough: if the
parser is able to explore the context on the right of the conflict, and to reduce
some other phrases, then, it will reduce this context to a D or a C. When coming
back to the conflict point, it will see a D or a C in the lookahead window.

Table 1 presents a noncanonical parse for a string in LG1 . The noncanonical
machine is not very different from the canonical one, except that it uses two
stacks. The additional stack, the input stack, contains the (possibly reduced)
right context, whereas the other stack is the classical parsing stack. Reductions
push the reduced nonterminal on top of the input stack. There is no goto oper-
ation per se: the nonterminal on top of the input stack either allows a parsing
decision which had been delayed, or is simply shifted.

We will now see how to transform and extend the canonical LALR(1) parser
of Figure 1a to perform these parsing steps.
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Table 1. The parse of the string aaa by the NLALR(1) parser for G1

parsing stack input stack actions
q0 aaa$ shift

q0q1 aa$ shift
The inadequate state q1 is reached with lookahead a. The decision of reducing to
A or B can be restated as the decision of reducing the right context to D or C. In
order to perform the latter decision, we shift a and reach a state s1 where we now
expect a∗b and a∗$. We are pretty much in the same situation as before: s1 is also
inadequate. But we know that in front of b or $ a decision can be made:

q0q1s1 a$ shift
There is a new conflict between the reduction A→a and the shift of a to a position
D→a·D. We also shift this a. The expected right contexts are still a∗b and a∗$, so
the shift brings us again to s1:

q0q1s1s1 $ reduce using A→a
The decision is made in front of $. We reduce the a represented by s1 on top of the
parsing stack, and push the reduced symbol A on top of the input stack:

q0q1s1 A$ reduce using A→a
Using this new lookahead, the parser is able to decide another reduction to A:

q0q1 AA$ reduce using B→a
We are now back in state q1. Clearly, there is no need to wait until we see a completely
reduced symbol C in the lookahead window: A is already a symbol specific to the
reduction to B:

q0 BAA$ shift
q0q3 AA$ shift

q0q3q7 A$ reduce using C→A
q0q3 CA$ shift

q0q3q6 A$ shift
q0q3q6q11 $ reduce using C→CA

q0q3 C$ shift
q0q3q6 $ reduce using S→BC

q0 S$ shift, and then accept

2.2 Construction Principles

The LALR(1) construction relies heavily on the LR(0) automaton. This au-
tomaton provides a nice explanation for LALR lookahead sets: the symbols in
the lookahead set for some reduction are the symbols expected next by the LR(0)
parser, should it really perform this reduction.

Let us compute the lookahead set for the reduction A→a in state q1. Should
the LR(0) parser decide to reduce A→a, it would pop q1 from the parsing stack
(thus be in state q0), and then push q4. We read directly on Figure 1a that three
symbols are acceptable in q4: D, a and b. Similarly, the reduction B→a in q1
has {C,A, a} for lookahead set, read directly from state q3.

The intersection of the lookahead sets for the reductions in q1 is not empty:
a appears in both, which means a conflict. Luckily enough, a is not a totally
reduced symbol : D and C are reduced symbols, read from kernel items in q4 and
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q9

q12
D

b

a

a

A→a·{D, b}
B→a·{C, A}

s1 = {q5, q8}:
q1: A→a·{A, $}

D→a·D
D→·aD
D→·b

Fig. 2. State q1 extended for noncanonical parsing

q3. Conflicting lookahead a could be reduced, and later we might see a symbol
on which we can make a decision instead. Thus, we shift the lookahead symbol
a in order to reduce it and solve the conflict later. All the other symbols in
the computed lookaheads allow to make a decision, so we leave them in the
lookaheads sets, but we remove a from both sets.

Shifting a puts us in the same situation we would have been if we followed
the transitions on a from both q3 and q4, since the noncanonical generation
simulates both reductions in q1. We create a noncanonical transition from q1 on
a to a noncanonical state s1 = {q5, q8}, which will behave as the union of states
q5 and q8. State s1 will thus allow a reduction using A→a inherited from q5,
and the shifts of a, b and D inherited from q8. We therefore need to compute
the lookaheads for reduction using A→a in q5. Using again the LR(0) simulation
technique, we see on Figure 1a that this reduction would lead us to either q7
or to q11. In both cases, the LR(0) automaton would perform a reduction to C
that would lead next to q6. At this point, the LR(0) automaton expects either
the end of file symbol $, should a reduction to S occur, or an A or an a. The
complete lookahead set for the reduction A→a in q8 is thus {A, a, $}.

The new state s1 is also inadequate: with an a in the lookahead window, we
cannot choose between the shift of a and the reduction A→a. As before, we
create a new transition on a from s1 to a noncanonical state s′1 = {q5, q8}. State
q5 is the state accessed on a from q6. State q8 is the state accessed from q8 if we
simulate a shift of symbol a.

State s′1 is the same as state s1, and we merge them. The noncanonical com-
putation is now finished. Figure 2 sums up how state q1 has been transformed
and extended. Note that we just use the set {q5, q8} in a noncanonical LALR(1)
automaton; items represented in Figure 2 are only there to ease understanding.

3 LALR(1) Parsers

LALR parsers were introduced as practical parsers for deterministic languages.
Rather than building an exponential number of LR(k) states, LALR(k) parsers
add lookahead sets to the actions of the small LR(0) parser. We briefly recall
some important definitions and results on LR(0) and LALR(1) parsers.

Valid Items and Prefixes. A dotted production A→α·β of G is a valid LR(0)
item for string γ in V ′∗ if

S′⇒
rm
∗δAz⇒

rm
δαβz = γβz. (1)

If such a derivation holds in G, then γ in V ′∗ is a valid prefix.



100 S. Schmitz

The set of valid items for a given string γ in V ′∗ is denoted by Valid(γ). Two
strings δ and γ are equivalent if and only if they have the same valid items.

The valid item sets are obtained through the following computations:

Kernel(ε)={S′→·S$}, (2)
Kernel(γX)={A→αX·β | A→α·Xβ ∈ Valid(γ)}, (3)

Valid(γ)=Kernel(γ) ∪ {B→·ω | A→α·Bβ ∈ Valid(γ)}. (4)

LR(0) States. LR automata are pushdown automata that use equivalence classes
on valid prefixes as their stack alphabet Q. We therefore denote explicitly states
of a LR parser as q = [δ], where δ is some valid prefix in q the state reached
upon reading this prefix. For instance, in the automaton of Figure 1a, state q2
is the equivalence class {S}, while state q8 is the equivalence class described by
the regular language Aa∗a.

A pair ([δ], X) in Q × V is a transition if and only if δX is a valid prefix.
If this is the case, then [δX ] is the state accessed upon reading δX , thus the
notation [δX ] also implies1 a transition from [δ] on X , and [δα] a path on α.

LALR(1) Automata. The LALR(1) lookahead set of a reduction using A→α in
state q is

LA(q, A→α) = {1:z | S′⇒
rm
∗δAz and q = [δα]}. (5)

4 NLALR(1) Parsers

There is a number of differences between the LALR(1) and NLALR(1) defini-
tions. The most visible one is that we accept nonterminals in our lookahead sets.
We also want to know which lookahead symbols are totally reduced. Finally, we
are adding new states, which are sets of LR(0) states. Therefore, the objects in
most of our computations will be LR(0) states.

4.1 Valid Covers

We have recalled in the previous section that LR(0) states can be viewed as
collections of valid prefixes. A similar definition for NLALR(1) states would
be nice. However, due to the suspended parsing actions, the language of all
prefixes accepted by a noncanonical parser is no longer a regular language. This
means the parser will only have a regular approximation of the exact parsing
stack language. The noncanonical states, being sets of LR(0) states (i.e., sets of
equivalence classes on valid prefixes), provide this approximation. We therefore
define valid covers as valid prefixes covering the parsing stack language.

Definition 1. String γ is a valid cover in G for string δ if and only if γ is a
valid prefix and γ⇒∗δ. We write δ̂ to denote some cover of δ and Cover(L) to
denote the set of all valid covers for the set of strings L.

1 We always assume when writing [δX] that Valid(δX) is not the empty set.
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Remember for instance configuration q0q1‖aa$ from Table 1. This configuration
leads to pushing state s1 = {q5, q8}, where both valid prefixes (B|BC)a and
Aa∗a of q5 and q8 are valid covers for the actual parsing stack prefix aa. Thus
in s1 we cover the parsing stack prefix by (B | BC | Aa∗)a.

4.2 Noncanonical Lookaheads

Noncanonical lookaheads are symbols in V ′. Adapting the computation of the
LALR(1) lookahead sets is simple, but a few points deserve some explanations.

First of all, noncanonical lookahead symbols have to be non null, i.e. X is non
null if X⇒∗ax. Indeed, null symbols do not provide any additional right context
information—worse, they can hide it. If we consider that we always perform a
reduction at the earliest parsing stage possible, then they will never appear in a
lookahead window.

Totally Reduced Lookaheads. Totally reduced lookaheads form a subset of the
noncanonical lookahead set such that none of its elements can be further reduced.
A conflict with a totally reduced symbol as lookahead of a reduction cannot be
solved by a noncanonical exploration of the right context, since there is no hope
of ever reducing it any further.

We define here totally reduced lookaheads as non null symbols which can
follow the right part of the offending rule in a leftmost derivation.

Definition 2. The set of totally reduced lookaheads for a reduction A→α in
LR(0) state q is defined by

RLA(q, A→α) = {X | S′⇒
lm
∗zAγXω, γ⇒∗ε,X⇒∗ax, and q = [ẑα]}.

Derived Lookaheads. The derived lookahead symbols are simply defined by ex-
tending (5) to the set of all non null symbols in V .

Definition 3. The set of derived lookaheads for a reduction A→α in LR(0)
state q is defined by

DLA(q, A→α) = {X | S′⇒∗δAXω,X⇒∗ax, and q = [δ̂α]}.

We obviously have that

LA(q, A→α) = DLA(q, A→α) ∩ T ′. (6)

Conflicting Lookahead Symbols. Last, we need to compute which lookahead sym-
bols would make the state inadequate. A noncanonical exploration of the right
context is required for these symbols. They appear in the derived lookahead sets
of several reductions and/or are transition labels. However, the totally reduced
lookaheads of a reduction are not part of this lookahead set, for if they are
involved in a conflict, then there is no hope of being able to solve it.
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Definition 4. Conflicts lookahead set for a reduction using A→α in set s of
LR(0) states is defined as

CLA(s,A→α) = {X ∈ DLA(q, A→α) | q ∈ s,X �∈ RLA(q, A→α),
(q,X) or (∃p ∈ s,X ∈ DLA(p,B→β))}.

We then define the noncanonical lookahead set for a reduction using A→α in
set s of LR(0) states as

NLA(s,A→α) =
(⋃
q∈s

DLA(q, A→α)
)
− CLA(s,A→α).

We illustrate these definitions by computing the lookahead sets for the reduction
using A→a in state s1 = {q5, q8} as in Section 2.2: RLA(q5, A→a) = {A, $},
DLA(q5, A→a) = {A, a, $}, CLA(s1, A→a) = {a} and NLA(s1, A→a) = {A, $}.

4.3 Noncanonical States

We said at the beginning of this section that states in the NLALR(1) automa-
ton were in fact sets of LR(0) states. We denote by �δ� the noncanonical state
accessed upon reading string δ in V ′∗.

Definition 5. Noncanonical state �δ� is the set of LR(0) states defined by

�ε� ={[ε]} and

�δX� ={[̂̂γAX] | X ∈ CLA(�δ�, A→α), [γ̂α] ∈ �δ�} ∪ {[ϕX ] | [ϕ] ∈ �δ�}.
Noncanonical transition from �δ� to �δX� on symbol X, denoted by (�δ�, X),

exists if and only if �δX� �= ∅. Reduction (�δ�, A→α) exists if and only if there
exists a reduction (q, A→α) and q is in �δ�.
Note that these definitions remain valid for plain LALR(1) states since, in ab-
sence of a conflict, a noncanonical state is a singleton set containing the corre-
sponding LR(0) state.

A simple induction on the length of δ shows that the LR(0) states considered
in the noncanonical state �δ� provide a valid cover for any accessing string of
the noncanonical state. It basically means that the actions decided in a given
noncanonical state make sense at least for a cover of the real sentential form
prefix that is read.

The approximations done when covering the actual sentential form prefix are
made on top of the previous approximations: with each new conflict, we need to
find a new set of LR(0) states covering the parsing stack contents. This stacking
is made obvious in the above definition when we write ̂̂γAX. It means that
NLALR(1) parsers are not prefix valid, but prefix cover valid.

Throughout this paper, we use the LR(0) automaton to approximate the prefix
read so far. We could use more powerful methods—but it would not really be in
the spirit of LALR parsing any longer; see [12] for alternative methods.
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4.4 NLALR(1) Automata

Here we formalize noncanonical LALR(1) parsing machines. They are a special
case of two-stack pushdown automata (2PDA). As said before, the additional
stack serves as an input for the parser, and reductions push the reduced nonter-
minal on top of this stack. This behavior of reductions excepted, the definition
of a NLALR(1) automaton is similar to the LALR(1) one.

Definition 6. Let M = (Q∪V ∪{$, ‖}, R) be a rewriting system. A configuration
of M is a string of the form

�ε��X1� . . . �X1 . . . Xn�‖ω$

where X1 . . . Xn and ω are strings in V ∗. We say that M is a NLALR(1) au-
tomaton if its initial configuration is �ε�‖w$ with w the input string in T ∗, its
final configuration is �ε��S�‖$, and if each rewriting rule in R is of the form

– shift X in state �δ�, defined if there is a transition (�δ�, X)

�δ�‖X &shift�δ��δX�‖,
– or reduce by rule A→X1 . . .Xn of P in state �δX1 . . . Xn� with lookahead
X, defined if A→X1 . . . Xn is a reduction in �δX1 . . . Xn� and lookahead X
is in NLA(�δX1 . . . Xn�, A→X1 . . . Xn)

�δX1� . . . �δX1 . . . Xn�‖X &
A→X1 . . . Xn

‖AX.

The following rules illustrate Definition 6 on state s1 of the NLALR(1) automa-
ton for G1: s1‖a &shifts1s1‖, s1‖b &shifts1{q9}‖, s1‖D &shifts1{q12}‖, s1‖A &A→a

‖AA and
s1‖$ &A→a

‖A$.
According to Definition 6, NLALR(1) automata are able to backtrack by

a limited amount, corresponding to the length of their window, at reduction
time only. We know that noncanonical parsers using a bounded lookahead win-
dow operate in linear time [4]; the following theorem precisely shows that the
total number of rules involved in the parsing of an input string is linear in re-
spect with the number of reductions performed, which itself is linear with the
input string length. This theorem uses an output effect τ which outputs the
rules used for each reduction performed by M ; we then call (M, τ) a NLALR(1)
parser.

Theorem 1. Let G be a grammar and (M, τ) its NLALR(1) parser. If π is a
parse of w in M , then the number of parsing steps |π| is related to the number
|τ(π)| of derivations producing w in G and to the length |w| of w by

|π| = 2|τ(π)| + |w|.

Since all the conflict lookahead symbols are removed from the noncanonical
lookahead sets NLA, the only possibility for the noncanonical automaton to be
nondeterministic would be to have a totally reduced symbol causing a conflict.
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A context-free grammar G is NLALR(1) if its NLALR(1) automaton is deter-
ministic, and thus if no totally reduced symbol can cause a conflict.

4.5 Computing the Lookaheads and Covers

The LALR(1) lookahead sets that are defined in Equation (5) can be expressed
using the following definitions [11], where lookback is a relation between re-
ductions and nonterminal LR(0) transitions, includes and reads are relations
between nonterminal LR(0) transitions, and DR—standing for directly reads—is
a function from nonterminal LR(0) transitions to sets of lookahead symbols.

([δα], A→α) lookback ([δ], A), (7)
([δβ], A) includes ([δ], B) iff B→βAγ and γ⇒∗ε, (8)
([δ], A) reads ([δA], C) iff ([δA], C) and C⇒∗ε, (9)

DR([δ], A) = {a | ([δA], a)}. (10)

Using the above definitions, we can rewrite Equation (5) as

LA(q, A→α) =
⋃

(q,A→α) lookback ◦ includes∗◦ reads∗(r,C)

DR(r, C). (11)

This computation for LALR(1) lookahead sets is highly efficient. It can en-
tirely be performed on the LR(0) automaton, and the union can be interleaved
with a fast transitive closure algorithm [15] on the includes and reads relations.

Since we have a very efficient and widely adopted computation for the canon-
ical LALR(1) lookahead sets, why not try to use it for the noncanonical ones?

Theorem 2

RLA(q, A→α) = {X | X⇒∗ax, ψ⇒∗ε, C⇒ρB·ψXσ ∈ Kernel(δρB) and
(q, A→α) lookback ◦ includes∗([δρ], B)}.

This theorem is consistent with the description of Section 2.2, where we said
that C was a totally reduced lookahead for reduction B→a in q1: item S→B·C
is in the kernel of state q3 accessed by (q0, B), and (q1, B→a) lookback (q0, B).

Theorem 3. Let us extend the directly reads function of (10) to

DR([δ], A) = {X | ([δA], X) and X⇒∗ax}; then

DLA(q, A→α) =
⋃

(q,A→α) lookback ◦ includes∗◦ reads∗(r,C)

DR(r, C).

We are still consistent with the description of Section 2.2 since, using this new
definition of the DR function, DR(q0, B) is {a,C,A}.

To find the valid covers that approximate a sentential form prefix using the
LR(0) automaton and to find the LALR lookahead sets wind up being very
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similar operations. This allows us to reuse our relational computations for the
automaton construction itself, as illustrated by the following theorem.

Theorem 4. Noncanonical state �δ� is the set of LR(0) states defined by

�ε� ={[ε]} and
�δX� = {[γCX ] | X ∈ CLA(�δ�, A→α), q ∈ �δ� and

(q, A→α) lookback ◦ includes∗◦ reads∗([γ], C)}
∪ {[ϕX ] | [ϕ] ∈ �δ�}.

4.6 Practical Construction Steps

We present here a more informal construction, with the main steps leading to
the construction of a NLALR(1) parser, given the LR(0) automaton.

1. Associate a noncanonical state s={q} with each LR(0) state q.
2. Iterate while there exists an inadequate2 state s:

(a) if it has not been done before, compute the RLA and DLA lookahead
sets for the reductions involved in the conflict; save their values for the
reduction and LR(0) state involved;

(b) compute the CLA and NLA lookahead sets for s;
(c) set the lookaheads to NLA for the reduction actions in s;
(d) – if the NLA lookahead sets leave the state inadequate, meaning there

is a conflict on a totally reduced lookahead, then report the conflict,
and use a conflict resolution policy or terminate with an error;

– if CLA is not empty, create transitions on its symbols and create
new states if no fusion occurs. New states get new transition and
reduction sets computed from the LR(0) states they contain. If these
new states result from shift/reduce conflicts, the transitions from s
on the conflicting lookahead symbol now lead to the new states.

This process always terminates since there is a bounded number of LR(0)
states and thus a bounded number of noncanonical states.

Let us conclude this section with a few words on the size of the generated
parsers. Since NLALR(1) states are sets of LR(0) states, we find an exponential
function of the size of the LR(0) automaton as an upper bound on the size of the
NLALR(1) automaton. This bound seems however pretty irrelevant in practice.
The NLALR(1) parser generator needs to create a new state for each looka-
head causing a conflict, which does not happen so often. All the grammars we
studied created transitions to canonical states very quickly afterwards. Experi-
mental results with NSLR(1) parsers show that the increase in size is negligible
in practice [5].

2 We mean here inadequate in the LR(0) sense, thus no lookaheads need to be com-
puted yet.
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5 Conclusion

We have presented a construction for noncanonical LALR(1) parsers. Such
parsers are practical for some difficult syntax problems. They improve on both
noncanonical SLR(1) parsers and canonical LALR(1) parsers, and their gener-
ation is only slightly more complex while their size and their performances are
comparable.

For practical uses, we feel we would need an unbounded lookahead version of
NLALR parsers. Though the cost to pay might be a quadratic parsing time in
the worst case, the freedom offered to the grammar writer would probably be
worth it. The ability to specify coarser equivalence relations instead of the LR(0)
one would prove its usefulness in this setting where precision becomes critical.

In complement to previous theoretical work on noncanonical parsing [4], it
would be interesting to formally study practical noncanonical parsers. To this
end, we expect the concept of valid covers modulo an equivalence relation to be
a good starting point.

Acknowledgements. The author is highly grateful to Jacques Farré and Ana
Almeida Matos for their invaluable help in the preparation of this paper.
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9. Farré, J., Fortes Gálvez, J.: A bounded-connect construction for LR-regular
parsers. In Wilhelm, R., ed.: CC’01. Volume 2027 of Lecture Notes in Computer
Science., Springer (2001) 244–258
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Abstract. We study the decision properties of XML languages. It was
known that given a context-free language included in the Dyck language
with sufficiently many pairs of parentheses, it is undecidable whether
or not it is an XML language. We improve on this result by showing
that the problem remains undecidable when the language is written on
a unique pair of parentheses. We also prove that if the given language is
deterministic, then the problem is decidable; while establishing whether
its surfaces are regular turns out to be undecidable whenever the de-
terministic language is contained in the Dyck language with two pairs
of parentheses. Our results are based on a “pumping property” of what
Boasson and Berstel call the surface of a context-free language.

1 Introduction

The World Wide Web Consortium has adopted XML (Extended Markup Lan-
guage) as standard format for data exchanging on the Web. XML is a markup
language [8]: words are documents composed by text and markups called tags.
Data are represented by text and tags are used to give information about text
blocks.

Tags act as parenthesis: they can be open or closed. Each opening tag has
a unique associated closing tag, and conversely. Informally, an XML document
is “correct” if the sequence w of tags in the document is a well-formed prime
parenthesized word, that is, w belongs to the Dyck language [3] DA defined on
the set A of different tags and w cannot be decomposed as product of words
in DA. A Document Type Definition (DTD) is used to set the different types of
tags deserving to be admitted in an XML documents; a DTD also states how
tags can be nested in the document. By considering only the syntactic part,
a DTD can be view as a particular type of context-free grammar G. A XML
document d is said to be “valid” for a given DTD G if the sequence w of tags in
d belongs to the language generated by G.

The aim of [1] is the analysis of this particular class of grammars and the
corresponding class of languages, called XML-languages. In that paper the notion
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of surfaces of a language is introduced, and it is shown that this notion is a key-
concept for XML-languages. Informally, the surface of an opening tag a is the
set of sequences of opening tags that are sons of a (i.e., the tags immediately
under a that may follow a in a document before the closing tag ā is reached). A
characterization of XML-languages, based on surfaces is given in [1]: L ⊆ DA is
a XML-language iff, for every a ∈ A, the surface Sa of L is regular and L is the
maximum among the languages having Sa’s as surfaces. Moreover, some decision
problems are studied. In particular, it is shown that it is decidable whether a
context-free language is contained inDA, but it is undecidable whether a context-
free language is an XML-language, for sufficiently large A. They also prove that
it is undecidable whether the surfaces of a context-free language L ⊆ DA are
regular, for sufficiently large A, but it is decidable whether the surfaces of L
are finite.

In this paper we prove that every surface of a context-free language L ⊆ DA

satisfies the pumping lemma. This explains why it is decidable whether the sur-
faces of a context-free language are finite; a furthermore consequence is that the
surfaces of context-free language L ⊆ DA are regular if |A| = 1. So, the prob-
lem to establishing whether the surfaces of a context-free language L ⊆ DA are
regular is trivially decidable if |A| = 1. However, enough surprisingly, we prove
that the problem to establishing whether a context-free language L ⊆ DA is an
XML-language is undecidable even if |A| = 1. For |A| > 1, we prove that it is
undecidable whether a deterministic context-free language contained in DA ad-
mits regular surfaces; however, enough surprisingly, we prove that the problem to
establishing whether a deterministic context-free language is an XML-language
becomes decidable.

2 Preliminaries

In this Section we introduce concepts and notations useful through all the paper.

XML Languages. Let A be a finite set of opening tags and let A be an iso-
morphic copy of the corresponding closing tags. Set T = A∪A; a word x ∈ T ∗ is
correctly parenthesized if any opening tags is followed by a corresponding closing
tag a and, if tag a′ follows a, then a′ should be closed before a. The Dyck lan-
guage DA is the set of correctly parenthesized word x ∈ T ∗. Let Pa = aT ∗a∩DA;
the language PA =

⋃
a∈A Pa is the set of Dyck primes over A. PA is a bifix code,

i.e., no word in PA is suffix or prefix of another word in PA and every word in
DA can be univocally factorized by Dyck primes. An XML-document is a word
d over T ; it is well-formed if d ∈ PA. An XML-grammar is a system composed
by a terminal alphabet T = A ∪ A, a set of variables VA = {Xa | a ∈ A}, a
distinguished variable Xs called axiom and, for each a ∈ A, a regular language
Ra ⊂ V ∗A defining the (possible infinite) set of productions

{Xa → awa | w ∈ Ra} (in short Xa → aRaa).
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An XML-language is a language generated by an XML-grammar. It can be
proved that every XML language is a deterministic context-free language [3].
The converse does not hold.

Example 1. Ps is generated by the XML-grammar 〈A∪A, VA, Xs,P〉 where the
production rules in P are Xa → a

(∑
b∈A Xb

)∗
a; hence Ps is an XML-language;

on the contrary, if |A| > 1, then PA is deterministic contex free language that is
not an XML language.

Any word w ∈ DA satisfying w �= ε, can be univocally factorized as w =
w1 · · ·wm, where wi’s belong to PA. The type is the morphism of the sub-
monoid DA into A∗ defined by type(awā) = a for all prime awā ∈ DA. E.g.,
type(aaāābbb̄b̄bb̄aā) = abba. The trace of a prime q = awa is the type of
w: trace(q) = trace(awa) = type(w). Let Fact(L) be the set of factors of
words in L, i.e., Fact(L) = {z | yzy′ ∈ L, for some words y, y′} and let
Fa(L) = Fact(L) ∩ Pa. Let L ⊆ DA; then we call a-surface of L Sa(L) =
{trace(w) | w ∈ Fa(L)}.

Example 2. For the language L = {abnb̄n(cc̄)mā | n ≥ 1,m ≥ 0}, the surfaces
are easily seen to be Sc(L) = {ε}, Sb(L) = {b, ε} and Sa(L) = {bcm | m ≥ 0}.

Let φ be the function that associates with every language L ⊆ DA the class of
its surfaces, i.e., φ(L) = {Sa(L) | a ∈ A}.

In [1, Theorem 4.2.] is given the following characterization of XML-languages
in terms of their surfaces. It says that given a collection of regular languages
indexed by the letters of the alphabet, there exists an XML language having
this collection as set of surfaces and that this language is the largest with this
set of surfaces.

Theorem 1. L ⊆ DA is an XML-language if and only if φ(L) is a class of
regular languages and L =

⋃
{X⊆DA | φ(X)=φ(L)}X.

Reduced Words. It is well-known that a word belongs to the Dyck language
if and only if it can be reduced to the empty word through productions erasing
factors of the form aā where a ∈ A. Formally, the Dyck reduction on the alphabet
A is the semi-Thue system S defined by the rules aa→ ε, for all a ∈ A. A word
z is said irreducible with respect to S or simply irreducible when S is understood,
if it has no factor equal to aa, for every a ∈ A. Every word w ∈ T ∗ can be
reduced to an irreducible word obtained by iteratively the above rules on w.
Since this reduction is terminating and confluent, a word possesses a unique
reduced form denoted by ρ(w) and called the reduced of w. Notice that for any
factor x of words in DA, we have ρ(x) ∈ A

∗
A∗. The following lemma holds for

Dyck reductions:

Lemma 1. If x and y are irreducible words, then there exist two unique factor-
izations x = x1x2, y = y1y2 such that ρ(xy) = x1y2, |x2| = |y1| and ρ(x2y1) = ε.

Lemma 2. Let s be a suffix (resp. p a prefix) of a Dyck word and let x and y
be words in A∗. Then ρ(sp) = x̄y implies ρ(s) = x̄ and ρ(p) = y.
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We extend in natural way ρ to languages L ⊆ T ∗: ρ(L) = {ρ(w) | w ∈ L}. The
crucial observation is that ∅ �= L ⊆ DA holds if and only if ρ(L) = {ε}.

3 Pumping Lemma for Surfaces of Context-Free
Languages

In this section we prove that, if L is a context-free language and L ⊆ DA then,
for every a ∈ A, the surface Sa(L) satisfies the pumping lemma as defined for
the context-free languages. As a consequence, if |A| = 1 then Sa(L) is a regular
language.

We first recall the following technical Lemma.

Lemma 3. [1, Lemma 6.3] If there exists the derivation Y ⇒+ sY d, with vari-
able Y and words s, d ∈ (A∪A)∗, then there exist words x, y, q, p ∈ A∗ such that
p, q are conjugate (i.e., p and q have same length and p is a factor of q2) and

ρ(s) = xpx and ρ(d) = y qy.

The pair (s, d) of a derivation Y +⇒ sY d is called flat if ρ(s) = xx and ρ(d) = yy,
i.e., the word q of Lemma 3 is the empty word. The following property holds for
a flat pair (the proof is omitted)

Lemma 4. Let (s, d) a flat pair and d (resp. s) a proper factor of a Dyck prime
w, i.e., w = w′dw′′ (resp. w = w′sw′′). Then, for all integers k ≥ 0, the word
w′dkw′′ (resp. w = w′skw′′) is a Dyck prime, and type(w′dkw′′) = type(w)
(resp. type(w′skw′′) = type(w)).

Now consider a reduced context-free grammar G = 〈T =A ∪ A, {X1, . . . , XM},
P , X1〉, where P are production rules in Chomsky Normal Form. Let Lk =
{w ∈ T ∗ | Xk ⇒∗ w} and Irrk = ρ(Lk), so that L1 is the language generated by
G. We suppose that L1 ⊆ DA, or equivalently ρ(L1) = {ε}; in [1] it is proved
that |Irrk| <∞, for 1 ≤ k ≤M . The following lemma is a refinement (the proof
is omitted)

Lemma 5. For 1 ≤ k ≤ M , there are a, b, c ∈ A∗ with |a| + |b| + 2|c| ≤ 4M , ε
the maximum common prefix of a and b, and Irrk ⊆ {a wwb | w suffix of c}. In
particular, the words in Irrk have length at most 4M .

The upper bound given in the previous lemma has a consequence on the existence
of flat pairs in a given sequence of derivations. In fact, it holds the following
lemma

Lemma 6. Let Y be a nonterminal of G and

Y
+⇒ s1u1p1Y d1, · · · , Y +⇒ sfufpfY df

be a sequence of derivations in G such that each sj (resp. pj) is a suffix (resp. a
prefix) of a suitable Dyck prime, uj is a Dyck word, for 1≤j≤f , and pjsj+1 is
a Dyck prime, for 1≤ j <f . If f ≥ 4M +k, at least k pairs (sjujpj , dj)’s in the
sequence of derivation are flat.



112 A. Bertoni, C. Choffrut, and B. Palano

Proof. By applying Lemma 3, we get

(a) ρ(sjujpj) = xjγjxj and ρ(dj) = yj δjyj (b). (1)

where γj and δj are conjugate. Since ρ(sjujpj)=ρ(ρ(sj)ρ(uj)ρ(pj))=ρ(sj)ρ(pj)
holds, the equation (1.a) yields

(a) ρ(sj) = xj and ρ(pj) = γjxj (b). (2)

Hence we have the following equalities

ρ(sj+1) = ρ(pj) since pjsj+1 is a Dyck prime
= xj γj by Equation (2.b)
= ρ(sj)γj by Equation (2.a).

The last equality applied recursively implies ρ(sf ) = ρ(s1)γ1 . . . γf . Let t ∈
(A∪A)∗ be a word such that, Y ⇒∗ t, so that Y ⇒∗ sfufpf tdf . Since ρ(uf ) = ε,
it holds

ρ(sfufpf tdf ) = x1 γ1 . . . γfρ(pf tdf ).

As a consequence of Lemma 5, we have

4M ≥ |ρ(sfufpf tdf )| ≥ |γ1|+ · · ·+ |γf |.

If f ≥ 4M + k, at least k words in γ1, . . . , γf must be equal to ε. Hence the
result. �

By definition of XML languages, the surface of such a language relative to an
arbitrary letter a of the alphabet is regular. In fact, a weaker result holds for
arbitrary context-free languages included in the Dyck language, as they all satisfy
a pumping property.

Theorem 2. (pumping lemma for surfaces)
Let L ⊆ DA be a context-free language and a ∈ A. Then the surface language
Sa(L) satisfy the pumping property, i.e., there exists a positive constant H such
that every word z ∈ Sa(L), with |z| ≥ H, can be factorized as z = uvwxy such
that the following holds:
- vx �= ε,
- |vwx| ≤ H,
- uvkwxky ∈ Sa(L), for every k ≥ 0.

Proof. Let G be a grammar in Chomsky Normal Form generating L, with M
non terminal symbols. Let H be an integer whose value will be fixed later and
consider a word z = z1z2 · · · zn ∈ Sa(L) of length n ≥ H . By definition there
exists a word w = αaw1w2 . . . wnaβ ∈ L, with w1, . . . , wn primes such that
type(wj) = zj, for 1 ≤ j ≤ n. Let W be the sequence of words w1, . . . , wn.

Fix a derivation-tree of w in G and consider a suitable path in the tree starting
from the root and stopping the first time it reaches a vertex from which there
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hangs a tree generating a proper factor of an occurrence in W . Given a vertex
internal in this path, next vertex is the child which is the root of the subtree
generating a factor of w with most occurrences of words in W (either one of the
two children in case of a tie). We are interested in the terminal part of this path
starting from the first vertex under which there hangs a tree generating a factor
of w containing at most H and at least H

2 occurrences of W : let X0 . . . Xi . . . XN

be the sequence of nonterminals that are the labels of the nodes in the terminal
part. This leads to the sequence

X0
+⇒ �1X1r1
...

Xi
+⇒ �i+1Xi+1ri+1
...

XN−1
+⇒ �NXNrN

XN
+⇒ e ∈ T ∗

(3)

where �i and ri are terminal words and where one of them is empty. In particular,
�1 · · · �NerN · · · r1 is a factor of w.

X0

X1

r2

X2
�1

�3

X3

. . .

�4
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In order to obtain new derivation sequences satisfying certain desirable prop-
erties, we shall use a general method consisting of grouping successive derivation
steps. The nonterminals occurring on the left handsides define a subsequence of
X0, . . . , Xi, . . . The general form will be as follows.

X0
+⇒ �′1Xj1r

′
1 = �1 · · · �j1Xj1rj1 · · · r1

Xj1
+⇒ �′j2Xj2r

′
j2 = �j1+1 · · · �j2Xj1rj2 · · · rj1+1

...
Xjk

+⇒ �′jk+1
Xjk+1r

′
jk+1

= �jk+1 · · · �jk+1Xjk+1rjk+1 · · · rjk+1
...

(4)

In a derivation of the kind X⇒+ �Y r, we call � (r) respectively prefix (suffix)
of the derivation.

Set h = ' log H
2 ( − 1.

Claim 1. By grouping the sequence (3) we may find a sequence of length m ≥ 2h
such that each derivation has a prefix or a suffix containing at least an occurrence
of an element in W .

Indeed, the sequence is obtained following our general method. Starting from
the sequence (3) we group as few successive steps as necessary so that at each step
k ≥ 0, either �′jk+1

or r′jk+1
contains at least one occurrence of a word in W . I.e.,

j1 is the first index for which either �1 · · · �j1 or rj1 · · · r1 contains an occurrence of
a word in W , j2 > j1 is the first index for which either �j1+1 · · · �j2 or rj2 · · · rj1+1
contains an occurrence of a word in W etc . . . Let m be the length of the sequence
just defined. We now show that m ≥ 2h holds. Because of the choice of the initial
sequence (3), if cjk

is the number of occurrences of W generated by the non
terminal Xjk

, then we have the inequalities: ' cjk

2 ( ≤ cjk+1 ≤ cjk
− 1. Therefore,

we have m ≥ ' log H
2 ( = 'logH − 1( ≥ 2h which proves the claim.

Consider the tail of the previous sequence consisting of the last 2h derivations.

Xjm−2h

+⇒ �′jm−2h+1
Xjm−2h+1r

′
jm−2h+1

...
Xjm−1

+⇒ �′jm
Xjmr

′
jm

(5)

Assume without loss of generality that in the derivation sequence (5), there
exists h steps whose prefixes contain an occurrence of a word in W . Then by
grouping steps in this sequence, we may obtain a sequence of length h such that
each step has a prefix containing an occurrence of a word in W . Indeed, if a step
of (5) is such that its prefix contains an occurrence of W but the i next steps do
not, then group these i steps to the previous one.

As there exist M nonterminals, in the last derivation sequence there exists
a nonterminal which occurs at least f = ' h

M ( times, therefore by grouping

we obtain a sequence of the form Y
+⇒ �′′1Y r

′′
1 . . . Y

+⇒ �′′fY r
′′
f , where �′′1 , . . . , �′′f

contain occurrences of W . Consequently, �′′2 · · · �′′f−1 is a factor of w1 · · ·wn. Thus
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we have a sequence of the form Y
+⇒ s1u1p1Y d1 . . . Y

+⇒ sf−2uf−2pf−2Y df−2,
where Y is a nonterminal and each sj (resp. pj) is a suffix (resp. a prefix)
of a suitable prime in W , uj is a product of consecutive elements in W , 1 ≤
j ≤ f − 2, and pjsj+1 is the occurrence of W which follows uj, for 1 ≤ j <
f − 2. Furthermore, because the factor sjujpj contains an occurrence of W , we
may adopt the convention that sj is not the empty word and that pj is not an
occurrence of W .

By applying Lemma 6, if f − 2 ≥ 4M + 2, at least two pairs (siuipi, di) and
(sjujpj, dj) are flat. The factors di and dj are disjoint in w1 · · ·wnāβ, therefore
one among di and dj , say dj to fix ideas, does not contain the occurrence ā
which precedes the suffix β. Indeed, we have two cases. In case 1, dj is a factor
of w1 · · ·wn and in case 2 dj is a factor of β. In both cases for some r < l we have
sj = w′′r , pj = w′l and uj = wr+1 · · ·wl−1 where wJ = w′Jw

′′
J ∈ W , for J = r, l,

i.e., sjujpj = w′′rwr+1 · · ·wl−1w
′
l.

Since the pair (sjujpj , dj) is flat, equality (2) ensures that there exist words
x, y ∈ A∗ such that ρ(sjujpj) = x̄x and ρ(dj) = ȳy hold. This preliminary
observation allows us to establish the following two facts.

Claim 2. w′lw
′′
r is a Dyck prime and type(wr) = type(w′lw

′′
r ) (the proof is

omitted).

Claim 3. ρ((sjujpj)k) = ρ(sjujpj) and ρ((dj)k) = ρ(dj) for all integers k ≥ 0.
Trivial.

case 1: There are two subcases according to whether or not dj is a proper factor
of one of the occurrences w1, . . . , wn.

subcase 1.1: The factor dj is not a proper factor of one of the occurrences
of W . Reasoning as for sjujpj in Claim 2, we obtain that dj is of the form
w′′t wt+1 · · ·ws−1w

′
s for some t < s, some wt = w′tw

′′
t and some ws = w′sw

′′
s where

w′sw
′′
t is a Dyck prime satisfying type(wt) = type(w′sw

′′
t ). Hence the word w is

of the form
αaw1 · · ·w′rsjujpjw

′′
l · · ·w′tdjw

′′
s · · ·wnaβ

Since (sjujpj , dj) is an iterative pair, we get for all k ≥ 0

αaw1 · · ·wr−1w
′
r(sjujpj)kw′′l wl+1 · · ·wt−1w

′
t(dj)kw′′sws+1 · · ·wnaβ ∈ L.

Using Claim 3, we obtain ρ(aw1 · · ·w′r(sjujpj)kw′′l · · ·w′t(dj)kw′′s · · ·wna) =
ρ(aw1 · · ·w′rsjujpjw

′′
l · · ·w′tdjw

′′
s · · ·wna)= ε, which implies aw1 · · ·w′r(sjujpj)k

w′′l · · ·w′t(dj)kw′′s · · ·wna ∈ Fa(L). We compute

trace(aw1 · · ·wr−1w
′
r(sjujpj)kw′′l · · ·w′t(dj)kw′′s · · ·wna)

= type(w1 · · ·wr−1w
′
r(w

′′
rwr+1 · · ·wl−1w

′
l)

kw′′l · · ·w′t(w′′t · · ·ws−1w
′
s)

kw′′s · · ·wn)
= type(w1 · · ·wr−1(wrwr+1 · · ·wl−1)kwl · · · (wtwt+1 · · ·ws−1)kws · · ·wn)
= z1 · · · zr−1(zr · · · zl−1)kzl · · · zt−1(zt · · · zs−1)kzs · · · zn ∈ Sa(L).
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subcase 1.2: The factor dj is a proper factor of one of the occurrences of
W . (Omitted).

case 2: dj is a factor of β. (Omitted). �

Since each language over a unary alphabet is regular if and only if is satisfies
the pumping lemma, an immediate consequence of Theorem 2 is the following

Corollary 1. Let L ⊆ D{a} be a context-free language on {a, a}. The surface
Sa(L) is a regular language.

Proof. Since S = Sa(L) is a unary language that verifies the pumping lemma,
there exists a constant H such that, for a word an ∈ S such that n ≥ H , there
exists a constant c ≤ H satisfying an+kc ∈ S, for every k ≥ −1.

Let P = H !: if an ∈ S, then an+kP ∈ S, for every k ≥ 0. For 0 ≤ r <
P let Πr be Πr = {an ∈ S | n ≥ H, 〈n〉P = r}. If S ∩ Πr �= ∅, call nr =
min {n | an ∈ S ∩Πr}, so that S ∩ Πr = anr (aP )∗. Since S = (S ∩ a≤H) ∪⋃

S∩Πr �=∅ a
nr(aP )∗, then S is regular. �

4 Deciding Whether or Not a Language Is XML

In this section we study the problem of testing whether or not a context-free
language is an XML-language. Formally, we consider

– Context-Free XML-language (CFXA)
Instance: A context-free grammar G with alphabet A ∪A.
Question: Is the language LG generated by G an XML-language?

Notice that it is undecidable the regularity of surfaces of context-free lan-
guages contained in Dyck languages on A, if |A| is sufficiently large (see, [1]).
However, if |A| = 1, then the problem is trivially decidable (Corollary 1). In [1],
the undecidability of CFXA is shown for |A| sufficiently large. The presented
argument does not work if |A| = 1. Surprisingly, we show that CFXA is undecid-
able, even if |A| = 1, by using a reduction to the following undecidable problem:
is a context-free language on the input alphabet Σ = {0, 1} equal to Σ∗ (see,
e.g., [3, Theorem 14.4])?

Theorem 3. CFXA is undecidable for any input alphabet A �= ∅.

Proof. (Outline). Consider a context-free language L ⊆ {0, 1}∗ and the two Dyck
primes p = aā and q = aaāā on the alphabet {a, a}. Consider the morphism
ψ : {0, 1}∗ → Da satisfying ψ(0) = p and ψ(1) = q, and extend it to languages
in the natural way. The language T (L) =

(
Pa \ a{p, q}∗a

)
∪ aψ(L)a is clearly

context-free if L is.
Moreover we have L = {0, 1}∗ ⇔ ψ(L) = {p, q}∗ ⇔ aψ(L)a = a{p, q}∗a ⇔

T (L) = Pa.
We are left to prove that T (L) is XML if and only if it is equal to Pa. Since

the language Pa is XML, it suffices to check that if there exists a word in Pa not
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belonging to T (L), then T (L) is not XML. Observe that the set T (L) contains
the subset a(a3ā3)∗ā which shows that its surface is a∗. But there exists a unique
XML with a given surface, in this case it is Pa which completes the proof. �

Now, we consider deterministic context-free languages. We are interesting in the
following problem

– Deterministic Context-Free XML-language (DCFXA)
Instance: A deterministic context-free grammar G with alphabet A ∪A.
Question: Is the language LG generated by G an XML-language?

As before, we first analyze the problem of testing the regularity of surfaces
of this class of languages. We show that, if |A| > 1, the problem of testing the
regularity of surfaces of deterministic context-free languages, contained in Dyck
languages on A, remains undecidable. In what follows, we denote by Lc the
complement of the language L.

Theorem 4. Given A = {a, b}, it is undecidable whether the surfaces of a
context-free deterministic language contained in DA are regular.

Proof. Using standard tools, we consider a reduction to Post Correspondence
Problem (PCP). An instance of PCP is given by two alphabets Σ = {a1, . . . , an},
B = {b1, b2} and by two morphisms ϕ, ψ : Σ∗ → B∗. Let Lϕ = {xϕ(x) | x ∈ Σ∗},
Lψ = {xψ(x) | x ∈ Σ∗}: PCP has solution on (ϕ, ψ) if and only if Lϕ ∩Lψ �= ∅.
We recall that Lϕ ∩ Lψ are deterministic context-free, moreover Lϕ ∩ Lψ = ∅ if
and only if Lϕ ∩ Lψ is regular.

Let ξ : (Σ ∪ B)∗ → {a, b}∗ be a morphism such that ξ((Σ ∪ B)∗) is a prefix
code1 and let Lϕ = ξ(Lϕ)c. Lϕ is deterministic context free, moreover

Lϕ ∪ Lψ is regular ⇔ ξ(Lϕ) ∩ ξ(Lψ) is regular ⇔ Lϕ ∩ Lψ is regular.

Finally, consider the morphism χ : {a, b}∗ → {a, a, b, b}∗ given by χ(a) = aa,
χ(b) = bb, and let Lϕ,ψ = a2χ(Lϕ)a2 ∪ aχ(Lψ)a. It holds that Lϕ,ψ is a de-
terministic context-free language contained in the Dyck language on {a, a, b, b}.
Moreover, the surface Sa(Lϕ,ψ) = {ε, a} ∪ Lϕ ∪Lψ, hence Sa(Lϕ,ψ) is regular if
and only if Lϕ ∪ Lψ is regular if and only if PCP does not admit solutions on
(ϕ, ψ). �

Surprisingly, DCFXA is decidable for every alphabet A. In [1, Theorem 7.1.] it
was proved that it is decidable, given a regular language, whether or not it is an
XML language. So, we improve this result by showing that it is still decidable
when given a deterministic context-free language. We assume that the input
grammar is reduced in the sense that all terminal symbols of the rules have an
occurrence in a word of the language generated by the grammar.
1 We recall that L ⊆ Σ∗ is a code whenever each word in L+ can be univocally

decomposed as product of words in L. In addition:
- if, for any v, w ∈ Σ+, we have vw ∈ L ⇒ v 	∈ L, then L is a prefix code;
- if, for any v, w ∈ Σ+, we have vw ∈ L ⇒ w 	∈ L, then L is a suffix code.
L is a bifix code whenever it is both a prefix and a suffix code.
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Procedure IsDetXML
Input: a deterministic context free grammar G on alphabet A ∪A
1. if, for all a ∈ A, LG �⊆ aDAa then reject

else s = element a ∈ A such that LG ⊆ aDAa;
2. for all a ∈ A find αa, wa, βa so that αa contains no occurrence

of a or ā and that αawaβa ∈ LG and wa ∈ Fa(LG) holds;
3. if there exists a ∈ A such that

La = LG ∩ αaa(
⋃

σ∈A

wσ)∗aβa

not regular then reject;
4. construct the XML grammar

X = 〈A ∪A, {Xa | a ∈ A},P = {Xa → aRaa | a ∈ A}, Xs〉, where

Ra is a regular expression for {Xz1 · · ·Xzk
|z1 · · · zk ∈ Sa(La)};

5. if LX = LG then accept else reject.

Theorem 5. The procedure IsDetXML correctly determines whether or not a
given deterministic grammar generated an XML language.

Proof. We first justify our claim that IsDetXML is a procedure, i.e., that all
instructions are effective. This is clearly the case for instruction 1 by [1, Corollary
5.4]. Concerning instruction 2, the preliminary hypothesis guarantees that there
exists a word in the language which contains an occurrence of the letter a. Using
the pumping lemma, such a word may be assumed of length 2O(M) where M is
the number of nonterminals of a grammar in Chomsky Normal Form generating
LG. Then this word has a factorization of the form αawaβa ∈ LG and wa ∈
Fa(LG) where the word αa contains no occurrence of a or of ā. Notice that La

as defined in instruction 3 is the intersection of the deterministic context-free
LG and the regular αaa(∪σ∈Awσ)∗aβa. Therefore, by [7] it is decidable whether
La is regular and furthermore, it is also possible to construct an automaton
which recognizes it, and therefore an XML grammar as in instruction 4. Finally,
LG and LX are two deterministic context-free languages and the problem to
determine whether or not LG = LX holds is decidable by [6].

It is clear, that if the procedure returns accept then the language is XML
since the language LX is by construction XML. So we only need to prove the
converse. Assume the language is XML. The control passes to instruction 3 for
which two assertions must be verified. First we show that La and LG have the
same surface relative to the letter a which implies in particular that Sa(La) is
regular. Second, we show that the language Sa(La) is regular if and only if so is
the language La.

Concerning the first assertion, let W = {wσ}σ∈A be the set of Dyck primes
computed at instruction 2. Consider a letter b ∈ Σ and let ubwb̄v ∈ LG be
an arbitrary word, where bwb̄ is a Dyck prime. The word w decomposes into
w1w2 . . . wn where wi = aiuiai are Dyck primes, for all i = 1, . . . , n. Because
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of [1, Theorem 4.4.], the Dyck primes wi = aiuiai and wai ∈ W have the
same contexts and therefore ubwa1 . . . wan b̄v is also in the language. We use
the same argument to the Dyck primes bwa1 . . . wan b̄ and wb which shows that
αbbwa1 . . . wan b̄βb is also in the language LG, i.e., that a1 . . . an belongs to Sb(Lb).

Concerning the second assertion, write βa = vaβ
′
a where va is the longest

prefix of βa belonging to Da. Since {wa | a ∈ A} is a bifix code, La is regular
if and only if Ba = {b1 . . . bn ∈ A∗ | αaawb1 . . . wbnaβa ∈ LG} is regular. Now,
observe that we have

Sa(La)− (Ba

⋃
Sa({va})) ⊆

⋃
b∈Σ

Sa({wb})

Since the surface of a finite language is finite, we observe that Sa(La) is regular
if and only if so is La. Finally, instruction 5 is successful since an XML language
characterized by its surfaces which completes the proof. �

5 Conclusion

We have proved that establishing whether the surface of a context-free language
L ⊆ DA is regular is trivially decidable for |A| = 1. However, the problem
to establishing whether L is an XML-language is undecidable even for |A| =
1. For a deterministic context-free language L ⊆ DA, the opposite holds: the
problem to establishing whether L is an XML-language is decidable; instead, it
is undecidable whether L admits regular surfaces for |A| > 1. Hence, our results
show that the known characterization of XML languages recalled in Theorem 1
does not represent a valid tool for investigating XML property.
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Abstract. We introduce the synchronization of a pushdown automa-
ton by a sequential transducer associating an integer to each input word.
The visibly pushdown automata are the automata synchronized by an
one state transducer whose output labels are −1, 0, 1. For each trans-
ducer, we can decide whether a pushdown automaton is synchronized.
The pushdown automata synchronized by a given transducer accept lan-
guages which form an effective boolean algebra containing the regular
languages and included in the deterministic real-time context-free lan-
guages.

1 Introduction

It is well-known that the context-free languages are not closed under intersection
and complementation, and that the deterministic context-free languages are not
closed under intersection and union. Alur and Madhusudan have shown that the
languages accepted by the visibly pushdown automata form a boolean algebra
included in the deterministic real-time context-free languages [AM 04]. The no-
tion of visibly pushdown automaton is based on the synchronization between
the input symbols and the actions performed on the stack: this enforces that the
variation of the stack height is entirely characterized by the input word.

It appears that the closure results for the languages accepted by the visibly
pushdown automata are based on a geometrical property of their graphs with
regard to the stack height. This geometrical property which holds for every push-
down graph (not only visibly) was discovered by Muller and Schupp [MS 85].
A simple adaptation of their result shows that the graph of every pushdown
automaton is regularly generated by increasing stack height [Ca 95]. This reg-
ularity is described by a finite deterministic graph grammar which in n steps
of parallel rewritings, generates the graph restricted to the configurations with
stack height at most n.

In this article, we generalize the notion of synchronization to abstract from
the stack height. Towards this goal, we introduce a sequential transducer as-
sociating an integer to each input word. Provided that this transducer defines
a norm for the vertices of the pushdown graph, we show that we can decide
whether the graph can be generated regularly with regard to that norm. This
is the notion of synchronization by a transducer. For any fixed transducer, the
languages accepted by the pushdown automata synchronized by this transducer,
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are deterministic real-time context-free languages and form an effective boolean
algebra containing the regular languages.

2 Graphs and Finite Automata

By allowing labels not only on arcs but also on vertices, we define graphs as a
simple extension of automata: the vertex labelling is not restricted to indicate
initial and final vertices but it also permits to add information on vertices (e.g.
the vertices accessible from a given colour, more generally the vertices defined
by a μ-formula, . . .). First we give some notations.

Let IN be the set of non-negative integers and ZZ be the set of integers. For
any set E, we denote |E| its cardinality. For every n ≥ 0, En is the set of n
tuples of elements of E, and E∗ =

⋃
n≥0E

n is the free monoid generated by E
for the concatenation : (e1, . . ., en)·(e′1, . . ., e′n) = (e1, . . ., en, e

′
1, . . ., e

′
n). A finite

set E of symbols is an alphabet of letters, and E∗ is the set of words over E.
Any word u ∈ En is of length |u| = n and is represented by the juxtaposition
of its letters: u = u(1). . .u(|u|). The word of length 0 is the empty word ε. We
denote |u|P := |{ 1 ≤ i ≤ |u| | u(i) ∈ P }| the number of occurrences of P ⊆ E
in u ∈ E∗. For any binary relation R ⊆ E×F from E into a set F , we write also
eR f for (e, f) ∈ R, and we denote Dom(R) := { e | ∃ f, eR f } the domain of
R, and Im(R) := { f | ∃ e, eR f } the image (or the range) of R.

Now we present our notion of graph which generalizes the notion of automa-
ton. Let L and C be disjoint countable sets of symbols for respectively labelling
arcs and labelling vertices. Here a graph is simple, oriented, arc labelled in a
finite subset of L and vertex labelled in a finite subset of C. Precisely, a graph G
is a subset of V ×L×V ∪ C×V where V is an arbitrary set such that its vertex set

VG := { p | ∃ a, q, (p, a, q) ∈ G ∨ (q, a, p) ∈ G } ∪ { p | ∃ c, (c, p) ∈ G }
is finite or countable, with its vertex label set or colour set

CG := { c ∈ C | ∃ p, (c, p) ∈ G } is finite,

and its arc label set or label set

LG := { a ∈ L | ∃ p, q, (p, a, q) ∈ G } is finite.

Any (p, a, q) of G is a labelled arc of source p, of goal q, with label a, and is
identified with the labelled transition p

a−→
G

q or directly p
a−→ q if G is under-

stood. Any (c, p) of G is a vertex p labelled by c and is also written c p if G is
understood. We denote VG,i := { p | i p ∈ G } the set of vertices of G labelled
by the colour i ∈ C.

A graph is deterministic if distinct arcs with the same source have distinct
labels:

r
a−→ p ∧ r

a−→ q =⇒ p = q .

Note that a graph G is finite if and only if it has a finite vertex set VG . For
instance {r b−→ p , p

a−→ s , p
b−→ q , q

a−→ p , q
b−→ s , i r , g p , h p , f s , f t} is
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a finite graph of vertices p, q, r, s, t, of colours i, f, g, h, and of (arc) labels a, b.
It is represented below.

b

a

i

h

g f

f

b

a b

(r)

Note that a vertex r is depicted by a dot named by (r) where parentheses are
used to differentiate a vertex name with a vertex label (a colour).

For any p ∈ VG, d+(p) := |{ (a, q) | p a−→ q }| and d−(p) := |{ (q, a) | q a−→ p }|
are respectively the out-degree and the in-degree of p ; d(p) := d+(p) + d−(p) is
the degree of p and dG := sup{ d(p) | p ∈ VG } is the degree of G.

A graph is of finite degree (or locally finite) if d(p) < ω for any vertex p ; a
graph G is of bounded degree (or locally bounded) if dG < ω .

A graph G without vertex label i.e. CG = ∅ is called an uncoloured graph.
The restriction (or the induced subgraph) of a graph G to a vertex subset P is

G|P := { p a−→
G

q | p, q ∈ P } ∪ { c p ∈ G | p ∈ P }.
Any tuple (p0, a1, p1, . . ., an, pn) such that n ≥ 0 and p0

a1−→ p1 . . . pn−1
an−→ pn ,

denoted also by the word p0a1p1. . .anpn (which have a sense if VG ∩ L∗G = ∅),
is a path from p0 to pn labelled by u = a1. . .an , and we write p0

u=⇒
G

pn or

directly p0
u=⇒ pn if G is understood; for n = 0, the path p0

ε=⇒
G

p0 is reduced

to p0 ∈ VG . For any U ⊆ L∗, we write p U=⇒ q if p u=⇒ q for some u ∈ U . We

also write p =⇒
G

∗ q if p L∗
=⇒

G
q.

We say that a vertex r is a root of G if every vertex p is accessible from r :
r =⇒∗ p. The accessible subgraph G/p := G|{ q | p =⇒∗ q } of a graph G from a

vertex p is the restriction of G to the vertices accessible from p.
Given a graph G and vertex sets P,Q ⊆ VG , we denote L(G,P,Q) the

language of path labels from vertices in P to vertices in Q :
L(G,P,Q) := { u | ∃ p ∈ P ∃ q ∈ Q p

u=⇒
G

q } .

Given colours i, f ∈ C, we define L(G, i, f) := L(G, VG,i , VG,f ) the path labels
from the set VG,i of vertices labelled by i to the set VG,f of vertices labelled by f .

For instance taking the previous graph, its path labels from i to f is b(ba)∗

(a+ bb).
So a finite graph G with two colours i and f is a finite automaton recognizing

the language L(G, i, f). The family

Rat(T ∗) := { L(G, i, f) | |G| < ω ∧ i, f ∈ C }
of languages over T recognized by the finite automata coincides with the family
of rational languages (or regular languages). So the finite graphs describe the
structures of the rational languages and permit to derive properties on these
languages. For the context-free languages which are the languages recognized by
the pushdown automata, their graphs are generated by the deterministic graph
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grammars which are also really powerful to get properties on these languages.
Our purpose is to use the deterministic graph grammars in order to describe
geometrically the notion of visibly pushdown automata and to get in this way a
natural generalization.

3 Graph Grammars and Pushdown Automata

A pushdown automaton is a particular case of a word rewriting system where
the rules are only applied by prefix. By restriction to rational vertex sets, the
pushdown automata and the word rewriting systems define the same (prefix)
graphs which are the graphs of bounded degree and regular in the sense that they
can be generated by a deterministic grammar [Ca 90]. We extend this result to
the pushdown automata which are in a weak form used by the visibly pushdown
automata (cf. Theorem 3.1). We recall that the graphs of the pushdown automata
are regular by increasing length (cf. Proposition 3.2).

We fix an alphabet T of terminals. Recall that a labelled word rewriting system
R is a finite subset of N∗×T×N∗ for some alphabet N of non-terminals i.e. is
a finite uncoloured graph of (arc) labels in T and whose vertices are words over
N . The graph:

G·P := { uw a−→ vw | u a−→
G

v ∧ w ∈ P }
is the right concatenation of any graphG ⊆ N∗×T×N∗ by any language P ⊆ N∗.
Rewritings of a system are generally defined as applications of rewriting rules
in every context. On the contrary, we are here concerned with prefix rewriting
[Bü 64]. The prefix transition graph of R is the uncoloured graph R·N∗ which
is of bounded degree and has a finite number of non isomorphic connected com-
ponents.

A subclass of labelled word rewriting systems is the standard model of real-
time pushdown automata. A pushdown automaton R (without ε-rule) is a finite
set of rules of the form:

pA
a−→ qU with p, q ∈ Q, A ∈ P, U ∈ P ∗, a ∈ T

where P and Q are disjoint alphabets of respectively pushdown letters and states.
The transition graph ofR is R·P ∗ = { pAV a−→ qUV | pA a−→

R
qU ∧ V ∈ P ∗ }

the restriction of the prefix transition graph R·(P ∪ Q)∗ of R to the rational
set QP ∗ of configurations.

A strong way to normalize the rules of pushdown automata is given by a weak
pushdown automaton R which is a finite set of rules of the following form:

p
a−→ q or p

a−→ qA or pA
a−→ q with p, q ∈ Q, A ∈ P, a ∈ T .

Its transition graph R·P ∗ is isomorphic to S·P ∗⊥ where ⊥ is a new
pushdown letter (the bottom of the stack) and S is the following pushdown
automaton:

S = { pA a−→ qA | p a−→
R

q ∧ A ∈ P ∪ {⊥} }
∪ { pB a−→ qAB | p a−→

R
qA ∧ B ∈ P ∪ {⊥} } ∪ { pA a−→ q | pA a−→

R
q }.



124 D. Caucal

The labelled word rewriting systems and the weak pushdown automata define
the same prefix transition graphs, hence also for the pushdown automata which
are intermediate devices.

Theorem 3.1 The transition graphs of weak pushdown automata,
the transition graphs of pushdown automata,
the prefix transition graphs of labelled word rewriting systems,

have up to isomorphism the same
accessible subgraphs: the rooted regular graphs of bounded degree,
connected components: the connected regular graphs of bounded degree,
rational restrictions: the regular graphs of bounded degree.

This theorem has been first established in [Ca 90] and completed in [Ca 95] but
without considering the weak pushdown automata.

It remains to recall what is a regular graph and more exactly to reintroduce the
notion of a deterministic graph grammar to generate a graph. Such a generation
needs to use non-terminal arcs linking several vertices and called hyperarcs.

Let F be a set of symbols called functions, graded by a mapping � : F −→ IN
associating to each function f its arity �(f), and such that

Fn := { f ∈ F | �(f) = n } is countable for every n ≥ 0,

with F1 = C and F2 = L.
A hypergraph G is a subset of

⋃
n≥0 FnV

n where V is an arbitrary set such
that

its vertex set VG := { p ∈ V | FV ∗pV ∗ ∩G �= ∅ } is finite or countable,
its label set FG := { f ∈ F | fV ∗ ∩G �= ∅ } is finite.
Any fv1. . .v�(f) ∈ G is a hyperarc labelled by f and of successive vertices

v1, . . ., v�(f) ; it is depicted for �(f) ≥ 2 as an arrow labelled f and successively
linking v1, . . ., v�(f) :

f

(v1) (v2) (v�(f))

The transformation of a hypergraph G by a function h from VG into any set
V is the graph h(G) := { fh(v1). . .h(v�(f)) | fv1. . .v�(f) ∈ G }. Note that the
graphs are the hypergraphs whose any label is of arity 1 or 2 : any arc p a−→ q
corresponds to the hyperarc apq.

A graph grammar R is a finite set of rules of the form fx1. . .x�(f) −→ H where
fx1. . .x�(f) is a hyperarc joining pairwise distinct vertices x1 �= . . . �= x�(f) and
H is a finite hypergraph. The labels of the left hand sides form the set NR of
non-terminals of R :

NR := { X(1) | X ∈ Dom(R) },
and the labels of R which are not non-terminals form the set TR of terminals :

TR := { X(1) �∈ NR | ∃ P ∈ Im(R), X ∈ P }.
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Any graph grammar R is used to generate graphs of arc labels in T hence
we assume that TR ⊂ T ∪ C. We will use capital letters for the non-terminals
and small letters for the terminals. Starting from any non-terminal hyperarc, we
want to generate by a graph grammar a unique graph up to isomorphism. So
we restrict any graph grammar to be deterministic : there is only one rule per
non-terminal. For instance taking A ∈ F0 , B ∈ F3 , a, b, c ∈ T and i, f ∈ C, the
following two rules:

A −→ {ip , fr , Bpqr} ; Bxyz −→ {axp , bxy , cqy , byz , crz , Bpqr}
constitute a deterministic graph grammar which is represented below:

;

a

c

c

i

f

A B B B

b

b

(x) (x)

(y) (y)

(z) (z)

For any (deterministic graph) grammar R, the rewriting −→
R

is the binary
relation between hypergraphs defined by M −→

R
N if we can choose a non-

terminal hyperarc X = As1. . .sp in M and a rule Ax1. . .xp −→ H in R to
replace X by H in M :

N = (M −X) + h(H)

for some function h mapping xi to si, and the other vertices of H injectively to
vertices outside of M ; this rewriting is denoted by M −→

R, X
N . The rewriting −→

R, X

of a hyperarc X is extended in an obvious way to the rewriting −→
R, E

of any set

E of non-terminal hyperarcs. A complete parallel rewriting =⇒
R

is the rewriting
according to the set of all non-terminal hyperarcs: M =⇒

R
N if M −→

R, E
N where

E is the set of all non-terminal hyperarcs of M .
For instance, the first three steps of the parallel derivation from the hyper-

graph {A} according to the above grammar are depicted in the figure below.

=⇒=⇒ =⇒
a

c

c

f

i
a

c

c

a

c

c
BA B B

i

f

i

f

b

b

b

b

b

b

Let [H ] := H ∩ (CVH ∪ TVHVH) be the set of terminal arcs and of coloured
vertices of any hypergraph H .

A regular graph, also called a hyperedge replacement equational graph [Co 90],
is a graphG generated by a hypergraph grammarR from a non-terminal hyperarc
X . More formally, G is isomorphic to a graph in the following set Rω(X) of
isomorphic graphs:

Rω(X) := {
⋃

n≥0[Hn] | H0 = X ∧ ∀ n ≥ 0, Hn =⇒
R

Hn+1 } .

For instance by continuing infinitely the previous derivation, we get the infinite
graph:
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a

c

c

a

c

c

a

c

c

i

f

b

b

b

b

b

b

b

b

In particular any regular graph of finite degree is of bounded degree.
The regular graphs trace the context-free languages: for any regular graph G

(not necessarily bounded) and for any colours i, f ∈ C, L(G, i, f) is a context-
free language and by Theorem 3.1, the converse is true. Graph grammars are
suitable to deduce the pumping lemma, or to prove the Parikh lemma. Here we
will use graph grammars to describe geometrically the notion of visibly pushdown
automaton and to extend it.

A regular graph can be generated by several grammars. For instance instead of
generating the previous graph by ‘vertical slides’, we can generate it by ‘diagonal
slides’ using the following grammar:

; ;A C
b

a

b

c

f

Bb

i
a

B

a

c

c
C

b

b

C

(x)(x)
(x)(x)

(z)(z)

(y)(y)
(y)(y)

We specify the regularity of a graph G according to a mapping g from VG into
IN. Precisely for every n ≥ 0, we define the graph Gg,n of the first n levels of G
according to g by

Gg,n := { p a−→
G

q | g(p) < n ∨ g(q) < n } ∪ { c p ∈ G | g(p) < n } .

We say that a graph G is regular by g if there exists a grammar R and a non-
terminal hyperarc I such that for any parallel derivation I =⇒

R

n H , the set of

terminal arcs of H is [H ] = Gg,n and its vertex set of its non-terminal hyperarcs
is VH−[H] which is included in

{ p ∈ VG | g(p) = n } ∪ { p ∈ VG | g(p) > n ∧ ∃ q (p ←→ q ∧ g(q) < n) }

with the notation p ←→ q for ∃ a, p a−→ q ∨ q
a−→ p.

So any graph regular by some mapping is of bounded degree.
We consider the regularity of the transition graph R·P ∗ of any pushdown

automaton R according to the stack height |U | of any configuration pU where
p ∈ Q is a state and U ∈ P ∗ is a pushdown word. When R is weak then R·P ∗ is
regular by stack height with the grammar reduced to this unique rule:

Zq1. . .qn −→ R ∪ { Z(q1A). . .(qnA) | A ∈ P } for {q1, . . . , qn} = Q.

By synchronisation product of this rule with any finite automaton, we deduce
that any rational restriction of the transition graph of any weak pushdown au-
tomaton is regular by stack height (or by length). This result is extended to any
pushdown automaton.

Proposition 3.2 The rational restrictions of the prefix transition graphs of la-
belled word rewriting systems are regular by length.
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This proposition has been established for any morphism [Ca 95].
We can now present a geometrical description of the visibly pushdown au-

tomata, and its extension by synchronization with a sequential transducer with
integer output.

4 Visibly Pushdown Automata

We present the visibly pushdown automata defined in [AM 04] with the main
result (cf. Theorem 4.1), and we consider the regularity of their transition graphs
by stack height.

The visibly pushdown automata are given according to a splitting of the alpha-
bet T of terminals into three disjoint alphabets T-1, T0, T1 to indicate respectively
the letters allowed to pop the topmost stack symbol, to unchange the stack, and
to push a symbol on the stack. A visibly pushdown automaton R is a finite set
of rules of the following form:

pA
a−→ q or p

b−→ q or p
c−→ qA or p⊥ a−→ q⊥

with p, q ∈ Q, A ∈ P, a ∈ T-1 , b ∈ T0 , c ∈ T1 , where P,Q, {⊥} are disjoint alpha-
bets of respectively pushdown letters, of states and of the bottom of the stack.
The transition graph of R is R·P ∗⊥ and the language L(R·P ∗⊥ , I⊥ , FP ∗⊥)
recognized from a set I ⊆ Q of initial states to a set F ⊆ Q of final states is a
visibly pushdown language.

For instance taking a ∈ T1 , c ∈ T0 , b ∈ T-1 , the language { ancbn | n ≥ 0 } is
a visibly pushdown language and the Lukasiewicz language i.e. the language
L(G,A) generated by the context-free grammar G = {A −→ aAA , A −→ b},
is also a visibly pushdown language. But the language { anban | n ≥ 0 } and
the language L(G,A) generated by the grammar G = {A −→ aAAA , A −→ b}
are not visibly pushdown languages for any partition of T in T-1 , T0 and T1 . So
the visibly pushdown languages are not preserved in general by morphism and
inverse morphism.

Any rational language over T is a visibly pushdown language according to any
partition T = T-1 ∪ T0 ∪ T1 : for any finite T -graph H and any I, F ⊆ VH , the
rational language L(H, I, F ) = L(R·P ∗⊥ , I⊥ , FP ∗⊥) for P = {A} reduced to
a unique pushdown letter A and for the following visibly pushdown automaton:

R = { p a−→ qA | p a−→
H

q ∧ a ∈ T1 } ∪ { p
a−→ q | p a−→

H
q ∧ a ∈ T0 }

∪ { pA a−→ q | p a−→
H

q ∧ a ∈ T-1 } ∪ { p⊥
a−→ q⊥ | p a−→

H
q ∧ a ∈ T-1 }.

The family of visibly pushdown languages is an extension of the regular lan-
guages with same basic closure properties.

Theorem 4.1 [AM 04] For any partition of the input letters, the class of vis-
ibly pushdown languages is a subfamily of deterministic real-time context-free
languages, and is an effective boolean algebra closed by concatenation and its
transitive closure.
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In particular the universality problem and the inclusion problem are decidable
for the visibly pushdown languages. For any visibly pushdown automaton R and
by discarding the rules p⊥ a−→ q⊥ (for a ∈ T-1), note that

pU
u=⇒

R·P ∗ qV =⇒ |V | − |U | = |u|T1
− |u|T-1

which implies the following first key point:

|u|T1
− |u|T-1

= |v|T1
− |v|T-1

= |U | for any u, v ∈ L(R·P ∗, I, pU).

A second key point is given by Proposition 3.2 : any rational restriction of
R·P ∗ can be generated by a graph grammar S by stack height. We will see that
these two key points are sufficient to establish Theorem 4.1 (without the closure
by concatenation and its transitive closure). These two key points indicate that
the weak form of a visibly pushdown automaton is inessential. We need that the
transition graph G restricted to the configurations accessible from a given set I,
satisfies the property that for every vertex s, any label u of a path from I to s
has the same value |u|T1

− |u|T-1
(first key point) called the norm of s, and that

G is regular by norm (second key point). Note that the norm of a vertex can be
negative which allows to discard the rules of the form p⊥ a−→ q⊥ . Finally we
will generalize the visibility defined by the partition T = T-1 ∪ T0 ∪ T1 to any
sequential transducer from T ∗ into ZZ.

5 Synchronized Pushdown Automata

The synchronization of pushdown automata over T is done according to a se-
quential transducer A from T ∗ into ZZ. The synchronization by A is defined for
the regular graphs of bounded degree which are by Theorem 3.1 the rational re-
strictions of the transition graphs of pushdown automata. It is decidable whether
a regular graph is synchronized by A (cf. Proposition 5.4), and the traces of the
graphs synchronized by A form an effective boolean algebra of deterministic real-
time context-free languages containing the rational languages (cf. Theorem 5.8).

We fix a colour i ∈ C to indicate initial vertices.
A sequential transducer (or generalized sequential machine) from the free

monoid T ∗ into the additive monoid ZZ is a finite graph A of label set LA ⊂ T×ZZ
and of colour set CA = {i} such that A is input deterministic:

p
(a,x)−→

A
q ∧ p

(a,y)−→
A

r =⇒ x = y ∧ q = r

i p , i q ∈ A =⇒ p = q (a unique state is coloured by i).

A (sequential) transducer A realizes the transduction

L(A, i, VA) = { (u,m) | ∃ s, t, i s ∈ A ∧ s
(u,m)
=⇒

A
t }

of the label set of the paths from the vertex coloured by i to any vertex, for the
operation

(u,m).(v, n) := (uv,m+ n) for every u, v ∈ T ∗ and m,n ∈ ZZ.
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For instance taking a unique state r, the transducer {i r , r (a,1)−→ r , r
(b,−1)−→ r}

represented in the next figure, realizes { (u , |u|a − |u|b) | u ∈ {a, b}∗ }.
For any (sequential) transducer A, we denote L(A):=Dom(L(A, i, VA)) its first
projection, and we say that A is complete if L(A) = T ∗. For any word u ∈ L(A),
there is a unique integer ‖u ‖

A
called the norm of u in A such that (u, ‖u ‖

A
) ∈

L(A, i, VA).
A transducer A is visible if it has a unique state, is complete and the value of

any arc can be only −1, 0, 1 : |VA| = 1 , LA ⊆ T×{−1, 0, 1} and Dom(LA) = T ;
in that case for any i ∈ {−1, 0, 1}, Ti = { a | (a, i) ∈ LA }.

We say that a graph G is compatible with a transducer A if for any vertex s of
G, there is a path from (a vertex coloured by) i to s and the labels of the paths
from i to s are in L(A) and have the same norm:

∅ �= L(G, i, s) ⊆ L(A) ∧ u, v ∈ L(G, i, s) =⇒ ‖ u ‖
A

= ‖ v ‖
A

;

in that case we denote ‖ s ‖
A

:= ‖u ‖
A

for any u ∈ L(G, i, s). In the next figure,

f

a

b

a

b

a

b

a

b

i i

compatible with (a, 1) (b, −1)

we have a graph G compatible with a visible transducer for T = {a, b} ; note
that L(G, i, f) = { u ∈ T ∗ | |u|a = |u|b } is not a visibly pushdown language.
For G compatible with A and H ⊆ G, H is compatible with A. Let us give
another fact.

Lemma 5.1 For any regular graph G and any transducer A,

GA := { s (a,x)−→ t | s a−→
G

t ∧ ∃ p, q, p (a,x)−→
A

q ∧ i
Dom(L(A,i,p))

=⇒
G

s } ∪
(
G ∩ CVG

)
is a regular graph, and we can decide whether G is compatible with A.

Here are represented by increasing norm two regular graphs of finite degree which
are compatible with the previous visible transducer.

a
i

b b b

b bb

a

a a

a

f f f

i
f

iG : H :a f a f a af f

a

b

a

b

f

a

a

a

b

a

b

f

a

a

a

b

a

b

f

a

a

Their languages L(G, i, f) = { anbn | n ≥ 0 }a∗ and L(H, i, f) = a∗{ bnan | n
≥ 0 } give by intersection the language { anbnan | n ≥ 0 } which is not context-
free, hence is not the language between colours of a regular graph. We now
discard the graph H because we cannot generate it by increasing norm: we
would need non-terminal hyperarcs having an infinite number of vertices.

We say that a graph is synchronized by a transducer A if it is compatible with
A and regular by the absolute value of the norm ‖ ‖

A
.



130 D. Caucal

The graph above Lemma 5.1 is generated by increasing norm with the follow-
ing grammar:

; ; ;A
f

i
B

B a

b

C a

b

D C a

b

C D a

b

D

(x)(x) (x) (x) (x) (x)

Let us give a graph synchronized by A with the same path labels.

Lemma 5.2 For any transducer A, the following graph:
−→
A := { (p, n) a−→ (q, n+ x) | p (a,x)−→

A
q ∧ n ∈ ZZ } ∪ { i (p, 0) | i p ∈ A }

is synchronized by A and L(G, i, VG) = L(A).

Let us give a simple characterization of the regular graphs which are synchro-
nized. We say that any graph G compatible with a transducer A is finitely com-
patible with A if for every integer n ∈ ZZ, the vertex set { s ∈ VG | ‖ s ‖

A
= n }

is finite. By definition, any synchronized graph by A is regular and finitely com-
patible with A ; the converse is true.

Proposition 5.3 For any transducer A,
G is synchronized by A ⇐⇒ G is regular and finitely compatible with A.

This permits to extend the decidability of Lemma 5.1 to the synchronization
problem.

Proposition 5.4 For any transducer A, we can decide whether a regular graph
G is synchronized by A, and in the affirmative, we can construct a graph gram-
mar generating G by increasing norm ‖ ‖

A
.

In particular we can decide whether a regular graph is visibly synchronized (we
have only a finite number of visible transducers). We fix another colour f ∈ C
to indicate final vertices. The visibly pushdown languages are extended to any
transducer A : a synchronized language by A is L(G, i, f) for some graph G
synchronized by A. Let us give basic examples of synchronized languages.

Example 5.5 The languages synchronized by a transducer A such that LA ⊆
T×{0} are all the rational languages included in L(A).

Example 5.6 Taking m ≥ 0, the language Lm := L(G,X) generated by the
context-free grammar G = {X −→ aXm , X −→ b} is synchronized by the trans-

ducer A = { i p , p (a,m−1)−→ p , p
(b,−1)−→ p }. This transducer has a unique state, and

it is visible for m = 0 (L0 = {a, b}), for m = 1 (L1 = a∗b) and for m = 2 (L2 is
the Lukasiewicz language). For m > 2, Lm is not a visibly pushdown language.
The language { u ∈ {a, b}∗ | |u|b = (m− 1)|u|a } is also synchronized by A.
More generally for m,n ≥ 0, Lm,n := { u ∈ {a, b}∗ | m |u|a = n |u|b } is a

language synchronized by { i p , p (a,m)−→ p , p
(b,−n)−→ p }.

For m,n > 0, Lm,n is not a visibly pushdown language in the sense of [AM 04].
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Example 5.7 The linear language { ucũ | u ∈ {a, b}∗ } for ũ the mirror of u,

is synchronized by { i p , p (a,1)−→ p , p
(b,1)−→ p , , p

(c,0)−→ q , q
(a,−1)−→ q , q

(b,−1)−→ q }. Such
a language cannot be synchronized by an one state transducer: we need several
integers for the labels a and b (here 1 and −1).

We establish effective closure properties of the synchronized languages by A as
for the rational languages: we apply the classical constructions on finite automata
to the graph grammars generating by ‖ ‖

A
. By synchronization product of

−→
A by

any finite automaton, we deduce that any rational language included in L(A) is
synchronized byA. By disjoint union of two graph grammars generating by ‖ ‖

A
,

we deduce that the intersection of two synchronized languages by A remains
synchronized. By synchronization product of two graph grammars generating by
‖ ‖

A
, we obtain that the intersection of two synchronized languages by A remain

synchronized. Finally by a determinization of any graph grammar generating by
‖ ‖

A
, we show that any synchronized language is deterministic context-free, and

its complement with respect to L(A) remains synchronized.

Theorem 5.8 For any transducer A, the class of synchronized languages con-
tains all the rational languages in L(A), is a subfamily of deterministic real-time
context-free languages, and is an effective boolean algebra with respect to L(A).

This generalization of the visibly pushdown automata has permitted to work
with unrestricted pushdown automata (the synchronization is independent of
the length of the words in the rules), and by allowing any integer and several
states (instead of −1, 0, 1 and a unique state). This paper also indicates that the
deterministic graph grammars can be a powerful tool to investigate properties
of context-free languages.

Thanks to Christof Löding for a survey on the visibly pushdown automata
which has been at the origin of this paper. The first half part of this paper has
been done during a stay in Udine; many thanks to Angelo Montanari for his
invitation. The second half part of this paper has been done during a stay in
Aachen; many thanks to Wolfgang Thomas for his support. Thanks to Arnaud
Carayol for his help in the drafting of this paper.
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Abstract. Pushdown automata using a limited and unlimited amount
of nondeterminism are investigated. Moreover, nondeterministic steps
are allowed only within certain contexts, i.e., in configurations that meet
particular conditions. The relationships of the accepted language families
with closures of the deterministic context-free languages (DCFL) under
regular operations are studied. For example, automata with unbounded
nondeterminism that have to empty their pushdown store up to the initial
symbol in order to make a guess are characterized by the regular closure
of DCFL. Automata that additionally have to reenter the initial state are
(almost) characterized by the Kleene star closure of the union closure of
the prefix-free deterministic context-free languages. Pushdown automata
with bounded nondeterminism are characterized by the union closure of
DCFL in any of the considered contexts. Proper inclusions between all
language classes discussed are shown. Finally, closure properties of these
families under AFL operations are investigated.

1 Introduction

One of the central questions in automata theory asks for the power of non-
determinism in bounded-resource computations. Traditionally, nondeterministic
devices have been viewed as having as many nondeterministic guesses as time
steps. The studies of this concept of unlimited nondeterminism led, for example,
to the famous open LBA-problem or the unsolved question whether or not P
equals NP. In order to gain further understanding of the nature of nondeter-
minism, in [3, 12] it has been viewed as an additional limited resource at the
disposal of time or space bounded computations. The well-known proper inclu-
sion between the deterministic and nondeterministic real-time multitape Turing
machine languages is refined by showing an infinite hierarchy between the de-
terministic real-time Turing machine languages and the languages acceptable by
real-time Turing machines whose number of nondeterministic steps is logarithmi-
cally bounded. In [14] this result is further generalized to arbitrary dimensions,
and extended to time complexities in the range between real time and linear
time.
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In [2] limited nondeterminism is added to deterministic complexity classes
independent of the computational model for the class. For these Guess-and-
Check models the nondeterministically chosen bits are appended to the input. If
for some choice this extended input belongs to the deterministic complexity class,
then the original input is accepted. A good survey of limited nondeterminism
reflecting the state-of-the-art at its time is [4].

Extensive investigations are also done on limited nondeterminism in the con-
text of finite automata and pushdown automata. In [13] the nondeterminism is
restricted depending on the size of finite automata. The authors prove an infinite
nondeterministic hierarchy below a logarithmic bound, and relate the amount
of nondeterminism to the number of states necessary for deterministic finite au-
tomata to accept the same language. An automata independent quantification of
the inherent nondeterminism in regular languages is dealt with in [5]. Recently,
measures of nondeterminism in finite automata have been investigated in [11].

Two measures for the nondeterminism in pushdown automata are proposed
in [17]. By bounding the number of nondeterministic steps depending on the
length of the input, a hierarchy of three classes is obtained. A modification of
that measure can be found in [15]. The second measure depends on the depth of
the directed acyclic graph that represents a given pushdown automaton. The cor-
responding proof of an infinite nondeterministic hierarchy of properly included
classes is completed in [16].

Measuring the nondeterminism by branching has been introduced for finite
automata in [5]. In [6, 8] it is studied in connection with pushdown automata.
In [8] infinite hierarchies in between the deterministic context-free (DCFL) and
context-free languages (CFL) depending on the amount of nondeterminism or on
the amount of ambiguity are shown. In [6] lower bounds for the minimum amount
of nondeterminism to accept certain context-free languages are established.

The main goal of this paper is to investigate pushdown automata with limited
and unlimited context-dependent nondeterminism measured by branching. The
branching of a transition step is defined to be the number of choices the automa-
ton has, and the branching of a computation is the product of the branchings of
all steps. Context-dependence means that it is additionally required that non-
deterministic transition steps are only allowed within certain contexts, i.e., in
configurations that meet particular conditions. The relationships of the accepted
language families with closures of the deterministic context-free languages under
regular operations are studied. This language class is particularly interesting,
because deterministic context-free languages are not closed under the regular
operations union, concatenation, and Kleene star and thus the regular closure
increases the computational capacity. In fact, the regular closure contains, e.g.,
inherently ambiguous languages such as {ambmcn}∪{ambncn} [7]. Moreover, the
time complexity is still as optimal as for deterministic context-free languages,
namely of order O(n) [1].

The main result of this paper is that the language families accepted by push-
down automata with context-dependent nondeterminism can be characterized
as subsets of the regular closure of the deterministic context-free languages.
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Furthermore, one language family is shown to be equivalent to the regular clo-
sure and thus a nice automata characterization of the regular closure is obtained.

The paper is organized as follows. In the following section we present some
basic notions and definitions. Section 3 deals with the computational power of
pushdown automata with finite branching. This restriction yields the charac-
terization by the union closure of the deterministic context-free languages in
any of the considered contexts. Section 4 is devoted to the computational power
of pushdown automata with unbounded branching. For example, it is shown
that automata with unbounded branching that have to empty their pushdown
store up to the initial symbol are characterized by the regular closure of the
deterministic context-free languages. Furthermore, it is shown that all language
classes discussed form a proper hierarchy. In Section 5, basically, the closure
properties of the families in question under the AFL operations are exhibited. It
turns out that the regular closure of the deterministic context-free languages is
closed under all AFL operations except for homomorphism whereas the language
class accepted by pushdown automata with unbounded branching which have to
empty their pushdown store and to reenter the initial state is an anti-AFL, i.e.,
not closed under any AFL operation. Finally, the open question [9] whether or
not the union closure of the deterministic context-free languages is closed under
concatenation is answered negatively.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted by wR

and for the length of w we write |w|. The number of occurrences of an alphabet
symbol a ∈ Σ in w ∈ Σ∗ is denoted by |w|a. Set inclusion and strict set inclusion
are denoted by ⊆ and ⊂, respectively. The complement of a language L ⊆ Σ∗ is
denoted by L. The set of mappings from some set M to some set N is denoted
by NM . We write REG for the family of regular languages.

2.1 Closures, Pushdown Automata

In general, a family of languages is a collection of languages containing at least
one non-empty language. Let L be a family of languages and op1, . . . , opk, k ∈ N,
be a finite number of operations defined on L . Then Γop1,...,opk

(L ) denotes the
least family of languages which contains all members of L and is closed under
op1, . . . , opk. In particular, we consider the operations union (∪), concatenation
(•), and Kleene star (∗), which are called regular operations. Accordingly, we
write ΓREG for the regular closure, i.e. Γ∪,•,∗.

Considering a computation of a pushdown automaton we call a single
step nondeterministic if the automaton has more than one choice for its next
move. The branching of the step is defined to be the number of choices. The
branching of a computation is the product of the branchings of all steps of the
computation. This measure of nondeterminism has been introduced for finite
automata in [5]. In [6, 8] it is studied in connection with pushdown automata.
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To be more precise, we continue with the stepwise formalization of pushdown
automata with bounded branching. For convenience, throughout the paper we
use Σλ for Σ ∪ {λ}. Intuitively, a nondeterministic pushdown automaton has
unbounded branching.

A pushdown automaton (PDA) is a system M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉, where
Q is a finite set of states, Σ is the finite input alphabet, Γ is a finite pushdown
alphabet, δ is a mapping from Q×Σλ×Γ to finite subsets of Q×Γ ∗ called the
transition function, q0 ∈ Q is the initial state, Z0 ∈ Γ is a particular pushdown
symbol, called the bottom-of-pushdown symbol, which initially appears on the
pushdown store, and F ⊆ Q is the set of accepting states.

A configuration of a pushdown automaton is a triple (q, w, γ), where q is
the current state, w the unread part of the input, and γ the current content
of the pushdown store, the leftmost symbol of γ being the top symbol. If p, q
are in Q, a is in Σλ, w is in Σ∗, γ and β are in Γ ∗, and Z is in Γ , then
we write (q, aw, Zγ) &M (p, w, βγ), if the pair (p, β) is in δ(q, a, Z). In order
to simplify matters, we require that during any computation the bottom-of-
pushdown symbol appears only at the bottom of the pushdown store. Formally,
we require that if (p, β) is in δ(q, a, Z), then either β does not contain Z0 or
β = β′Z0, where β′ does not contain Z0, and Z = Z0. As usual, the reflexive
transitive closure of &M is denoted by &∗M. The subscript M will be dropped
whenever the meaning remains clear. Furthermore, the meaning of Γ will never
conflict with the closure operator.

The language accepted by M with accepting states is

T (M) = {w ∈ Σ∗ | (q0, w, Z0) &∗ (q, λ, γ), for some q ∈ F and γ ∈ Γ ∗}.
The language accepted by M by empty pushdown store is

N(M) = {w ∈ Σ∗ | (q0, w, Z0) &∗ (q, λ, λ), for some q ∈ Q}.
Intuitively, the branching of a deterministic pushdown automaton is bounded

as much as possible, i.e., bounded to one. A PDA is a deterministic pushdown
automaton (DPDA), if there is at most one choice of action for any possible con-
figuration. In particular, there must never be a choice of using an input symbol
or of using λ input. Formally, a pushdown automatonM = 〈Q,Σ, Γ, δ, q0, Z0, F 〉
is deterministic if (i) δ(q, a, Z) contains at most one element, for all a in Σλ, q
in Q, and Z in Γ , and (ii) for all q in Q and Z in Γ : if δ(q, λ, Z) is not empty,
then δ(q, a, Z) is empty for all a in Σ.

The family of deterministic context-free languages (DCFL) is closed, e.g.,
under MIN, MAX, inverse homomorphism and intersection with regular sets,
but not under homomorphism. Moreover, it is closed under complementation,
right quotient with regular sets, and left quotient with a fixed string, but it is not
closed under union, intersection, concatenation, or Kleene star [7]. Let DCFLe

denote the set of all languages which are accepted by DPDAs that accept by
empty pushdown store. It is known that DCFLe ⊂ DCFL and that DCFLe is
equivalent to the set of all prefix-free deterministic context-free languages [10].
In the sequel a subscript e indicates that the corresponding PDA accepts by
empty pushdown.
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2.2 Pushdown Automata with Context-Dependent Nondeterminism

Now we turn to branching in more detail. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a
pushdown automaton, q ∈ Q, a ∈ Σλ, w ∈ Σ∗, γ ∈ Γ ∗, and Z ∈ Γ .

(i) The branching of a single step βM(q, a, Z) is defined to be |δ(q, a, Z)|.
(ii) The branching of a configuration c with c & c′ is βM(c) = |{c′′ | c & c′′}|.
(iii) A sequence of configurations (computation) C = c0 & · · · & ck has branch-

ing
∏k−1

i=0 βM(ci).
(iv) For words w ∈ T (M) we define the branching as

βM(w) = min{βM(C) | C is an accepting computation of M on w}.

(v) Finally, let the branching of M be βM = sup{βM(w) | w ∈ T (M)}.
Next we put several restrictions on PDAs and call the resulting devices push-

down automata with context-dependent nondeterminism (nPDA).
In particular, we will bound the branching by constants k (k-nPDA), or allow

unbounded branching (∞-nPDA). We write fin-nPDA to indicate finite branch-
ing, that is, there exists some k such that the device is a k-nPDA.

The next step is to put restrictions on configurations. That is, conditions that
have to be met in order to make a new guess with branching greater than one.
In particular, we will consider devices with no further condition, devices that
have to empty their pushdown store up to the initial symbol, devices that have
to return to the initial state q0, and devices that have to reinitialize completely,
which means both to empty their pushdown store and to return to the initial
state.

(i) If the steps δ(q, a, Z0) are the only ones with branching greater than one,
then the resulting device is a (k, Z0)-nPDA or a (∞, Z0)-nPDA.

(ii) If the steps δ(q0, a, Z) are the only ones with branching greater than one,
then the resulting device is a (k, q0)-nPDA or a (∞, q0)-nPDA.

(iii) If the steps δ(q0, a, Z0) are the only ones with branching greater than one,
then the resulting device is a (k, q0, Z0)-nPDA or a (∞, q0, Z0)-nPDA.

Thus, (k, Z0)-nPDAs are allowed to make a new guess only if the pushdown
store is empty up to the initial symbol, whereas k-nPDAs can make new guesses
not depending on the pushdown store height.

In general, we denote the family of languages accepted by devices of type X
by L (X).

3 Characterization of Finite Context-Dependent
Nondeterminism

In order to prove the main result of this section, the characterization of nPDA
with finite branching, we need the fact that we may assume without loss of
generality that there is never a choice between a λ- and a non-λ step. The
result is obvious for nondeterministic pushdown automata. Here, the amount of
nondeterminism has to be kept finite. A proof of the following lemma may be
found in [8].
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Lemma 1. Let M be an nPDA with finite branching. Then we can efficiently
construct an equivalent nPDA M′ with finite branching of the same type, such
that for any q ∈ Q and Z ∈ Γ , whenever δ(q, λ, Z) is defined then δ(q, a, Z) is
undefined for all a ∈ Σ.

From the following lemma the desired characterization can be derived.

Lemma 2. Let M be an nPDA with finite branching. Then we can efficiently
construct an equivalent nPDA M′ with finite branching of the same type whose
only nondeterministic step is the very first one. The first nondeterministic step
is a λ-step that preserves the content of the pushdown store.

Proof. Without loss of generality we may assume thatM = 〈Q,Σ, Γ, δ, q0, Z0, F 〉
has the property provided by Lemma 1. Moreover, there is a positive integer k
such that M is a k-nPDA. Let � = *log2(k)+, i.e. roughly an upper bound for
the number of nondeterministic steps of M.

We define a set N ⊆ Q × Σλ × Γ such that (q, a, Z) ∈ N if |δ(q, a, Z)| > 1,
that is the set of contexts in which nondeterminism appears. We observe that
due to the properties of M, for any configuration the set N contains at most
one triple such that δ is applicable.

Now the construction of M′ = 〈Q′, Σ, Γ, δ′, q′0, Z0, F
′〉 is as follows. Set

Q′ = {q′0} ∪
(
Q× ((Q× Γ ∗)N )� × {0, . . . , �}

)
and

F ′ = F × ((Q× Γ ∗)N )� × {0, . . . , �}.

The first step of M′ is to guess M’s guesses (at most �) in advance. It does
so by guessing � mappings from the nondeterministic contexts N to the possible
actions. For all a ∈ Σλ,
δ′(q′0, λ, Z0) = {((q0, f1, . . . , f�, 0), Z0) | fi ∈ (Q× Γ ∗)N such that

fi(q, a, Z) = (p, β) if and only if (p, β) ∈ δ(q, a, Z), 1 ≤ i ≤ �}.
It should be noted that there are at most finitely many such mappings f ∈
(Q × Γ ∗)N . Thus, Q′ and F ′ are finite. To simulate deterministic steps of M,
we define for all 1 ≤ i ≤ �,

δ′((q, f1, . . . , f�, i), a, Z) = {((p, f1, . . . , f�, i), β)}

if (q, a, Z) /∈ N and δ(q, a, Z) = (p, β).
In order to simulate a nondeterministic step of M, we apply the previously

guessed mapping fi to the current situation and increase the index i. Define for
all 1 ≤ i ≤ �,

δ′((q, f1, . . . , f�, i), a, Z) = {((p, f1, . . . , f�, i+ 1), β)}

if (q, a, Z) ∈ N and fi+1(q, a, Z) = (p, β). �

Theorem 1. A language L is accepted by a fin-nPDA ((fin, q0)-nPDA, (fin, Z0)-
-nPDA, (fin, q0, Z0)-nPDA, respectively), if and only if L belongs to the union
closure of the deterministic context-free languages Γ∪(DCFL).
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Proof. Let M = 〈Q,Σ, Γ, δ, q0, Z0, F 〉 be a fin-nPDA. By Lemma 2 we may
assume that M makes only one nondeterministic step in every computation
which is the very first one, a λ-step, and preserves the content of the pushdown
store. We conclude that the sole nondeterministic step requires the initial state
q0 which is never reentered during the whole computation. So, let S = {q ∈ Q |
(q, Z0) ∈ δ(q0, λ, Z0)}. Then we construct a deterministic pushdown automaton
Mq for each q ∈ S.
Mq = 〈Q \ {q0}, Σ, Γ, δ′, q0, Z0, F 〉, where δ′(q, a, Z) = δ(q, a, Z) for all q ∈

Q \ {q0}, a ∈ Σ, and Z ∈ Γ . Clearly, all Mq are deterministic, and T (M) =⋃
q∈S T (Mq).
Conversely, let L = L1 ∪ · · · ∪ Lk and Mi = 〈Qi, Σ, Γi, δi, q0,i, Z0, Fi〉 be

deterministic pushdown automata with T (Mi) = Li, for 1 ≤ i ≤ k. Without
loss of generality we assume that the Qi are disjoint and q0 is a new state. Then
we construct

M = 〈{q0} ∪
⋃k

i=1Qi, Σ,
⋃k

i=1 Γi, δ, q0, Z0,
⋃k

i=1 Fi〉,

where δ(q0, λ, Z0) = {(q0,i, Z0) | 1 ≤ i ≤ k} and δ(q, a, Z) = δi(q, a, Z) if and
only if q ∈ Qi and Z ∈ Γi. It follows immediately from the construction that M
is a (fin, q0, Z0)-nPDA, and that T (M) = L. �

4 Characterization of Unlimited Context-Dependent
Nondeterminism

If the nondeterminism allowed is unbounded and may be used within any context
or only when the PDA is in its initial state, then the computational capacity is
not reduced.

Theorem 2. L (∞-nPDA) = CFL and L ((∞, q0)-nPDA) = CFL

Proof. Obviously, every ∞-nPDA or (∞, q0)-nPDA accepts a context-free lan-
guage. Since every PDA can be considered as a ∞-nPDA, we obtain the first
equation. To show the second equation we use the fact that every context-free
language can be accepted by a one-state PDA (cf. [10]). �

We now want to characterize the language family accepted by (∞, Z0)-nPDAs by
the regular closure of the deterministic context-free languages. As a first step we
show that each language from the regular closure of the prefix-free deterministic
context-free languages is accepted by some (∞, Z0)-nPDAe and vice versa.

Theorem 3. A language L is accepted by a (∞, Z0)-nPDAe if and only if L be-
longs to the regular closure of the prefix-free deterministic context-free languages
ΓREG(DCFLe).

Proof. Since any prefix-free deterministic context-free language is accepted by
some (∞, Z0)-nPDAe, and the language family L ((∞, Z0)-nPDAe) is closed
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under the regular operations (cf. Lemma 3), any language L ∈ ΓREG(DCFLe) is
accepted by some (∞, Z0)-nPDAe.

To show the converse letM = 〈Q,Σ, Γ, δ, q0, Z0, ∅〉 be a (∞, Z0)-nPDAe. Due
to space considerations we can only sketch the proof. Roughly, the idea is as
follows. We first transform M into an equivalent context-free grammar G. The
transformation follows the standard technique [10]. Then we observe that G is of
a certain form which allows us to consider G as a right-linear grammar G′ whose
terminal symbols represent prefix-free deterministic context-free languages gen-
erated by non-terminals of G. Next, G′ is transformed into an equivalent regular
expression E , where each symbol in E still represents a prefix-free deterministic
context-free language generated by non-terminals of G. Therefore, N(M) can
be described as a regular expression whose symbols are prefix-free deterministic
context-free languages. Thus, N(M) ∈ ΓREG(DCFLe). �

Now, we can prove the desired machine characterization of the regular closure.
Moreover, the next result reveals the interesting fact that for (∞, Z0)-nPDA it
does not matter whether they accept by empty pushdown store or by accepting
states whereas between DCFLe and DCFL a proper inclusion is known.

Theorem 4. The following language classes are equivalent.

ΓREG(DCFLe) = L ((∞, Z0)-nPDAe) = L ((∞, Z0)-nPDA) = ΓREG(DCFL)

In particular, a language L is accepted by a (∞, Z0)-nPDA if and only if L
belongs to the regular closure of the deterministic context-free languages.

Proof. It is shown in [1] that ΓREG(DCFLe) = ΓREG(DCFL). The above the-
orem shows that ΓREG(DCFLe) = L ((∞, Z0)-nPDAe). Since it is not diffi-
cult to convert a (∞, Z0)-nPDAe to an equivalent (∞, Z0)-nPDA, we obtain
L ((∞, Z0)-nPDAe) ⊆ L ((∞, Z0)-nPDA). Thus, we know that ΓREG(DCFL) ⊆
L ((∞, Z0)-nPDA). In order to show L ((∞, Z0)-nPDA) ⊆ ΓREG(DCFL) let M
be a (∞, Z0)-nPDA.M can be easily transformed into a (∞, Z0)-nPDAe accept-
ing T (M)$ where $ is a new alphabet symbol. Thus, T (M)$ ∈ ΓREG(DCFLe)
and hence T (M)$ can be represented as a regular expression with prefix-free
deterministic context-free atoms D1, . . . , Dn. Since DCFL is closed under right
quotient with regular sets, we conclude that D1{$}−1, . . . , Dn{$}−1 are deter-
ministic context-free languages. Hence, T (M) can be represented as a regular
expression with deterministic context-free atoms and thus is in ΓREG
(DCFL). �

We next characterize those pushdown automata which are allowed to make a
new guess only when the pushdown store is empty up to the initial symbol
and, in addition, the initial state is attained. The proof is omitted due to space
considerations.

Theorem 5. A language L is accepted by a (∞, q0, Z0)-nPDA if and only if L
admits a factorization L∗1L2, where L1 ∈ Γ∪(DCFLe) and L2 ∈ Γ∪(DCFL). This
language family is denoted by L∗.
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Table 1. Characterizations of context-dependent pushdown automata

Restriction Characterization
fin, (fin, q0), (fin, Z0), (fin, q0, Z0) Γ∪(DCFL)
∞, (∞, q0) CFL
(∞, Z0) ΓREG(DCFL)
(∞, q0, Z0) L∗

Table 1 summarizes the characterization results. The relations between the lan-
guage families characterized are summarized in the next theorem.

Theorem 6. Γ∪(DCFL) ⊂ L∗ ⊂ ΓREG(DCFL) ⊂ CFL

Proof. We consider the language L0 = ({anbnc | n ≥ 0} ∪ {anb2nc | n ≥ 0})∗
which is not in Γ∪(DCFL) due to [6] and Theorem 1. Obviously, L0 ∈ L∗ which
shows the first proper inclusion.

Since ΓREG(DCFL) is closed under union and L∗ is not (Lemma 6), we obtain
that the second inclusion is a proper one.

For the last inclusion we consider L = {cnwwRcn | n ≥ 0, w ∈ {a, b}+} ∈
CFL. We have to show that L �∈ ΓREG(DCFL). In contrast to the assertion
assume that L is accepted by a (∞, Z0)-nPDA M = 〈Q, {a, b, c}, Γ, δ, q0, Z0, F 〉.

For each state q ∈ Q we define the set Wq of prefixes of accepted words which
reinitialize the pushdown store in state q:

Wq = {w ∈ {a, b, c}+ | (q0, w, Z0) &+ (q, λ, Z0)
and there exists v ∈ {a, b, c}∗ such that (q, v, Z0) &∗ (qf , λ, γ),
for some qf ∈ F, γ ∈ Γ ∗}

In [6, 7] it is shown that the language Lw = {wwR | w ∈ {a, b}∗} does not
belong to Γ∪(DCFL). By Theorem 1 we obtain that Lw is not accepted by any
(fin, Z0)-nPDA. Now we consider words of the form c∗{a, b}+ in the sets Wq.
Assume that in each of the finitely many sets there are only words of this form
with the same number of leading c’s, respectively. Let n0 be the maximal num-
ber appearing. Then all words cn0+1wwRcn0+1, w ∈ {a, b}+, are accepted with
finitely many reinitializations of the pushdown store, i.e., with finite branching.
This implies by an immediate construction that the language Lw is accepted by
a (fin, Z0)-nPDA. From the contradiction we obtain that there exists a set Wq

that contains at least two words, say z1 and z2, that have different numbers of
leading c’s, say n1 and n2.

Now we derive a contradiction to our first assumption as follows. Let i ∈ {1, 2}.
Since zi belongs to Wq there is a word vi such that zivi is accepted. The word
zi is of the form cni{a, b}+. Therefore, vi has the form {a, b}∗cni . Since for M
it makes no difference whether state q with empty pushdown store is reached by
processing input z1 or z2, it accepts the words z1v2 and z2v1 as well. But z1v2
has the form cn1{a, b}+cn2 and, thus, does not belong to L. �
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5 Closure Properties

In this section we consider closure properties of context-dependent nondetermin-
istic pushdown automata languages. By the characterization results obtained in
the previous sections the properties of some families are known. For other fam-
ilies the properties are also interesting for their own. For example, it is natural
to ask for the closure properties of closures. We start with some straightforward
constructions whose details are omitted.

Lemma 3. The language family L ((∞, Z0)-nPDA) is closed under intersection
with regular sets, union, concatenation, and Kleene star. L (fin-nPDA) is closed
under intersection with regular sets and union. Both families are closed under
inverse homomorphism.

We now turn to non-closure results.

Lemma 4. L (fin-nPDA), L ((∞, q0, Z0)-nPDA), and L ((∞, Z0)-nPDA) are
not closed under homomorphism and complementation.

Proof. First, we observe that all families contain DCFL. Since all families are
proper subsets of CFL and every context-free language can be represented as
the homomorphic image of a deterministic context-free language (Chomsky-
Schützenberger Theorem, see, e.g., [7]), all families are not closed under ho-
momorphism.

Next, consider the language L = {aibjck | i, j, k ≥ 0, (i �= j or j �= k)}∪a∗b∗c∗
which is contained in all of the above families. The assumption that one of the
above families is closed under complementation implies that it contains the non-
context-free language L = {anbncn | n ≥ 0} which is a contradiction. �

The next lemma answers an open question raised in [9].

Lemma 5. The language family L (fin-nPDA) = Γ∪(DCFL) is not closed under
concatenation and Kleene star.

Proof. Let
La = {aibjck | i, j, k ≥ 1 and k ≤ i} and
Lb = {aibjck | i, j, k ≥ 1 and k ≤ j}

be two languages. We observe that L∗a and Lb are deterministic context-free
languages and, therefore, belong to Γ∪(DCFL).

It suffices to show that the concatenation L∗aLb does not belong to Γ∪(DCFL).
Assume contrarily it would. Then there are languages L1, . . . , Lm ∈ DCFL, for
some m ≥ 1, such that L∗aLb =

⋃m
�=1 L�.

We consider the language operation MIN, that is

MIN(L) = {w | w ∈ L and no v ∈ L is a proper prefix of w}.

Since the family DCFL is closed under MIN all languages L′� = MIN(L�), 1 ≤
� ≤ m are deterministic context free languages. It is easily seen that all words
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of L′� are of the form {aibjck | i, j, k ≥ 1 and k ≤ i and k > j}∗{aibjck | i, j, k ≥
1 and k ≤ j}.

Trivially, all languages L′� are context free. The context-free languages are
closed under (nondeterministic) gsm-mappings. We can easily construct a gsm
that chooses one but not the last of the subwords aibjck and maps all other
symbols to λ. We conclude that the resulting languages are context-free lan-
guages. Additionally, their words are of the form {aibjck | i, j, k ≥ 1 and k ≤
i and k > j}. Since MIN(L∗aLb) is infinite, at least one of the resulting languages
contains infinitely many words that differ at least in the number of b’s, let us
say language Lr.

It remains to be shown that Lr is not context free. To this end, let n be the
constant of Ogden’s lemma and consider some word w = aibjck ∈ Lr such that
j ≥ n. Let the positions of the b’s be distinguished. Then w admits a factorization
uvwxy such that v and x together have at least one distinguished position, vwx
has at most n distinguished positions, and uvswxsy ∈ Lr for all s ≥ 1.

If either v or x contains two distinct symbols, then uv2wx2y does not belong to
Lr. Now at least one of v and xmust contain b’s since only b’s are in distinguished
positions. Thus, either vx does not contain a’s or does not contain c’s. In both
cases we can find some constant s such that uvswxsy does not belong to Lr.
Thus Lr is not a context-free language.

To show non-closure under Kleene star we consider the language L0 from
Theorem 6. Clearly, L = {anbnc | n ≥ 0} ∪ {anb2nc | n ≥ 0} ∈ Γ∪(DCFL), but
L0 = L∗ �∈ Γ∪(DCFL) due to [6] and Theorem 1. �

Table 2. Closure properties of context-dependent pushdown automata languages

Restriction Characterization ∪ • ∗ h h−1 ∩R

fin, (fin, q0), (fin, Z0), (fin, q0, Z0) Γ∪(DCFL) + − − − + + −
∞, (∞, q0) CFL + + + + + + −
(∞, Z0) ΓREG(DCFL) + + + − + + −
(∞, q0, Z0) L∗ − − − − − − −

Finally, we obtain that L ((∞, q0, Z0)-nPDA) is an anti-AFL, i.e., a language
class not closed under union, concatenation, Kleene star, homomorphism, inverse
homomorphism, and intersection with regular sets. This is particularly interest-
ing, since it provides an example of an anti-AFL which is a proper subset of the
context-free languages. Due to space considerations the proof is omitted.

Lemma 6. The language family L ((∞, q0, Z0)-nPDA) = L∗ is an anti-AFL.

Putting together the characterization results from the previous sections and the
closure properties shown in this section, we obtain Table 2.
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We consider also a stronger factorization property that requires that any re-
finement of a decomposition of the language leads to a prime decomposition in
a finite number of steps. We call such languages strongly prime decomposable.
We give necessary and sufficient conditions for a regular language to be strongly
prime decomposable. The characterization establishes that the property is de-
cidable for regular languages.

Using the characterization of the strongly prime decomposable languages we
show that every regular language over a unary alphabet has a prime decom-
position. As a by-product of the proof we establish the existence of prime de-
compositions for context-free languages over arbitrary alphabets where, roughly
speaking, the set of “short words” of the corresponding length set is not closed
under any multiple of the cycle of the length set.

The main open question remaining is whether all regular languages have prime
decompositions.

2 Language Decompositions

Let Σ be a finite alphabet. A language is any subset of Σ∗. The length of a word
w ∈ Σ∗ is |w|. The catenation of languages L1 and L2 over Σ is L1 · L2 = {w ∈
Σ∗ | (∃ui ∈ Li, i = 1, 2) w = u1u2}. For all unexplained notions in language
theory we refer the reader e.g. to [9, 16, 17].

We say that a language L has a non-trivial decomposition if we can write
L = A · B where A,B �= {ε}. In the following, unless otherwise mentioned, by
a decomposition or a factorization of a language we always mean a non-trivial
decomposition.

A nonempty language L �= {ε} is said to be prime if L has no decompositions.
For a given regular language L it is decidable whether or not L has a decomposi-
tion [11, 12], i.e., whether or not L is prime. More generally, the regular language
decomposition problem is decidable for all operations defined by letter-bounded
regular sets of trajectories [5].

Definition 2.1. [12] A prime decomposition of a language L is a factorization

L = L1 · . . . · Lm, (1)

where each of the languages Li, i = 1, . . . ,m, is prime.

A language, unlike an integer, can have also infinite factorizations, that is, decom-
positions into an infinite product of nontrivial factors. Here we restrict consider-
ation to decompositions having finitely many components. Infinite factorizations
obviously would involve interesting and different types of questions.

A finite language (distinct from ∅, {ε}) clearly always has a prime decomposi-
tion. On the other hand, a prime decomposition need not be unique even for finite
languages [12]. Any prefix-free regular language has a unique decomposition in
terms of prime languages if it is additionally required that the components are
regular and prefix-free [3, 7]. Interestingly, the analogous property does not hold
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for decompositions of infix-free regular languages [6]. A factorial language is a
language that is closed under the subword operation. In [1] it is shown that a
factorial language has a unique canonical decomposition, where the components
satisfy certain minimality conditions, into indecomposable factorial components.

Example 2.1. Let H ⊆ Σn, n ≥ 1, be a set of words of length n. We show that
H∗ has the following prime decomposition

H∗ = ({ε} ∪H) · (
∞⋃

i=1

H2i−1 ∪ {ε}) (2)

Since the equality obviously holds, it is sufficient to verify that the two factors
on the right side are prime.

In any decomposition {ε} ∪H = AB both of the sets A and B must contain
ε. Then the equality can hold only if one of A and B contains all words of H
and the other set is {ε}, that is, {ε} ∪H has only trivial decompositions.

In order to see that the second language on the right side of (2) is prime,
assume that we can write

∞⋃
i=1

H2i−1 ∪ {ε} = AB (3)

for some A,B ⊆ Σ∗. Again ε has to be in both A and B. Thus A or B cannot
contain any nonempty words shorter than n and all words of H must be in A
or B. If both A and B contain words of H then AB would have some word of
length 2n. We assume that H ⊆ A, the other possibility being symmetric. Again
all words of H3 must be in A or B, and similarly as above we see that the only
possibility is that H3 ⊆ A since otherwise the catenation of A and B would have
some word of length 4n. By induction it follows that A =

⋃∞
i=1 H

2i−1 ∪ {ε} and
B = {ε}.

It seems that earlier work [12] did not expect that the Kleene-star of languages
as in Example 2.1 could have prime decompositions. In fact, we do not know
any regular language L such that L provably has no prime decompositions. In
Section 4 we show that every regular language over a unary alphabet has a prime
decomposition.

Next we show that there exist nonregular languages without any prime de-
compositions. Let Σ = {a, b}. We define H0 ⊆ Σ∗ as follows:

H0 = {ai1bi1ai2bi2 · · · aikbik | k ≥ 0, 1 ≤ i1 < i2 < . . . < ik}.

Lemma 2.1. The language H0 does not have any prime decomposition.

Proof. Consider an arbitrary decomposition of H0,

H0 = L1 · . . . · Lm, (4)

m ≥ 1. For the sake of contradiction assume that (4) is a prime decomposition.
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By the maximal ab-prefix, mab-prefix, (respectively, mab-suffix) of a word w
we mean the longest prefix (respectively, longest suffix) of w that is in a∗b∗.

Consider a fixed i ∈ {1, . . . ,m}. We claim that if the mab-prefix of some word
in Li is of a form

ajbk, j �= k, j, k ≥ 0, (5)

then all words in Li must have the same mab-prefix ajbk. This follows from the
observation that if Li has two words u1, u2 where the mab-prefix ump of u1
is as in (5) and the mab-prefix of u2 is distinct from ump, then for any fixed
v ∈ L1 · · ·Li−1 and w ∈ Li+1 · · ·Lm only one of the words vu1w and vu2w can
be in H0.

Now if all words in Li have the same mab-prefix as in (5) (which is not the
empty word since j �= k) we get a decomposition for Li by factoring out the
common prefix.

Since Li is prime, the above means that we need to consider only the case
where the mab-prefix of all words in Li, i = 1, . . . ,m, is of a form ajbj, j ≥ 1.
(Note that in this case the mab-prefixes need not be identical, e.g., it is possi-
ble that Li = {ajbjaj+1bj+1, ajbj , aj+1bj+1, ε}.) With a completely symmetric
argument we see that the same property holds for mab-suffixes.

By a balanced word we mean a word of the form ajbj, j ≥ 0. From the above
we can conclude that for all i ∈ {1, . . . ,m},

the mab-prefix and the mab-suffix of any word in Li is balanced. (6)

Thus all words occurring in Li, 1 ≤ i ≤ m, are of the form

wi = ak1,ibk1,i · · ·akr,ibkr,i , 0 < k1,i < . . . < kr,i, r ≥ 0. (7)

Now if we consider an arbitrary word wi+1 = ak1,i+1bk1,i+1 · · ·aks,i+1bks,i+1 ∈
Li+1, the equation kr,i < k1,i+1 has to hold since otherwise wiwi+1 cannot occur
as a subword of a word in H0.

Now the equation (4) implies that, for all i = 1, . . .m− 1, there exist integers
Mi and Ni (M1 = 1, Ni = Mi+1 − 1) such that Li consists of exactly all the
words as in (7) where Mi ≤ k1,i and kr,i ≤ Ni, and Lm consists of all words as
in (7) where k1,i > Nm−1.

It follows that (4) is not a prime decomposition since, for example,

Lm = {ε, aNm−1+1bNm−1+1} ·A,

where A consists of all words as in (7) where k1,i > Nm−1 + 1. This concludes
the proof. �

The language H0 used in Lemma 2.1 is not context-free but its complement
is context-free. It should be noted that Lemma 2.1 does not require any as-
sumptions concerning the component languages, that is, H0 doesn’t have a
prime decomposition even if the components could be non-recursively enumer-
able languages.
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We conclude with the following question.

Open Problem. Does there exist a context-free (or even a regular) language L
such that L has no prime decomposition.

3 Strong Prime Decomposition Property

In the previous section we saw (in Example 2.1) that regular languages can
have artificial prime decompositions even if the natural way of decomposing the
language does not result in a prime decomposition, i.e., the components could
always be factorized further.

Example 3.1. Let L = ε + a2a∗. We note that L = L · L or L = (ε + a2) · L so
obviously L has many different factorizations with arbitrarily many components.
However, L has also the following prime decomposition

(ε+ a2)(ε+ a3)(ε+
∞⋃

i=1

(a2)2i−1).

Note that the last component is an instance of the left side of (3) that was shown
to be prime in Example 2.1.

Here we consider a stronger version of the prime decomposition property that
prevents situations as in Example 3.1.

Definition 3.1. Let L ⊆ Σ∗. The index of a non-trivial decomposition of L,

L = L1 · . . . · Lm (8)

is m. The decomposition index of L is the maximum index of any non-trivial
decomposition of L if the maximum exists. Otherwise, we say that the decompo-
sition index of L is infinite.

If a language L has a finite decomposition index, we say that L is strongly prime
decomposable. When L is strongly prime decomposable, any way of iteratively
decomposing L has to stop after a finite number of steps, i.e., the refinement of
any decomposition results in a prime decomposition in a finite number of steps.

Clearly all finite languages are strongly prime decomposable since the decom-
position index of a finite language L is at most the length of the longest word in
L. The language L considered in Example 3.1 has a prime decomposition but it is
not strongly prime decomposable. An example of a strongly prime decomposable
infinite language is a∗ + b∗. This follows from Theorem 3.1 below.

For presenting a characterization of the strongly prime decomposable reg-
ular languages we recall some notation and a result from [12, 14]. Let A =
(Q,Σ, δ, q0, QF ) be a deterministic finite automaton (DFA). For a subset P ⊆ Q
we define the languages

RP
1 = {w ∈ Σ∗ | δ(q0, w) ∈ P},

RP
2 =

⋂
p∈P

{w ∈ Σ∗ | δ(p, w) ∈ QF }.
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Proposition 3.1. [12] Let A = (Q,Σ, δ, q0, QF ) be the minimal DFA for a lan-
guage L and assume that we can write L = L1L2. Then

L = RP
1 R

P
2 ,

where P ⊆ Q is defined by

P = {p ∈ Q | (∃w ∈ L1) δ(q0, w) = p}.

Furthermore, we know that Li ⊆ RP
i , i = 1, 2.

Theorem 3.1. A regular language L is not strongly prime decomposable if and
only if there exist regular languages H1, H2, H3, where H2 contains some non-
empty word such that

L = H1(H2)∗H3. (9)

Proof. The “if”-direction follows from the observation that, for any k ≥ 1, the
equation (9) gives for L a decomposition of index at least k:

L = H1(H2 ∪ {ε})k−1(H2)∗H3. (10)

(The index of the decomposition (10) is between k and k + 2 depending on
whether or not H1 or H3 is the trivial language {ε}.)

Next we prove the “only-if”-direction. Let A = (Q,Σ, δ, q0, QF ) be the mini-
mal DFA for L. Since L is not strongly prime decomposable, we can write

L = L1L2 · . . . · Lm,

where m = 2|Q| + 1 and Li �= {ε}, i = 1, . . . ,m. Furthermore, by [12] (Proposi-
tion 3.1 above) we know that the languages Li can be chosen to be regular.

Define Pi = {p ∈ Q | (∃w ∈ L1 · . . . · Li) δ(q0, w) = p}, i = 1, . . .m − 1. By
Proposition 3.1,

L = RPi
1 RPi

2 , i = 1, . . . ,m− 1. (11)

Here RPi

j , j = 1, 2, is as defined in Proposition 3.1.
Sincem−1 ≥ 2|Q| and Pi �= ∅, i = 1, . . . ,m−1, there exist j, k ∈ {1, . . . ,m−1},

j < k, such that Pj = Pk. This means that for all p ∈ Pj and w ∈ Lj+1 · . . . ·Lk

we have
δ(p, w) ∈ Pj (= Pk).

Thus (11) implies that for all r ≥ 1,

R
Pj

1 (Lj+1 · . . . · Lk)rR
Pj

2 ⊆ L.

Consequently, L = R
Pj

1 (Lj+1 · . . . · Lk)∗RPj

2 and Lj+1 · . . . · Lk is not empty or
{ε} since j < k. �

It is known that primality is decidable for regular languages [12]. As a corollary
of the proof of Theorem 3.1 we see that also the strong prime decomposition
property is decidable for regular languages.
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Corollary 3.1. Given a regular language L it is decidable whether or not L is
strongly prime decomposable.

Proof. Let A = (Q,Σ, δ, q0, QF ) be the minimal DFA for L. In the “only if”
part of the proof of Theorem 3.1 it is established that if L is not strongly prime
decomposable, there exist P ⊆ Q and a nonempty language KP �= {ε} such
that L = RP

1 R
P
2 (where RP

j , j = 1, 2, is defined as in Proposition 3.1) and
δ(p, w) ∈ P for all p ∈ P and w ∈ KP . Conversely, the existence of P and KP as
above implies that L = RP

1 (KP )∗RP
2 and hence, by the first part of Theorem 3.1,

L is not strongly prime decomposable.
Given P ⊆ Q, a language KP as above exists if and only if some nonempty

word of length at most s = |Q||P | takes each state of P to a state in P . Note that
if this property holds for some word of length greater than s, using a pumping
argument it follows that the property has to hold for a word of length at most
s. Hence we can determine whether P and KP as above exist by testing the
required property for all subsets of Q. �

The algorithm given by Corollary 3.1 is extremely inefficient since it relies on
an exhaustive search of subsets of the state set of the minimal DFA for L. It is
probable that an efficient (e.g. a polynomial time) algorithm cannot be found
since there is no known polynomial time algorithm even to test primality of a
regular language [12].

4 Unary Regular Languages

We want to show that every regular language over a unary alphabet has a prime
decomposition. First we recall some terminology concerning regular languages
over a unary alphabet. A standard reference is [2], and references to more recent
work on unary regular languages can be found e.g. in [4, 8].

A DFA A with a unary input alphabet can be divided into a tail which has
the states that are not reachable from themselves with any non-empty word, and
the cycle consisting of the remaining states of A. Naturally, A has no accepting
states in the cycle if the language recognized by it is finite. If A is minimal, it
is additionally required that all states are pairwise inequivalent. If the tail of A
accepts words aj1 , . . .ajr−1 and the length of the cycle of A is m, the language
accepted by A is denoted by a regular expression

aj1 + . . .+ ajr−1 + ajr (ai1 + . . . ais−1)(am)∗, (12)

0 ≤ j1 < . . . jr−1 < jr, 0 ≤ i1 < . . . < is−1 < m, r, s ≥ 0. We use the names
“tail” and “cycle” also when referring to the corresponding parts of a regular
expression as in (12).

Lemma 4.1. Let L ⊂ {a}∗ be any unary language. Then L∗ is the union of a
finite language and a linear language, that is, L∗ = F ∪{ai·p | i ≥ 0} where p ≥ 0
and F ⊆ {a}∗ is finite. Furthermore, p divides the length of any word in F .
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Proof. If L is empty or L = {ε}, the property holds by choosing F = ∅ and
p = 0. Otherwise, if p is the greatest common divisor of the lengths of all words
in L, there exists Mp ≥ 1 such that for all n > Mp, an ∈ L if and only if n is
a multiple of p. We can choose F as the set of all words in L of length at most
Mp. The length of any word in F is divided by p. �

Lemma 4.2. Let L ⊆ {a}∗ be a regular language such that

L = LR∗ (13)

where R contains a nonempty word. Then L has a prime decomposition.

Proof. Let L be denoted by a regular expression as in (12). By factoring out
the shortest word we can assume without loss of generality that ε ∈ L, that is,
j1 = 0. We assume that m (using the notations of (12)) is the cycle length of
the minimal DFA for L and all words ε, aj2 , . . . ajr−1 , ajr+i1 , . . . , ajr+is−1 are
pairwise inequivalent. These properties hold if the tail and cycle of (12) are as
in the minimal DFA for L. Note that (13) implies that L is infinite and hence
the minimal DFA has a cycle containing an accepting state, that is, m ≥ 1.

By Lemma 4.1 we can write

R∗ = ε+ ak1 + . . .+ akt−1 + akt(an)∗, (14)

where 0 < k1 < . . . < kt, t ≥ 1, are all multiples of n. Here we require that
kt ≥ 1 and as the word akt we can choose the first nonempty word that is in the
cycle of R∗. (The expression (14) does not need to correspond to the minimal
DFA for R∗. This would be the case, for example, if the minimal DFA is cyclic,
i.e., it has no tail.) Since R contains a nonempty word, it follows that n ≥ 1.

By (13), uv ∈ L for all u ∈ L and v ∈ R∗. Since m is the cycle length of the
minimal DFA for L, this implies that m divides n, and consequently the length
of any word in R∗ is a multiple of m. Write

akt = c ·m, c ≥ 1.

Then

L = (ε+ aj2 + . . .+ ajr−1 + ajr (ai1 + . . .+ ais−1 + ai1+m + . . . (15)
+ais−1+m + . . .+ ai1+(c−1)m + . . .+ ais−1+(c−1)m))(akt)∗.

In (15) the inclusion from right to left follows by (13) since all words in the
first factor are in L and (akt)∗ ⊆ R∗ because kt is a multiple of n. The inclusion
from left to right follows using the simple observation that the right side of (15) is
obtained from the regular expression (12) for L with cycle length m by repeating
the original cycle c times and taking c ·m to be the new cycle length.

In the right side of (15) the first component has a prime decomposition since
it is a finite language. The second component has a prime decomposition by
Example 2.1. �
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The construction of Lemma 4.2 is illustrated in the next example. In particular,
the example shows that in the factorization (15) we could not use (an)∗ as a
factor for L where n is the cycle length of the minimal DFA for R∗.

Example 4.1. Let

L = ε+ a5 + a12 + a17(a3)∗ + a18(a3)∗,

and let R = (a12 +a18)∗. Now L = LR∗ and the the construction from the proof
of Lemma 4.2 gives for L the factorization

L = (ε+ a5 + a12 + a17 + a18 + a20 + a21 + a23 + a24 + a26 + a27)(a12)∗.

It can be noted that the cycle length of R∗ is 6. However, (a6)∗ is not a factor
of L since ε, a5 ∈ L and a6, a11 �∈ L.

Theorem 4.1. Every regular language over a unary alphabet has a prime de-
composition.

Proof. Let L ⊆ {a}∗ be regular. If we can write L = L1(L2)∗ for regular
languages L1 and L2, where L2 contains a nonempty word, then also L = L(L2)∗

holds and, by Lemma 4.2, L has a prime decomposition.
If there exist no regular languages Li, i = 1, 2, L2 �= {ε}, L2 �= ∅, such that

L = L1(L2)∗, then using the commutativity of catenation of unary languages
and Theorem 3.1 we get that L is strongly prime decomposable. �

Let Σ be an arbitrary finite alphabet and L ⊆ Σ∗. The length set of L is the
language over the unary alphabet {a} defined by

length(L) = {ak | (∃w ∈ L) |w| = k}.

A language L over a non-unary alphabet may have more structure than the
corresponding length set and decompositions of the length set of L do not nec-
essarily yield a factorization of L. For example, the language {bc, cb} is prime
but its length set has the factorization {aa} = {a} · {a}. Conversely, however,
corresponding to any decomposition of L there exists a decomposition of the
length set of L. This gives the following lemma.

Lemma 4.3. Let Σ be a finite alphabet and L ⊆ Σ∗. If length(L) is strongly
prime decomposable, then the same holds for L.

Proof. If L has a non-trivial decomposition L = L1 · L2, then length(L1) ·
length(L2) is a non-trivial decomposition of length(L). Hence, if L has an infinite
decomposition index, the same holds for length(L). In other words, if length(L)
is strongly prime decomposable, so is L. �

The result of Lemma 4.3 can be used to show the existence of prime decompo-
sitions for context-free languages where the tail of the length set is “not closed”
under any multiple of the cycle length of the minimal DFA for the length set.
Note that the length set of a context-free language is always regular [9, 16].
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Theorem 4.2. Let L be a context-free language and let m be the cycle length of
the minimal DFA for length(L). If for some d ≥ 0 and Md ≥ 1, ad ∈ length(L)
and, for all i ≥Md, ad+i·m �∈ length(L), then L has a prime decomposition.

Proof. Assume that length(L) has a decomposition length(L) = MR∗ in terms
of regular languages M and R, where R contains a nonempty word. Then
length(L) = length(L)R∗ and, by the proof of Lemma 4.2, we know that there
is a constant c such that ad ∈ length(L) implies that, for all i ≥ 1, ad+i·c·m is in
length(L). This contradicts the assumptions for length(L).

Hence there do not exist regular languages M and R, R �= ∅, R �= {ε},
such that length(L) = MR∗. By Theorem 3.1, length(L) is strongly
prime decomposable and Lemma 4.3 implies that also L is strongly prime
decomposable. �

The conditions of Theorem 4.2 apply, for example, to any context-free language
L such that L has a word of odd length and there exists a constant ML ≥ 1 such
that all words of L of length greater than ML have even length. The assumption
that L is context-free is needed to guarantee that the length set of the language
is regular.

Finally, we note that Theorem 4.1 cannot be extended for arbitrary unary
languages. Recently, Rampersad and Shallit [13], and A. Salomaa and Yu [15],
have independently given examples of non-regular unary languages that provably
do not have a prime decomposition. The first mentioned language consists of all
words over a unary alphabet whose length when represented in ternary notation
does not contain a 2. The second mentioned language consists of all words whose
length when represented in binary has no 1’s in odd positions from the right.
These languages are higher in the complexity hierarchy than the language of
Lemma 2.1 in the sense that they are not co-context-free.

5 Conclusions

We have established an effective characterization of the strongly prime decom-
posable regular languages. Using the characterization it is easy to construct
regular languages (over a unary or a non-unary alphabet) that are not strongly
prime decomposable, i.e., that have an infinite decomposition index. We have
shown that every regular language over a unary alphabet has a prime decom-
position. The main open problem remaining is whether all regular languages
over arbitrary alphabets have at least one prime decomposition. We conjecture
a positive answer to this question.
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Abstract. By weakly ambiguous (finite) transducers we mean those
transducers that, although being ambiguous, may be viewed to be
at arm’s length from unambiguity. We define input-unambiguous (IU)
and input-deterministic (ID) transducers, and transducers with finite
codomain (FC). IU transductions are characterized by nondeterministic
bimachines and ID transductions can be represented as a composition
of sequential functions and finite substitutions. FC transductions are
recognizable and can be expressed as finite unions of subsequential func-
tions. We place these families along with uniformly ambiguous (UA) and
finitely ambiguous (FA) transductions in a hierarchy of ambiguity. Fi-
nally, we show that restricted nondeterministic bimachines characterize
FA transductions. Perhaps the most important aspect of this work con-
sists in defining nondeterministic bimachines and describing their power
by linking them with weakly ambiguous finite transducers (IU and FA).

1 Overview

Arguably one of the most intriguing machines that realize rational transductions
are the bimachine, designed by Schutzenberger ([11]) and studied, among others,
by Eilenberg who stated their importance in [3, §11.7, Theorem 7.1, p. 321]. A
bimachine is a compact representation of the composition of a left and a right
sequential transducer, and it characterizes the family of rational functions. A few
variations of the original design have been studied in [9], where it has been shown
that the scanning direction of its two reading heads does not matter. A natural
question which has not been addressed so far is “what family of transductions
are realized by bimachines that operate nondeterministically?”. We show that
these machines characterize the family of transductions that can be written as a
composition of a rational function and a finite substitution. They are equivalent
to the so-called input-unambiguous transducers (IU), which are close relatives
of the classical unambiguous transducers. We also show that nondeterministic
bimachines can “simulate” (i.e., they give a representation of) rational relations
with finite codomain (FC). Surprisingly, we prove that FC transductions be-
long strictly to the family of recognizable relations and that they can be written
as a finite union of subsequential functions. We notice that nondeterministic
bimachines are a compact representation of the composition of a left sequential
transducer and a right input-deterministic (ID) transducer - which is a close
relative of the classical right sequential transducer. Finally, we define restricted
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nondeterministic bimachines to be those which do not reset themselves at each
computation step. Surprisingly, we observe that this restriction increases their
representation power, allowing them to characterize the entire family of finitely
ambiguous (FA) rational relations. Basically, the reset/no-reset dichotomy re-
veals the difference between IU and FA families. Thus, by investigating the com-
putational power of nondeterministic bimachines, we have been led to a study
of various degrees of weak ambiguity in finite transducers.

The paper is structured as follows. In Section 2 we introduce transducers and
ambiguity. We give a normalized form for IU transducers and we characterize ID
transductions. Theorem 1 states the connection between IU and ID transduc-
tions by means of right sequential functions. In Section 3 we build a hierarchy
of ambiguity by introducing FA, UA and FC transductions and by establish-
ing their mutual relations. Since FC is a newly introduced family, we give a
Mezei-like characterization of FC transductions, thus proving their recognizabil-
ity (Theorem 2) and leading to a representation as a finite union of subsequential
functions. Section 4 holds the most important results of the paper: theorems 3, 4
and 5. We define several types of nondeterministic bimachines, show that some
types are equivalent and characterize the family of IU transductions, and reveal
that restricted nondeterministic bimachines characterize FA transductions. All
the proofs are omitted and can be found in [10].

2 Input-Unambiguous and Input-Deterministic
Finite Transducers

In the following we assume known basic notions of automata theory ([5], [8],
[13]). By DFA and NFA we understand deterministic and nondeterministic finite
automata, and by ε-free NFA we understand NFA with no ε-transitions, where
ε denotes the empty word.

By a finite transducer over the alphabets X and Y we understand a finite au-
tomaton over the product of free monoids X∗×Y ∗. In other words, a transducer
is a finite automaton whose transition labels are elements of X∗ × Y ∗, with the
meaning that the first component of the label is an input word and the second
component is an output word. It is well known that finite transducers realize
rational word relations (see for example [8, §IV.1.2, p. 566]), denoted by
Rat(X∗ × Y ∗), or simply Rat when the alphabets are understood. By RatF we
understand the family of rational functions.

Formally, a transducer is a tuple T = (Q,X, Y,E, q0, F ), where Q is a set of
states,X,Y are alphabets, q0 is an initial state, F is a set of final states and E is a
finite set of transitions which are elements ofQ×X∗×Y ∗×Q. The transduction
(binary word relation) realized by T will be denoted by |T |: X∗ → Y ∗ and is
defined similarly to the language accepted by an NFA. The transducer T is
normalized if the following conditions hold:

1. E ⊆ Q× (X ∪ {ε})× (Y ∪ {ε})×Q ;
2. F = {qf}, qf �= q0 ;
3. (p, x, α, q) ∈ E ⇒ p �= qf , q �= q0 .
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It is known that any rational transduction is realized by a normalized finite
transducer and that any transducer can algorithmically be normalized.

By a useful state (or transition, path, loop, etc.) in a transducer we un-
derstand a state (or transition, path, loop, etc.) which is used in at least one
successful computation. By an ε-input loop we understand a loop (in the tran-
sition graph) whose transitions have only ε-input labels.

The notion of ambiguity for automata (and transducers) relates to the number
of possible successful computations performed by an automaton for a given input.
For example, a DFA is unambiguous, whereas an NFA can have various degrees
of ambiguity.

Definition 1. An ε-NFA A is unambiguous (UNFA) if each word is the label of
at most one successful computation in A.

Let T = (Q,X, Y,E, q0, F ) be a finite transducer. The input automaton of T is
the finite automaton A = (Q,X, δ, q0, F ), where δ is given by

∀x ∈ X∗ : q ∈ δ(p, x)⇔ ∃α ∈ Y ∗ : (p, x, α, q) ∈ E, where p, q ∈ Q .

If the transducer is normalized, then its input automaton is an ε-NFA, otherwise
it may be a lazy NFA (its transitions are labelled with words rather than letters
or ε. ).

Definition 2. A finite transducer T is called input-unambiguous (IU, for
short) if its input automaton is unambiguous (i.e., an UNFA).

Notice that a transducer can still have different successful paths with same input
labels and nevertheless be input-unambiguous. One such situation is depicted in
Figure 1. Notice also the difference between this definition and the classical

b

a b

a

b/β

b/γ

b/δ

a/β

a/α

b/ψ

Fig. 1. An IU transducer and its input automaton

definition of unambiguous transducers ([1, p. 114]).

Remark 1. In our formalism, we imply that an IU transducer cannot have useful
ε-input loops, in the same way as an unambiguous automaton cannot have useful
ε-loops.

An IU transduction is a transduction realized by an IU transducer. Given
an arbitrary IU transducer, there exists an equivalent IU transducer in normal
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form, in the sense mentioned at the begining of Section 2. Indeed, the standard
normalization algorithm (see for example [1, §III.6, Corollary 6, p. 79]) does not
change the degree of ambiguity of a transducer.

We recall that a trim transducer has only useful states. Without loss of
generality, we follow the convention that if the initial state of a transducer is
also final then the pair (ε, ε) is realized by the transducer. This convention has
a theoretical explanation which we choose to ignore here, due to its interference
with the definition of ambiguity and normalization.

Lemma 1. Any IU transduction τ : X∗ → Y ∗ with τ(ε) = ε or τ(ε) = ∅
is realized by a trim IU transducer T = (Q,X, Y,E, q0, F ) which satisfy the
following conditions:

(i) E ⊂ Q×X × Y ∗ ×Q;
(ii) if τ(ε) = ε then F = {q0, qf}, else F = {qf}, and qf �= q0;
(iii) (p, x, α, q) ∈ E ⇒ q �= qf , p �= q0.

One can notice that it is decidable whether a finite transducer is IU or not. The
decision can be reduced to whether an ε-NFA is UNFA or not.

In the following we recall sequential transducers and functions in order to
draw a parallel with ID transducers which will be defined in the following. A
(left) sequential transducer is a tuple T ′ = (Q,X, Y, δ, λ, q0), where Q,X
and Y are as usual and δ : Q × X → Q and λ : Q × X → Y ∗ are partial
functions (transition and output functions) with a same domain (dom(δ) =
dom(λ)), that are extended in the usual way. This transducer is a particular
finite transducer that has all its states final and has the transition set given by
E = {(q, x, λ(q, x), δ(q, x))/(q, x) ∈ dom(δ)}. This type of transducers represents
a subfamily of rational functions: sequential functions. A right sequential
transducer is a sequential transducer that reads its input and writes its output
from right to left. It is known that any rational function can be written as a
composition of a left and a right sequential function ([1]).

Definition 3. An input-deterministic (ID) transducer is a tuple T =
(Q,X, Y, δ, ω, q0) where X, Y are alphabets, Q is a finite set of states, and

δ : Q×X → Q, and ω : Q×X → FP(Y ∗)

are partial functions with the same domain, denoting the transition and the out-
put function. (FP(Y ∗) denotes all finite parts of Y ∗)

In other words, an ID transducer is similar to a sequential transducer, with the
exception that reading an input letter leads to a finite number of output choices.
Notice that a transducer is ID if and only if its input automaton is deterministic
– hence justifying its name. As usual we define the family of ID transductions
to be the family of all transductions that are realized by ID transducers.

Lemma 2. A transduction is ID if and only if it is the composition of a sequen-
tial transduction and a finite substitution.
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Theorem 1. Let τ : X∗ → Y ∗ be a transduction with τ(ε) = ε. Then τ is an IU
transduction if and only if there exist a right sequential function μ : X∗ → Z∗

and an ID transduction ν : Z∗ → Y ∗ such that τ = ν ◦ μ. Moreover, μ can be
chosen to be total and length preserving.

Intuitively, in the above decomposition the sequential transducer represents the
set of unique successful paths of the unambiguous transducer, whereas the ID
transducer represents the nondeterminism of the output process.

It is also worth mentioning that a transduction is IU if and only if it is
the composition of a left sequential function and a “right” ID transducer, fact
that can be proven similar to Theorem 1. Here, by a right ID transducer we
understand a transducer that scans the input from right to left and writes the
output from right to left as well. It is apparent by now the similarity between
this characterization and the characterization of rational functions by right and
left sequential functions.

3 A Hierarchy of Ambiguity

In order to place IU and ID transductions into a proper context, in the following
we recall two known families of rational transductions: finitely and uniformly
ambiguous.

Definition 4. A rational transduction τ : X∗ → Y ∗ is finitely ambiguous
(FA) if | τ(u) |< ℵ0, ∀u ∈ X∗. We say that τ is uniformly ambiguous (UA) if
there is a constant N such that | τ(u) |< N, ∀u ∈ X∗.

These families of transductions have been studied and used in various application
in the past ([4], [6]). For example, it is known that an UA rational transduction
can be written as a finite union of rational functions ([6]), and one can easily
decide whether a rational transduction is in FA (this is equivalent to detecting
non-trivial ε-input loops in a finite transducer). However, we are not aware of
whether it is decidable if a rational transduction is in UA or not. Next we aim
at finding the relationship between all these families of rational word relations.

Corollary 1
IU ⊂ FA .

This is a direct consequence of Remark 1: since an IU transducer has no ε-input
loops, any input word can trigger a finite number of words to be written on the
output tape. It affirms that the transductions realized by IU transducers are in
FA, however they are not necessarily in UA. Indeed, the following example shows
an IU transducer which realizes a transduction that is not uniformly ambiguous.

Example 1. The transducer in Figure 2 realizes the transduction τ given by:

∀n ≥ 1 : τ(an) =

{⋃n
i=1{xi}, if n is even⋃n
i=1{yi}, otherwise

,
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a/y, a/ε

a/y, a/ε

a/x, a/ε

a/x, a/ε

a/x

a/y

Fig. 2. An IU transducer whose transduction is not UA

which clearly is not UA, however it is IU. On the other hand, not all rational
transductions which are UA are necessarily IU. The transduction

τ = {(an, xn)/n ≥ 1} ∪ {(an, yn)/n ≥ 1} (1)

(with a, x, y different letters) is UA (notice that it is written as a union of two
rational functions), however it is not IU. Indeed, a transducer T realizing τ must
have two successful computations for each input word an: one outputting xn and
the other yn, for all integers n. If these two successful computations coincide in
the input automaton of T , then in T must exist a successful computation which
“shuffles” x and y on the output tape, hence T cannot be IU.

Definition 5. A rational transduction τ : X∗ → Y ∗ is with finite codomain
(FC) if | τ(X∗) |< ℵ0.

Obviously, it is decidable whether a rational transduction is in FC or not (it is
equivalent to deciding whether the output automaton of a transducer accepts a
finite language or not).

Lemma 3. A rational transduction τ : X∗ → Y ∗ is in FC if and only if it can
be written as

τ =
⋃
i∈I

[Li ×Ri] ,

where I is finite, {Li}i∈I are disjoint regular languages and {Ri}i∈I are finite
languages.

One consequence of this lemma is the connection between transductions
with finite codomain and subsequential transductions. Recall that a (left)
subsequential transducer T ′ is a sequential transducer T = (Q,X, Y, δ, λ, q0)
(as defined in Section 2) together with a terminal output function ρ : Q → Y ∗,
that realizes the rational function | T ′ | (w) =| T | (w)ρ(δ(q0, w)). It is known
that there exist rational functions that can not be realized by either sequential
or subsequential transducers. For more on the topic consult [1, §IV.2].
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Corollary 2. Any FC transduction can be written as a finite union of subse-
quential functions.

In order to reveal the recognizability of FC transductions we recall that a recog-
nizable set in a monoid is a set defined by an action over that monoid (see,
for example, [8, p. 252]). Recall also that a subset of the direct product of two
monoids (also a monoid) is recognizable if and only if it can be written as a finite
union of blocks (a block is a direct product of two recognizable sets). This char-
acterization is known as Mezei’s characterization of recognizable sets in direct
product monoids (see [3, Proposition 12.2, p. 68, and the note at p. 75]). Then,
the recognizability of FC is a consequence of Lema 3. In the following, by Rec
we understand the set of recognizable transductions over the alphabets X and
Y , i.e., the family of recognizable subsets of X∗ × Y ∗.

Theorem 2
FC ⊂ Rec ∩ IU .

Notice that obviously FC ⊂ UA. Notice also that FC and the family of rational
functions overlap, but are incomparable.

Remark 2. Although both FC and ID are included in IU, there is no relation of
inclusion between FC and ID. For example, the transduction μ : {a}∗ → {a}∗
given by

∀n ≥ 1 : μ(an) =
n⋃

i=1

{ai}

is in ID but not in FC; whereas the transduction ν : {a}∗ → {a, b}∗ given by

∀n ≥ 1 : ν(an) =

{
a, if n is even

b, otherwise

is in FC (and in RatF, incidentally) but not in ID. Consequently, we may also
infer that both FC and ID are strictly included in IU.

In Figure 3 we present a hierarchy describing different levels of ambiguity,
where by dots we denote the areas where we have provided examples, including
the following three:

FC \ (RatF ∪ ID) : τ1(an) =

{
{x, y}, if n is even

z, otherwise
,

FA \ (UA ∪ IU) : τ2(an) = {ε} ∪
⋃n

i=1 x
i ∪

⋃n
i=1 y

i ,

(UA ∩ IU) \ (ID ∪RatF ∪ FC) : τ3(an) =

{
{x, y}, if n is even

zn, otherwise
.
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Fig. 3. Different degrees of ambiguity (dots represent examples)

4 Nondeterministic Bimachines

In the following we consider all input-unambiguous transducers to be trim and
normalized according to Lemma 1. We are now aiming at giving a bimachine-
characterization of IU.

Definition 6. A bimachine B = (Q,P,X, Y, δQ, δP , q0, p0, ω) over X and Y is
composed of

two finite sets of states Q and P ,
a finite input alphabet X and a finite output alphabet Y ,
two partial next state functions

δQ : Q×X → Q and δP : X × P → P ,

two initial states q0 ∈ Q and p0 ∈ P ,
and a partial output function ω : Q×X × P → Y ∗.

The next-state functions are extended to operate on words as follows:

– ∀q ∈ Q and p ∈ P : δQ(q, ε) = q and δP (ε, p) = p;
– ∀q ∈ Q, p ∈ P, a ∈ X and w ∈ X+:

δQ(q, wa) = δQ(δQ(q, w), a) and δP (aw, p) = δP (a, δP (w, p)).

Notice that function δP “reads” its argument word in reverse. We consider a
similar extension of the output function:

– ∀q ∈ Q and p ∈ P : ω(q, ε, p) = ε;
– ∀q ∈ Q, p ∈ P, a ∈ X and w ∈ X+:

ω(q, wa, p) = ω(q, w, δP (a, p))ω(δQ(q, w), a, p).
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The partial word function realized by B is a function fB : X∗ → Y ∗, defined
by fB(w) = ω(qo, w, p0) if ω is defined in (q0, w, p0) and is undefined otherwise.
Notice that fB(ε) = ε for any bimachine B. In essence, a bimachine is composed
of two partial automata without final states (more precisely, all states act as final)
and an output function. Indeed, (Q,X, δQ, q0) will denote the left automaton
of B and (P,X, δP , p0) its right automaton.

Bimachines are of great theoretical importance since they are specifically de-
signed to characterize the family of rational word functions. To our knowledge,
so far there has been no attempts to study nondeterministic bimachines. We
distinguish 3 components of a bimachine which are candidate to nondetermin-
ism: the left and right automata and the output function. According to this, we
define the following new types of bimachines:

1. FNObm : with finitely nondeterministic output (at each “step” the bimachine
nondeterministically writes a word on the output tape, choosing from a finite
set of choices);

2. NTbm : with nondeterministic transitions (the two underlying automata are
nondeterministic: ε-NFA);

3. LNTbm : with left nondeterministic transitions (only the “left automaton” is
nondeterministic);

4. RNTbm : with right nondeterministic transitions (only the “right automaton”
is nondeterministic);

5. NTObm : with both nondeterministic transitions and finitely nondeterministic
output;

and we denote by FNO, NT, LNT, etc. the families of transductions realized by
these types of bimachines.

It is important to observe that at each computation step of an NTbm B,
both the left and the right automata of B are “reset” to their initial state.
This point is made clear in Figure 4. While reading w1, the left automaton
reaches the state q, through the computation(path) labelled w1. However, in
the next computation step, the left automaton reads w1a and performs the
computation labelled w1a that may not overlap with the previous computation
(more precisely, the computation labelled w1a is not necessarily prefixed by the
computation labelled w1). This is due to the fact that the left automaton is reset
to the initial state before reading w1a (it does not continue the computation from
q while reading a).

Theorem 3
FNO = NT = LNT = RNT = NTO .

In other words, it does not matter which component of the bimachine is nondeter-
ministic. For this reason, we are allowed to employ the term nondeterministic
bimachine in a generic sense.

It has been shown in [9] that the scanning direction of the reading heads of
a (deterministic) bimachine does not matter. It is natural to question whether
this property still holds for nondeterministic bimachines.
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Automaton
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Left

w2w1 ab

w1a wR
2

q

r s

pω(q,a, p)

ω(r, b, s)

wR
2 b

Fig. 4. NTbm behavior: each computation step involves a “reset”

Corollary 3. The parsing direction of the reading heads of a nondeterministic
bimachine does not matter.

The same statement also applies to restricted nondeterministic bimachines - de-
fined later. It tells that convergent, left sequential, right sequential, and divergent
nondeterministic bimachines all have equal power. This is a consequence of The-
orem 3: one may use FNO bimachines and adapt the proof in [9, T.16, p. 135]
to the nondeterministic case.

We are now ready to state one of the main results of this paper, namely a
bimachine characterization of IU rational transductions.

Theorem 4. A transduction τ with τ(ε) = ε is IU rational if and only if it
is realized by a nondeterministic bimachine.

Consequence of Lemma 2 and Theorem 1 we obtain another characterization of
IU transductions, that by Theorem 4 becomes a characterization of nondeter-
ministic bimachines as well:

Corollary 4. A transduction τ : X∗ → Y ∗ is IU if and only if there exists a
rational function μ : X∗ → Z∗ and a finite substitution σ : Z∗ → FP(Y ∗) such
that τ = σ ◦ μ.

Notice that it is decidable whether a nondeterministic bimachine is single-valued
(realizes a rational function). Indeed, one can first construct an equivalent IU
transducer whose functionality can be decided ([12], [2]). Notice also that the
number of outputs for a given input of an IU transduction is a linear function
of the length of the input and the length of any output is also a linear function
of the length of the input. The converse does not hold, as the transduction (1)
in Section 3, Example 1 is not IU, however it verifies these conditions. Finally,
a surprising consequence of Corollary 4 and Theorem 2 is that any FC trans-
duction can be represented by a composition of a rational function and a finite
substitution as well.
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So far we have introduced nondeterministic bimachines with a special behav-
ior: at each computation step, these bimachines perform a “reset”, i.e., they
set their underlying automata to be in initial state. Then a natural question
occurs, that is, “what would happen if we inhibit the reset?”. This leads to
the definition of another type of nondeterministic bimachine: a restricted
nondeterministic bimachine. At each step, these bimachines are forced to
continue their computation from the states reached at the previous step (never-
theless, they remain nondeterministic).

Definition 7. A restricted nondeterministic bimachine (RNTbm) is a bima-
chine with nondeterministic transitions (NTbm) and multiple initial states B =
(Q,P,X, Y, δQ, δP , IQ, IP , ω), where the output function is extended as follows:

- ∀q ∈ Q, p ∈ P : ω(q, ε, p) = {ε};

- ∀w = a1...an ∈ X+ (where ∀i ∈ {1, ..., n} : ai ∈ X),
∀q0 ∈ IQ, p0 ∈ IP , ω(q0, w, p0) is given by:

{ ω(q0, a1, pn−1)ω(q1, a2, pn−2)...ω(qn−2, an−1, p1)ω(qn−1, an, p0) /
q1 ∈ δ∗Q(q0, a1), ..., qn−1 ∈ δ∗Q(qn−2, an−1),
p1 ∈ δ∗P (an, p0), ..., pn−1 ∈ δ∗P (a2, pn−2) }

Notice that by this behavior, the bimachine still operates nondeterministically.
However, the current states of its automata depend on the previous current
states. Surprisingly, although this seems like a restriction, RNTbm’s have a
greater power than NTbm’s. Notice also that we allow multiple initial states
- for improving the formalism. At the beginning of the operation, a RNT bima-
chine sets itself nondeterministically into two initial states corresponding to its
left and right automata.

Theorem 5. A transduction τ with τ(ε) = ε is in FA if and only if it is realized
by a RNTbm.

This theorem together with Theorem 4 completes the characterization of nonde-
terministic bimachines: they realize either IU or FA rational transductions, with
respect to whether a reset is or not in place. Notice in Figure 3 the gap between
deterministic bimachines (RatF) and nondeterministic ones (IU, FA).

5 Conclusion and Further Work

The goal of this paper has been twofold: to introduce nondeterministic bima-
chines and to study weakly ambiguous finite transducers. Nondeterministic bi-
machines can realize FC relations; however, they can do better than that: they
exactly represent the family of transductions that are the composition of rational
functions and finite substitutions. The transducer counterpart of these machines
is the input-unambiguous transducer, which is a slight variation of the classi-
cal notion of unambiguous transducer. FC relations are recognizable and they
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have a particular “Mezei representation”, as a finite union of blocks with certain
properties: their left components are disjoint and their right ones are finite. This
leads in a natural way to the representation of FC relations as a finite union
of subsequential functions - notice the parallel with the uniformly ambiguous
rational relations, that are finite unions of rational functions. Nondeterministic
bimachines can work in two “modes”: with or without reset. We have proven
that suppressing the reset in between computation steps increases their power:
they now characterize the family of finitely ambiguous transductions. Finally,
we believe that all major rational families of transductions have a “bimachine”
counterpart. In particular, we leave for immediate work the study of “ε-RNT”
bimachines (i.e., RNT bimachines with ε-advancement) that we believe charac-
terize the entire family of rational relations.
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assembly, the non-coding parts are eliminated the coding parts are transferred
and rearranged in their proper order.

Since single or double stranded DNA molecules can be thought of as a se-
quence of nucleotides or pairs of nucleotides, it is natural to represent them as
strings of symbols and to use the tools and techniques provided by formal lan-
guage theory to study the behavior of the molecules represented by the strings.

Several models for the gene de-scrambling process of ciliates were also es-
tablished. In [6], [7], the gene assembly is modeled by three unary operations
corresponding to intra-molecular recombinations, while in [10], [11], binary op-
erations corresponding to intermolecular recombinations are proposed. The rela-
tionship of the two types of models is investigated in [9] where it is shown that if
the binary operations of the intermolecular model are defined to be irreversible,
as the operations of the intra-molecular model are, then the two different gene
assembly strategies are equivalent, they are able to assemble the same sets of
strings.

In the present paper we also investigate formal language theoretic string oper-
ations proposed to model the DNA sequence rearrangements observed during the
gene assembly of ciliates. We consider both inter- and intra-molecular recombi-
nations, so our approach resembles both types of models mentioned above, but
the operations we propose are all reversible, in which sense we more closely
follow [11].

The basic idea of our model is the following. There is a collection of strings
and a finite set of operations modeling the recombinant behavior of the genetic
material. The language generated by the system consists of all words which can
be obtained from the elements of the initial collection by (iterative) applications
of these operations. This idea is not new, see for example [2], [3], [4], but our
model is essentially different from those considered so far. Similarly to [5], the
string collections we consider are finite multisets, thus, in each derivation step,
only a finite number of strings is available in a finite number of copies. This
makes our model uninteresting from the point of view of the generative power
since only finite languages can be produced. On the other hand, however, it
enables the study of the effect of the parallel application of the operations, in
contrast to the case when the generated strings are available in arbitrary many
copies making the generation process essentially sequential.

We consider a sequential and the two different types of parallel derivation
modes (see also [5]), and investigate the effect these have on the behavior of
the system. The possible parallelism of the gene assembly process of ciliates was
also considered in [8] in the framework of the intra-molecular model, but our
approach is not only different because of the different model we use, but also
because of our different intention. We do not only consider parallelism as a way
to speed-up the process by executing more operations simultaneously, but also
as a way to control it, to eliminate some of the many derivation paths that
otherwise would be made available by the reversible string operations. In this
respect our research is related to [1] and [12] where a similar control is achieved
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by the use of so called template strings, words which themselves are not changed
during a recombination operation but only guide and control the process.

In what follows, we first define the model called multiset systems with ciliate
operations, together with the sequential and the different types of parallel modes
of application of the recombination operations, then examine the effect that these
different modes have on the multisets or on the words which can be produced
by the system.

By reasons of space limitations, some proofs are omitted.

2 Definitions

Let V be a finite set of symbols (or letters) called an alphabet, and let the finite
sequences of its elements be called words (or strings) over V . Let V ∗ and V +

be the set of all words over V (including the empty word λ) and the set of all
non-empty words over V , respectively. For a word w ∈ V ∗ and a letter a ∈ V ,
we denote the length of w by |w| and the number of occurrences of a in w by
#a(w). For any set of words L ⊆ V ∗, let alph(L) ⊆ V denote the set of sym-
bols appearing in the words, alph(L) = {a ∈ V | #(w)a > 0 for some w ∈ L}.
Let V i denote the set of all words of length at most i for some i ≥ 0, and let
the set of all subwords x of a string w = αxβ where w, x, α, β ∈ V ∗ be de-
noted by sub(w). The mirror image (or reverse) of a string w ∈ V ∗ is denoted
by wR.

The circular word 〈x〉, x ∈ V ∗ over V is defined as 〈x〉 = {x2x1 | x = x1x2,
where x1, x2 ∈ V ∗}. The set of subwords of a circular word 〈x〉 is defined as
sub(〈x〉) =

⋃
x′∈〈x〉 sub(x

′). The length of the circular word 〈x〉 is the length of x,
|〈x〉| = |x|, the number of occurrences of a symbol a in 〈w〉 is #a(〈w〉) = #a(w).
The set of all circular words over the alphabet V is denoted by V 〈∗〉, and the set
of all circular words of length at most i, i ≥ 0, is denoted by V 〈i〉.

Formally, a multiset M over a set A is a mapping of A into the set N of non-
negative integers. M(x) is called the multiplicity of x ∈ A in M . The support
of multiset M is the set supp(M) = {x ∈ A | M(x) > 0}. We say that x ∈ A
is an element of M , denoted by x ∈ M , if x ∈ supp(M). M is called finite
or empty, if its support, supp(M) is finite or empty, respectively. We denote
empty multisets in the same way as empty sets, by the symbol ∅. The union of
two multisets M1 and M2 over the same set, A, is denoted as M1 ∪M2 with
(M1 ∪M2)(x) = M1(x) +M2(x) for all x ∈ A.

A finite multiset M can be represented as a collection off elements containing
M(x) occurrences of x. For example, the multiset M over {a, b}∗ with M(a) =
M(b) = M(aba) = 1, M(ab) = M(ba) = 2 and M(x) = 0 in all other cases can,
be represented as M = [a, b, ab, ab, ba, ba, aba]1. Obviously, as for sets, the order
of the elements in this representation is not fixed and can be changed without
changing the multiset.

1 We use the brackets [ and ] instead of { and } in order to distinguish multisets from
sets.
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Let M be a multiset over V ∗∪V 〈∗〉. The cardinality, the ordinary cardinality,
and the length of M is defined as

#(M) =
∑

x∈V ∗∪V 〈∗〉
M(x), #o(M) =

∑
x∈V ∗

M(x), and l(M) =
∑

x∈V ∗∪V 〈∗〉
M(x)|x|,

respectively.
For a multiset over V ∗ ∪ V 〈∗〉, M = [w1, w2, . . . , wn] (in the representation

above) we have l(M) = |w′1w′2 . . . w′n| where w′i = wi for wi ∈ V ∗ and w′i ∈ 〈wi〉
if wi ∈ V 〈∗〉, 1 ≤ i ≤ n. Moreover, for M over V ∗ ∪ V 〈∗〉 and a ∈ V , we set
#a(M) = #a(w′1w′2 . . . w′n) with w′1w′2 . . . w′n as above.

Definition 1. A scheme with ciliate operations (a CO scheme in short) is a pair
(V, P ), where V is an alphabet and P ⊆ V + is a finite set of pointers such that
α ∈ P implies αR ∈ P .

Definition 2. Let (V, P ) be a CO scheme as above. We define the following
operations with respect to the given CO scheme.

A loop direct repeat excision on w ∈ V ∗ is defined as

lde(w) = {(xαz, 〈yα〉) | w = xαyαz, x, z ∈ V ∗, y ∈ V +, α ∈ P, sub(y)∩P = ∅ }.

A loop direct repeat insertion of the circular word 〈yα〉, y ∈ V +, α ∈ P ,
sub(y) ∩ P = ∅, into the linear word w ∈ V ∗ is defined as

ldi(w, 〈yα〉) = {xαyαz | w = xαz, x, z ∈ V ∗}.

A hairpin inverted repeat excision/reinsertion and a double loop alternating direct
repeat excision/reinsertion on the linear word w ∈ V ∗ is defined as

hi(w) = {xαyRαRz | w = xαyαRz, x, z ∈ V ∗, y ∈ V +, α ∈ P},
dlad(w) = {xαuβzαyβv | w = xαyβzαuβv, x, z, v ∈ V ∗, y, u ∈ V +, α, β ∈ P}.

We say that [w] ⇒hi [v] if v ∈ hi(w), [w] ⇒dlad [v] if v ∈ dlad(w) for some v, w ∈
V ∗, [w] ⇒lde [v1, v2] if (v1, v2) ∈ lde(w) for some w, v1 ∈ V ∗ and v2 ∈ V 〈∗〉, and
[w1, w2]⇒ldi [v] if v ∈ ldi(w1, w2) for some v, w1 ∈ V ∗ and w2 ∈ V 〈∗〉.

Definition 3. A multiset system with ciliate operations (an MCO system in
short) is a triple G = (V, P, I) where (V, P ) is a CO scheme and I is a finite
multiset over V containing only linear words, that is, w ∈ I implies w ∈ V ∗.

Definition 4. Let G = (V, P, I) be an MCO system as above. For two multisets
M and M ′, we define the following three types of the derivation relation.

– M ′ can be obtained from M by a sequential derivation step, denoted as
M ⇒s M

′ if M = [v1, . . . , vn], M ′ = [w1, . . . , wm] and either
1. m = n and [v1] ⇒X [w1] for X ∈ {hi, dlad}, while wi = vi, 2 ≤ i ≤ n,

for some appropriate indexing of the elements, or
2. m = n + 1 and [v1] ⇒lde [w1, wn+1], while wi = vi, 2 ≤ i ≤ n, for some

appropriate indexing of the elements, or
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3. m = n − 1 and [v1, vn] ⇒ldi [w1], while wi = vi, 2 ≤ i ≤ m for some
appropriate indexing of the elements.

– M ′ can be obtained from M by a maximally parallel derivation step, denoted
as M ⇒mp M ′ if M and M ′ can be partitioned into four sub-multisets as
M = M1 ∪M2 ∪M3 ∪M4 and M ′ = M ′

1 ∪M ′
2 ∪M ′

3 ∪M ′
4 where #(M1) +

#(M2) + #(M3) > 0 (thus, at least one of these partitions is not empty)
and the following conditions hold.
1. Either M1 = ∅, in which case M ′

1 = ∅, or if M1 = [s1, . . . , sk] for some
k ≥ 1, then M ′

1 = [w1, . . . , wk] where [si] ⇒X [wi], 1 ≤ i ≤ k, X ∈
{hi, dlad}.

2. Either M2 = ∅, in which case M ′
2 = ∅, or if M2 = [t1, . . . , tl] for some

l ≥ 1, then M ′
1 = [x1, y1, . . . , xl, yl] where [ti]⇒lde [xi, yi], 1 ≤ i ≤ l.

3. Either M3 = ∅, in which case M ′
3 = ∅, otherwise M3 consists of an

even number of elements M3 = [u1, v1, . . . , um, vm] for some m ≥ 1, and
M ′

3 = [z1, . . . , zm] where [ui, vi]⇒ldi [zi], 1 ≤ i ≤ m.
4. Finally, M ′

4 = M4 where if M4 �= ∅, then lde(p) = hi(p) = dlad(p) =
ldi(p, q) = ∅ for all p, q ∈M4.

– We define a strongly maximally parallel derivation step, M ⇒smp M ′, to
be a maximally parallel derivation step with the four partitions of M =
M1 ∪M2 ∪M3 ∪M4 where Mi, 1 ≤ i ≤ 4 is exactly as above, chosen in such
a way that considering any other maximally parallel derivation step with
M = M̄1 ∪ M̄2 ∪ M̄3 ∪ M̄4, the condition #(M4) ≤ #(M̄4) holds.

Thus, in the sequential mode, one operation is applied to one string (or two
strings in the case of ldi) in one derivation step. In the maximally parallel mode,
a multiset of strings is chosen to which operations can be applied, in such a
way that no other string or string pair can be added to the chosen multiset to
which further operations are applicable. A multiset of strings is chosen also in the
strongly maximally parallel mode, but this time in such a way, that it contains
the maximal number of strings from the possible choices that are available. In
other words, a strongly maximally parallel derivation step is a maximal parallel
derivation step where the number of words not involved in any operation is the
least possible.

Let us denote the reflexive and transitive closure of ⇒s,⇒mp, and ⇒smp by
⇒∗

s,⇒∗
mp, and ⇒∗

smp, respectively.

Definition 5. Let G = (V, P, I) be an MCO system as above. The multiset
language, the word language, and the strong word language generated by G in
the sequential, maximal parallel, and strongly maximal parallel derivation modes
are defined as follows.

mL(G,X) = {M | I ⇒∗
X M},

wL(G,X) = {w ∈ V ∗ | w ∈M for some M ∈ mL(G,X)},
swL(G,X) = wL(G,X) ∪ {w ∈ u | u ∈ V 〈∗〉, u ∈M

for some M ∈ mL(G,X)},
where X ∈ {s,mp, smp}.
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Thus, the multiset language contains all multisets which can be obtained from
the initial one, the word language contains all linear words that can be obtained
as elements of a multiset of the multiset language, and the strong word language
contains all linear words plus all possible linearizations of the circular words that
can be obtained as elements of a multiset of the multiset language.

For X ∈ {m,w, sw} and Y ∈ {s,mp, smp}, we denote the classes of all lan-
guages XL(G, Y ) which can be generated by an MCO system G, by XL(Y ). If
we restrict to MCO systems G = (V, P, I) with #(I) = n, we use the notation
XLn(Y ).

3 Multiset Languages

In this section we investigate the properties of multiset languages, the sets of
multisets which can be obtained by various types of MCO systems from the
initial configuration.

Lemma 1. For an MCO system G = (V, P, I), a ∈ V , X ∈ {s,mp, smp}, and
any M ∈ mL(G,X),

l(M) = l(I), #a(M) = #a(I), and #o(M) = #o(I).

Remark. By Lemma 1, mLn(X) and mLn′(X ′) for X,X ′ ∈ {s,mp, smp}, and
n, n′ ∈ N are disjoint classes of multisets if n �= n′, since the elements of mLn(X)
and those of mLn′(X ′) have different ordinary cardinalities, n and n′, respec-
tively.

Thus, mL(X) = mL(X ′) (mL(X) ⊆ mL(X ′)), where X,X ′ ∈ {s,mp, smp},
if and only if mLn(X) = mLn(X ′) (mLn(X) ⊆ mLn(X ′)) for all n ∈ N, and
furthermore, mL(X) and mL(X ′) are incomparable if and only if mLn(X) and
mLn(X ′) are incomparable for at least one n.

Therefore, in order to study the relationship between mL(X) and mL(X ′), it
is sufficient to investigate the relationship between mLn(X) and mLn(X ′) for
each n ∈ N.

Theorem 2

1. mL1(s) = mL1(mp),
2. mL1(smp) and mL1(X) are incomparable for X ∈ {s,mp}.
3. mLn(s), mLn(mp), and mLn(smp) are pairwise incomparable for n ≥ 2.

Proof. 1. The equality is obvious because there is always at most one non-
circular word present, and this means that there is at most one operation which
is applied in any derivation step.

2. Consider the MCO system G = ({a, b}, {b}, [babab]). Let

M1 = [babab], M2 = [bab, 〈ab〉], M3 = [b, 〈ab〉, 〈ab〉].
Then we have

L1 = mL(G,X) = {M1,M2,M3}, X ∈ {s,mp} and

L2 = mL(G, smp) = {M1,M2}.
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The language L1 cannot be generated in the strongly maximal parallel mode,
because after starting with M1 and obtaining M2, a strongly maximal derivation
step can only lead to M1 again, and since the initial multisets cannot contain
circular words, to start with M1 would be the only possibility.

To generate L2 in the sequential or in the maximal parallel mode with a system
G′ = ({a, b}, P ′,M1), either a ∈ P ′ or b ∈ P ′ because one of these pointers is
necessary to obtain M2. Now, if any of these pointers is present, then M3 is also
obtained which means that L2 cannot be generated by any G′ in the sequential
or in the maximal parallel derivation mode.

3. We start by considering the case when n = 2, and first prove the incompa-
rability of mL2(s) to both mL2(mp) and mL2(smp). Consider the MCO system

G = ({a, b}, {a}, [aba, aba]),

and let

M1 = [aba, aba], M2 = [aba, a, 〈ba〉], M3 = [a, a, 〈ba〉, 〈ba〉], M4 = [a, ababa].

Then
L1 = mL(G, s) = {M1,M2,M3,M4},

L2 = mL(G,mp) = mL(G, smp) = {M1,M3}.
In order to prove the incomparability of mL2(s) to mL2(mp) and mL2(smp), it
is sufficient to show that L1 �∈ mL2(mp), L1 �∈ mL2(smp), and L2 �∈ mL2(s).

Assume that L1 ∈ mL2(X), X ∈ {mp, smp}. Then there is an MCO system
G′ = ({a, b}, P ′, I ′) such that L1 = mL(G′,mp) or L1 = mL(G′, smp), and
I ′ ∈ {M1,M4}.

If I ′ = M1, then any generation of M �= I ′ from I ′ requires the application of
the lde operation with respect to the pointer a. But if a ∈ P ′, then b �∈ P ′, and
we have M1 ⇒X M3 and M3 ⇒X M1, X ∈ {mp, smp}.

If I ′ = M4, then in order to obtain any M �= I ′ from I ′, either a ∈ P ′ or
b ∈ P ′. If b ∈ P ′, then we only get M4 ⇒X M2 ⇒X M4, X ∈ {mp, smp}, thus
a ∈ P ′ and b �∈ P ′ must hold. But then M4 ⇒X M2, and from M2 we only obtain
one of M2 and M4 in the maximal parallel mode, or only M2 in the strongly
maximal parallel mode.

Now assume that L2 ∈ mL2(s). Then there is an MCO system G′′ = ({a, b},
P ′′, I ′′) with L2 = mL(G′′, s). Again, I ′′ = M1 because M3 contains circular
words. Any operation applied to M1 in the sequential mode yields a multiset
containing one occurrence of aba. Thus, we produce M1 or a set different from
both M1 and M3. Therefore, mL(G′′, s) = {M1} or M ∈ mL(G′′, s) for some
M �∈ {M1,M3}. Thus, mL(G′′, s) �= L2 in contrast to the choice of G′′.

The incomparability of mL2(mp) and mL2(smp) can be similarly shown, we
omit the proof due to space limitations.

The proof for n ≥ 3 can be given by augmenting the languages used in the
arguments with n− 2 such words to which no operations can be applied. �

Now by Lemma 1, the remark above, and Theorem 2, we obtain the following
corollary.
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Corollary 3. The classes of multiset languages mL(s), mL(mp), and mL(smp)
are pairwise incomparable.

4 Word Languages and Strong Word Languages

Now we continue by considering the sets of words, linear or circular, which can
be generated by the various types of MCO systems.

Lemma 4. For any MCO system G = (V, P, I),

XL(G, Y ) ⊆
l(I)⋃
i=0

V i, (1)

where X ∈ {w, sw}, and Y ∈ {s,mp, smp}.

In the next two lemmas, we prove that equality cannot hold in (1).

Lemma 5. Let X ∈ {w, sw} and let Y ∈ {s,mp, smp}. If G = (V, P, I) is an
MCO system such that |V | ≥ 2 and l(I) > 1, then

l(I)⋃
i=j

V i \XL(G, Y ) �= ∅ for any 0 ≤ j < l(I).

Lemma 6. For any MCO system G = (V, P, I) over a one-letter alphabet V =
{a}, and any X ∈ {w, sw}, Y ∈ {s,mp, smp}, if {ai, ai+1} ⊆ XL(G, Y ), for
some i ≥ 2, then l(I) ≥ i+ 3.

Proof. Let us assume that G = ({a}, P, I), and ai, ai+1 ∈ XL(G, Y ) for some
X, Y as above. If ai, ai+1 ∈ I, then l(I) ≥ 2i + 1 ≥ i + 3 (since i ≥ 2), thus
our statement holds. If at least one of ai or ai+1 is not in I, then this means
that starting the derivation from I, we can obtain two not necessarily disjoint
pairs of a linear word and a possibly empty set of circular words (w1, C1) and
(w2, C2), wi ∈ V ∗, Ci ⊂ V 〈∗〉, 1 ≤ i ≤ 2, such that the elements of the first pair
can be combined through ldi operations to obtain ai, and the elements of the
second pair can be combined to obtain ai+1.

Now, since ai and ai+1 have different length, at least one of the elements
of one pair has to be different from another element of the other pair, thus,
either w1 and w2 are different, or there is a circular word c ∈ C2, c �∈ C1. This
gives us a lower bound on the length of any configuration (which equals the
length of the initial multiset) as l(I) ≥ |w1| + |w2| + l(C1) in the first case, or
l(I) ≥ |w1|+ |c|+ l(C1) in the second.

Since the shortest possible pointer contains two symbols (if a ∈ P then no
lde operations can be applied), the minimal length of a linear word which can
participate in an ldi operation cannot be less then two, and the minimal length of
a circular word (the result of an lde operation) is at least three. Thus, considering
the first case, |w1|+ l(C1) = i and |w2|+ l(C1) = i+ 1 implies |w2| = |w1|+ 1,
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and since the minimal length of any linear word which can participate in the
ldi operation is two, we obtain |w2| ≥ 3, that is, l(I) ≥ i + 3. If we consider
the second case, we have l(I) ≥ i + |c|, where c is a circular string that can be
inserted into a linear word through an ldi operation. The minimal length of such
words is three, so we have l(I) ≥ i+ 3 also in this case. �

Let L ⊆ V ∗ be an arbitrary finite language and let a ∈ V . The MCO system
G = (V, {an}, L) with n > max{|x| | x ∈ L} satisfies XL(G, Y ) = L for all
X ∈ {w, sw}, Y ∈ {s,mp, smp} since no application of any operation is possible.
This fact together with Lemma 4 implies that the languages XL(Y ) where X,Y
as above, coincide with the class of finite languages, thus, we have the following
result.

Theorem 7. XL(s) = X ′L(mp) = X ′′L(smp), X,X ′, X ′′ ∈ {w, sw}.

More interesting questions arise if we consider the class of languages which can
be generated from initial multisets with a certain number of elements, that is, if
we consider the families XLn(Y ), X ∈ {w, sw}, Y ∈ {s,mp, smp}.

Lemma 8. For any n ≥ 1, X,X ′ ∈ {w, sw}, and Y, Y ′ ∈ {s,mp, smp},

XLn+1(Y ) \X ′Ln(Y ′) �= ∅.

Let us now continue by examining the relationship of language classes which can
be obtained from initial multisets of the same cardinality with different types of
derivation modes.

Lemma 9. For any n ≥ 1 and X ∈ {w, sw},

XLn(s) ∩XLn(mp) ∩XLn(smp) �= ∅.

Proof. Let, for all j ≥ 1,

Lj = {a3i | 1 ≤ i ≤ j} . (2)

The MCO system

G = ({a}, {a}, [a3, a9, a27, . . . , a3n

])

where all elements of the axiom multiset have the multiplicity 1, thus #(I) = n,
generates Ln as a word language and as a strong word language in all modes,
because the application of the hi and dlad operations do not change the words
and the ldi, lde operations cannot be applied. �

Lemma 10. For X ∈ {w, sw} and n ≥ 2,

(XLn(mp) ∩XLn(smp)) \XLn(s) �= ∅.
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Proof. We first prove the statement for n = 2. Consider the MCO system

G = ({a, b, c, d, e}, {ab, ba, cd, dc}, [abcdba, cdecd])

having an initial multiset with two elements. Then

[abcdba, cdecd]⇒Y [abdcba, cd, 〈ecd〉]⇒Y [abcdba, cdecd]

for Y ∈ {mp, smp}, thus, the languages generated by G are

Lw = wL(G, Y ) = {abcdba, cdecd, abdcba, cd} and

Lsw = swL(G, Y ) = Lw ∪ 〈ecd〉.
Suppose now that XL(G, Y ) = XL(G′, s), X ∈ {w, sw}, Y as above, for some

G′ = ({a, b, c, d, e}, P ′, I ′),

where #(I ′) = 2. We show that this is not possible.
If I ′ ∈ {[abcdba, cdecd], [abdcba, cdecd]} then G′ needs to generate the word

cd. If cd is somehow obtained from abcdba, then a word not containing cd as
a subword is also produced, and since there is no such word in Lw or Lsw,
cd must be cut out from cdecd. This means that either c ∈ P ′, d ∈ P ′, or
cd ∈ P ′ and both cd and 〈ecd〉 are obtained by an lde operation. But then
abcdecdba ∈ ldi(abcdba, 〈ecd〉) would also be produced which is a contradiction.

If I ′ ∈ {[w1, w2] | w1, w2 ∈ {abcdba, abdcba, cd} }, then no word containing
the symbol e, if I ′ = [cdecd, cd], then no word containing the symbols a, b can
be produced.

Thus, we can conclude that wL(G′, s) = Lw is a contradiction.
To see that swL(G′, s) = Lsw is also impossible, we need to check in addition

the word pairs containing elements of 〈ecd〉.
If I ′ ∈ {[w1, w2] | w1 ∈ {abcdba, abdcba}, w2 ∈ 〈ecd〉}, then the generation of

the word cdecd requires all the available copies of c, d. This means that words
containing only a, b must also be generated which is a contradiction. On the
other hand, if I ′ ∈ {[w1, w2] | w1 ∈ {cdecd, cd}, w2 ∈ 〈ecd〉}, then no word
containing a or b can be generated, thus there is no G′ with #(I ′) = 2 and
XL(G, Y ) = XL(G′, s), X ∈ {w, sw}, Y ∈ {mp, smp}, which completes the
proof for the case of n = 2.

To see that the statement also holds for n ≥ 3, consider the languages L′n =
LX ∪ Ln−2 where X ∈ {w, sw}, and Ln−2 is the unary language for j = n −
2 defined at (2) in the proof of Lemma 9 above, with the assumption that
alph(LX) ∩ alph(Ln−2) = ∅.

Since LX and Ln−2 are languages over disjunct alphabets, their words have
to be produced independently in any MCO system generating L′n. As shown in
Lemma 8, the production of Ln−2 requires n − 2 different words in the initial
multiset, and as shown above, the remaining two words cannot produce LX in
the sequential mode, so we can conclude that the statement of our lemma holds
for any n ≥ 2. �
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There are also languages which can be generated by systems working in the se-
quential and maximal parallel derivation modes, but not in the strongly maximal
parallel one.

Lemma 11. For X ∈ {w, sw} and n ≥ 2,

(XLn(s) ∩XLn(mp)) \XLn(smp) �= ∅.

And finally, there are languages generated by systems working in the strongly
maximal parallel derivation mode which cannot be generated in the sequential
or maximal parallel modes.

Lemma 12. For X ∈ {w, sw} and n ≥ 2,

XLn(smp) \ (XLn(mp) ∪XLn(s)) �= ∅.

Based on Lemma 9, Lemma 10, Lemma 11, and Lemma 12, we can formulate
the following statement.

Theorem 13. For any X ∈ {w, sw} and n ≥ 2, the language classes XLn(smp)
and XLn(Y ), for Y ∈ {s,mp}, are incomparable.

5 Conclusion

We have studied the effect of applying reversible recombination operations on
finite string collections in the sequential, the maximally parallel, and the strongly
maximally parallel manner.

We have seen that the class of sets of multisets generated by the three modes
are pairwise incomparable.

The classes of word and strong word languages, in general, coincide with the
class of finite languages, but considering systems with initial multisets of a given
cardinality we have shown the incomparability of the language classes produced
in the strongly maximally parallel mode and those produced in the maximally
parallel or the sequential mode. About the relationship of the language classes
generated by the maximally parallel and the sequential mode, we know that
they cannot be equal since by Lemma 10, there are word languages generated in
maximally parallel mode which cannot be produced sequentially.
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Abstract. We consider the use of DNA trajectories to characterize
DNA bond shapes. This is an extension of recent work on the bond-
free properties of a language. Using an new definition of bond-freeness,
we show that we can increase the types of DNA bond shapes which are
expressible. This is motivated by the types of bond shapes frequently
found in DNA computing.

We examine the algebraic properties of sets of trajectories. In partic-
ular, we consider rotation of trajectories and weakening of the bonding
conditions expressed by a set of DNA trajectories. We also consider de-
cidability results for bond-freeness with respect to our definition.

1 Introduction

DNA computing is the process of translating computational problems into
strands of DNA such that reactions on DNA strands indicate solutions to the
problems [2, 12]. When constructing a set of DNA strands for use in DNA com-
puting, it is imperative that the types of bonds which can and cannot appear
between strands in this set are well-understood to ensure the desired outcome.
Because of this, the study of the description and characterization of bond shapes
in DNA has received a great deal of attention in the literature [4, 5, 6, 7, 8, 9, 10].
One of the most promising ways of interpreting and assessing bonding between
strands is via the use of trajectories.

The use of DNA trajectories was proposed by Kari et al. [10] as a means of
formalizing the visual description of the bonding of two strands. The inclusion of
the term trajectories in DNA trajectories reflects the underlying use of shuffle on
trajectories [11] to interpret the bonding described by a set of DNA trajectories.
The strength of DNA trajectories is that they clearly represent the bonding
which occurs between two single-stranded DNA molecules, and does so with the
use of the well-understood concept of shuffle on trajectories. Further, trajectories
are robust with respect to changes in the description such as the lengths of bonds.

However, as we demonstrate in this paper, the interpretation of DNA trajecto-
ries proposed by Kari et al. [10] is restricted somewhat in its descriptional power.
To resolve this, we propose a more natural interpretation of DNA trajectories,
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whose capacity to describe DNA bonding patterns is greater than the original
definition. With this definition, more complex interactions between strands of a
set of DNA are describable. This change in interpretation is motivated by the
types of bonds which are seen in experimental DNA computing.

We consider algebraic properties of our new definition related to redundancy.
In particular, we can characterize the effect of weakening of bonding and rotation
of DNA trajectories and their effect on sets of trajectories. We have also shown
that determining whether a regular language is bond-free with respect to a set of
DNA trajectories is decidable even if the set of DNA trajectories is context-free,
and is decidable in quadratic time if the set of DNA trajectories is regular.

2 Definitions

For additional background in formal languages and automata theory, please see
Rozenberg and Salomaa [13]. For an introduction to DNA computing, see Păun et
al. [12] or Amos [2]. Let Σ be a finite set of symbols, called letters. Then Σ∗ is the
set of all finite sequences of letters from Σ, which are called words. The empty
word ε is the empty sequence of letters. The length of a word w = w1w2 · · ·wn ∈
Σ∗, where wi ∈ Σ, is n, and is denoted |w|. Note that ε is the unique word of
length 0. Given a word w ∈ Σ∗ and a ∈ Σ, |w|a is the number of occurrences of
a in w. By extension, for any S ⊆ Σ, we let |w|S =

∑
a∈S |w|a.

A language L is any subset of Σ∗. By L, we mean Σ∗ − L, the complement
of L. We denote singleton languages {w} simply by w.

Let Σ,Δ be alphabets and h : Σ → Δ be any function. Then h can be
extended to a morphism h : Σ∗ → Δ∗ via the condition that h(uv) = h(u)h(v)
for all u, v ∈ Σ∗. Similarly, h can be extended to an anti-morphism via the
condition that condition that h(uv) = h(v)h(u) for all u, v ∈ Σ∗. An involution
θ is any function θ : Σ → Σ such that θ2 is the identity mapping on Σ. Note
that an involution satisfies θ−1 = θ and every involution is a bijection. If θ is
extended to a morphism, we say that it is a morphic involution, while we use
the term anti-morphic involution for the case when θ is extended to an anti-
morphism. We denote by ι : Σ∗ → Σ∗ the identity morphism, and μ : Σ∗ → Σ∗

denotes the identity anti-morphism (or mirror involution).
When dealing with DNA as words over the alphabet {A,C,G, T }, we adopt

the convention that words are read from the 5’-end to the 3’-end. When illus-
trating this fact, we draw an arrow from the 5’-end to the 3’-end.

A deterministic finite automaton (DFA) is a five-tuple M = (Q,Σ, δ, q0, F )
where Q is the finite set of states, Σ is the alphabet, δ : Q × Σ → Q is the
transition function, q0 ∈ Q is the distinguished start state, and F ⊆ Q is the
set of final states. We extend δ to Q×Σ∗ in the usual way. A word w ∈ Σ∗ is
accepted by M if δ(q0, w) ∈ F . The language accepted by M , denoted L(M), is
the set of all words accepted by M . A language is called regular if it is accepted
by some DFA.

A context-free grammar (CFG) is a four-tuple G = (V,Σ, P, S), where V is
a finite set of non-terminals, Σ is a finite alphabet, P ⊆ V × (V ∪ Σ)∗ is a



182 M. Domaratzki

finite set of productions and S ∈ V is a distinguished start non-terminal. If
(α, β) ∈ P , we usually denote this by α → β. If G = (V,Σ, P, S) is a CFG,
then given two words α, β ∈ (V ∪ Σ)∗, we denote α ⇒G β if α = α1α2α3,
β = α1β2α3 for α1, α2, α3, β2 ∈ (V ∪Σ)∗ and α2 → β2 ∈ P . Let ⇒∗

G denote the
reflexive, transitive closure of ⇒G. Then the language generated by a grammar
G = (V,Σ, P, S) is given by L(G) = {x ∈ Σ∗ : S ⇒∗

G x}. If a language is
generated by a CFG, then it is a context-free language (CFL).

2.1 Trajectory-Based Operations

We now define shuffle on trajectories, the main tools for examining bond-free
properties in this paper.

The shuffle on trajectories operation is a method for specifying the ways in
which two input words may be merged, while preserving the order of symbols in
each word. Each trajectory t ∈ {0, 1}∗ with |t|0 = n and |t|1 = m specifies one
particular way in which we can form the shuffle on trajectories of two words of
length n (as the left operand) and m (as the right operand). The word resulting
from the shuffle along t will have length n+m, with a letter from the left input
word in position i if the i-th symbol of t is 0, and a letter from the right input
word in position i if the i-th symbol of t is 1.

Formally [11], let x and y be words over an alphabet Σ and t, the trajectory,
be a word over {0, 1}. The shuffle of x and y on trajectory t is denoted by x t y.
If x = ax′, y = by′ (with a, b ∈ Σ) and et ∈ {0, 1}∗ (with e ∈ {0, 1}), then

x et y =
{
a(x′ t by

′) if e = 0;
b(ax′ t y

′) if e = 1.

If x = ax′ (a ∈ Σ), y = ε and et ∈ {0, 1}∗ (e ∈ {0, 1}), then

x et ε =
{
a(x′ t ε) if e = 0;
∅ otherwise.

If x = ε, y = by′ (b ∈ Σ) and et ∈ {0, 1}∗ (e ∈ {0, 1}), then

ε et y =
{
b(ε t′ y′) if e = 1;
∅ otherwise.

We let x ε y = ∅ if {x, y} �= {ε}. Finally, if x = y = ε, then ε t ε = ε if t = ε
and ∅ otherwise.

It is not difficult to see that if t =
∏n

i=1 0ji1ki for some n ≥ 0 and ji, ki ≥ 0
for all 1 ≤ i ≤ n, then we have that

x t y = {
n∏

i=1

xiyi : x =
n∏

i=1

xi, y =
n∏

i=1

yi,

with |xi| = ji, |yi| = ki for all 1 ≤ i ≤ n}

if |x| = |t|0 and |y| = |t|1, and x t y = ∅ if |x| �= |t|0 or |y| �= |t|1.
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We extend shuffle on trajectories to sets T ⊆ {0, 1}∗ of trajectories as follows:

x T y =
⋃
t∈T

x t y.

Further, for L1, L2 ⊆ Σ∗, we define

L1 T L2 =
⋃

x∈L1
y∈L2

x T y.

Thus, for example, it is not hard to see that if T = 0∗1∗, then L1 T L2 = L1L2
(the usual concatenation operation) while if T = 0∗1∗0∗, L1 T L2 = L1 ← L2,
the insertion operation, defined by x ← y = {x1yx2 : x = x1x2}. When
T = {0, 1}∗, we get the shuffle operation, denoted simply by .

2.2 S-Bond-Free Properties

We consider DNA trajectories, defined by Kari et al. [10]. A DNA trajectory is
a word over the alphabet

VD =
{(

b

b

)
,

(
f

f

)
,

(
f

ε

)
,

(
ε

f

)}
.

Intuitively, a set of DNA trajectories defines a bonding between DNA. The oc-
currence of

(
b
b

)
implies a bond at a certain position, while

(
f
f

)
(resp.,

(
f
ε

)
,
(

ε
f

)
)

denotes two nucleotides which are not bonded (resp., an extra unbonded nu-
cleotide on the top strand, an extra unbonded nucleotide on the bottom strand).
Kari et al. [10] use DNA trajectories to denote undesirable bonding properties
between strands in DNA codeword design, as we explain below in Section 4. For
example, the DNA trajectory

(
f
ε

)(
f
ε

)(
b
b

)(
b
b

)
represents the bonding of a strand of

length two with a strand of length four, creating a so-called sticky end of length
two on the 3’-end of the strand of length 4.

We require the following morphisms. Let ϕu, ϕd : V ∗D → {0, 1}∗ be morphisms
defined by

ϕu(
(
b
b

)
) = 0, ϕu(

(
f
y

)
) = 1, for y ∈ {f, ε}, ϕu(

(
ε
f

)
) = ε

ϕd(
(
b
b

)
) = 0, ϕd(

(
y
f

)
) = 1, for y ∈ {f, ε}, ϕd(

(
f
ε

)
) = ε

We now turn to our main definition, which expresses bond-freeness of a set
of words using DNA trajectories. Our definition is an extension of the previous
use of the term bond-freeness by Kari et al. [10]. Let Σ be an alphabet and
θ : Σ → Σ be an involution, extended to a morphism or anti-morphism. Let
L ⊆ Σ∗ be a language and S ⊆ V ∗D be a set of DNA trajectories. Then L is
S-bond-free with respect to θ if

∀w ∈ Σ+,x, y ∈ Σ∗, s ∈ S,
(w ϕu(s) x ∩ L �= ∅, w ϕd(s) y ∩ θ(L) �= ∅)⇒ xy = ε.

(1)
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Note that s ∈ S is used for both the upper and lower shuffles. We omit the
phrase “with respect to θ” if θ is understood or unimportant. We illustrate the
definition with two examples.

Example 1. Let S =
(
f
ε

)(
b
b

)+ ∪
(
b
b

)+(
ε
f

)
. A graphical representation of S is given

in Figure 1. From (1), for any language L, if there exist w ∈ Σ+ and a ∈ Σ
such that aw, θ(w) ∈ L or w, θ(wa) ∈ L, then L is not S-bond free. For example,
if θ = μ (the identity anti-morphism), then {ab, cba} is not S-bond-free (with
w = ab). However, {aba, aab} is S-bond-free.

If θ = ι (the identity morphism), then {ab, b} is not S-bond-free (with w = b),
but {ab, ba} is S-bond-free (as well as the language {aab, b}).

Fig. 1. A graphical representation of S

Example 2. This example is motivated by the well-known DNA computing ex-
periment of Adleman [1]. In this experiment, vertices and edges of a directed
graph were encoded as single-strands of DNA, 20 nucleotides in length. Except
for the start and end vertices, bonding is only allowed between 10 nucleotides of a
vertex and 10 nucleotides of an edge. Let τ be the Watson-Crick anti-morphism.
Define Sok ⊆ V ∗D as

Sok =

{(
f

ε

)10(
b

b

)10(
ε

f

)10

,

(
ε

f

)10(
b

b

)10(
f

ε

)10
}
.

Intuitively, Sok represents those bonds that are allowed in the DNA computation.
The set Sok is represented in Figure 2. Let S = {s ∈ V ∗D − Sok : |ϕu(s)| =
|ϕd(s)| = 20}. Consider any L ⊆ {A,C,G, T }20 with L ∩ τ(L) = ∅ (such L are
called τ-non-overlapping by Kari et al. [6]). If L is S-bond-free, consider α, β ∈ L
such that α can partially bond with β. Then there exist w ∈ Σ+, x, y ∈ Σ∗ and
s ∈ S such that α ∈ w ϕu(s) x and θ(β) ∈ w ϕd(s) y. Note however, that
|ϕu(s)| = |α| = 20 and |ϕd(s)| = |β| = 20. Thus, since L is S-bond-free, we
must have s ∈ Sok, i.e., α = α1α2 and β = β1β2 where |αi| = |βj | = 10 for
1 ≤ i, j ≤ 2 and further either α1 = τ(β2) or α2 = τ(β1). That is, the bonding
is only allowed in the cases specified by Sok and illustrated by Figure 2.

10 10 10 10 10 10

Fig. 2. A graphical representation of Sok
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We note that another example of the application of the current definition is
given by Kari et al. [8], who define θ-overhang-free languages, which are defined
precisely by S =

(
f
ε

)∗(b
b

)∗(ε
f

)∗ ∪ (
ε
f

)∗(b
b

)∗(f
ε

)∗
.

3 Preliminary Results

We first present some preliminary results which will be employed throughout
the paper.

Lemma 1. Let S1 ⊆ S2 ⊆ V ∗D, L ∈ Σ∗ and θ be a morphic or anti-morphic
involution. If L is S2-bond-free then L is S1-bond-free.

Lemma 2. Let S1, S2 ⊆ V ∗D. For all languages L, L is S1-bond-free and S2-
bond-free if and only if L is S1 ∪ S2-bond-free.

The union-closure property defined by Lemma 2 is an important observation
because it is useful in many important design properties: to design a set of DNA
strands satisfying two properties described by S1 and S2, we simply take the
union S1 ∪ S2 of these two properties.

We can also consider the effect of concatenation on sets of DNA trajectories.

Lemma 3. Let θ be a morphic involution, and S1, S2 ⊆ V ∗D. If L1L2 is S1S2-
bond-free then L1 is S1-bond-free or L2 is S2-bond-free.

We note that it is not true that if L1 is S1-bond-free and L2 is S2-bond-free, then
L1L2 is S1S2-bond-free. Indeed, let S1 = {

(
ε
f

)(
b
b

)(
f
ε

)
}, S2 = {

(
b
b

)
}, L1 = {a},

L2 = {aa} and θ = ι, the identity morphism. Then note that Li is Si-bond-free
for 1 ≤ i ≤ 2. However, L1L2 = {aaa} is not S1S2-bond-free.

Further, Lemma 3 does not hold for anti-morphic involutions. To see this, let
L1 = {a, ab}, L2 = {c, ac}, S1 = {

(
ε
f

)(
b
b

)
} and S2 = {

(
f
ε

)(
f
f

)
}, and θ = μ, the

identity anti-morphism. Then we can verify that L1L2 = {aac, ac, abac, abc} is
S1S2-bond-free. However, L1 is not S1-bond-free and L2 is not S2-bond-free.

4 S-Bond-Free and Bond-Free Properties

We discuss the relationship between S-bond-freeness, which we have defined
in Section 2.2, and the existing definition of bond-free properties with respect
to a pair of sets of trajectories, previously given by Kari et al. [10]. We begin
with the definition of bond-free properties using shuffle on trajectories (Kari et
al. actually give a definition of bond-free properties which are more general than
what we present here, but we, like them, restrict our analysis to the case where
the operations are defined by shuffle on trajectories).

Let Σ be an alphabet and θ : Σ → Σ be an involution, extended to a mor-
phism or anti-morphism. Let T1, T2 ⊆ {0, 1}∗ be sets of trajectories. We say that
L ⊆ Σ∗ is bond-free with respect to T1, T2 if the following condition holds:

∀w ∈ Σ+, x, y ∈ Σ∗(w T1 x ∩ L �= ∅, w T2 y ∩ θ(L) �= ∅)⇒ xy = ε. (2)
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Thus, intuitively, the condition is similar to S-bond-freeness, except that sepa-
rate sets of trajectories T1 and T2 are specified to indicate separately the bonding
of the two single-strands together.

As we show in the following lemma, this definition does not allow us to specify
as much as S-bond-freeness:

Lemma 4. There exist an alphabet Σ, an involution θ : Σ → Σ, extended to
either a morphism or anti-morphism, and S ⊆ V ∗D such that, for all T1, T2 ⊆
{0, 1}∗, the S-bond-free property and the bond-free property with respect to T1, T2
do not coincide.

Note that Lemma 4 can be established using the set S from Example 2. This
emphasizes the importance of S-bond-freeness, since its ability to describe more
complex DNA bonding properties is clearly desirable.

Bond-free properties with respect to a pair of sets of trajectories were previ-
ously interpreted using DNA trajectories by Kari et al. [10]. We now relate this
usage to ours. For any T1, T2 ⊆ {0, 1}∗, let S(T1, T2) ⊆ V ∗D be defined by

S(T1, T2) = {s ∈ V ∗D : ϕu(s) ∈ T1, ϕd(s) ∈ T2}.

As an example, if T1 = 0∗1∗ and T2 = 1∗0∗, then S(T1, T2) =
(

ε
f

)∗(b
b

)∗(f
ε

)∗
.

Under this definition, given a set S of DNA trajectories, L is bond-free with
respect to S if the following condition holds:

∀w ∈ Σ+,x, y ∈ Σ∗, s1, s2 ∈ S
(w ϕu(s1) x ∩ L �= ∅, w ϕd(s2) y ∩ θ(L) �= ∅)⇒ xy = ε.

(3)

Note that the DNA trajectories s1, s2 are not required to be the same in this
definition. Thus, given T1, T2 ⊆ {0, 1}∗, the condition in (3) with S = S(T1, T2)
is exactly the same as the condition in (2). We also note briefly that the fact
that s1, s2 are not required to be the same leads to the situation as Lemma 4: S-
bond-freeness can express conditions not expressible using bond-free properties
with respect to any S′ (in the sense of (3)).

5 Properties of S-Bond-Freeness

We now investigate properties of S-bond-free languages and sets of DNA tra-
jectories. We say that a set S ⊆ V ∗D is universal if, for all languages L, L is
S-bond-free. As a trivial example, S = ∅ is universal. In the following theorem,
we characterize universal sets of DNA trajectories.

Theorem 1. A set S ⊆ V ∗D is universal if and only if S ⊆
(
b
b

)∗∪{(f
f

)
,
(
f
ε

)
,
(

ε
f

)
}∗.

For equivalence between sets of DNA trajectories, we have the following result
(in the following,. denotes symmetric difference for languages: L1.L2 = (L1−
L2) ∪ (L2 − L1)):

Lemma 5. If S1, S2 ⊆ V ∗D with S1.S2 ⊆
(
b
b

)∗ ∪ {(f
f

)
,
(
f
ε

)
,
(

ε
f

)
}∗, then S1-bond-

freeness and S2-bond-freeness coincide.

We now investigate additional algebraic properties related to equivalence and
simplification of sets of trajectories.
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5.1 Symmetry of DNA Trajectories

Our first simplification comes from the fact that, when considering anti-morphic
involutions, the meaning of a DNA trajectory is preserved under half-rotations.
In particular, let ρ : VD → VD be the involution defined by

ρ

((
b

b

))
=

(
b

b

)
ρ

((
f

f

))
=

(
f

f

)
ρ

((
f

ε

))
=

(
ε

f

)
ρ

((
ε

f

))
=

(
f

ε

)
.

In what follows, we may extend ρ to a morphism or an anti-morphism, depending
on whether we are examining bond-freeness of a set of DNA trajectories with
respect to a morphic or anti-morphic involution θ.

We note that if ρ is extended to an anti-morphism, it has the same effect
as a half-rotation on a DNA trajectory. For instance, ρ

((
b
b

)(
b
b

)(
f
f

)(
f
ε

)(
f
ε

))
=(

ε
f

)(
ε
f

)(
f
f

)(
b
b

)(
b
b

)
. This is represented graphically in Figure 3.

s sρ(  )
Fig. 3. A graphical representation of the action of ρ

We begin with two technical results which will help us. The first formally
states that ρ inverts the role of ‘top’ and ‘bottom’ in a DNA trajectory:

Proposition 1. Let ρ : VD → VD be extended to an anti-morphism (resp., to a
morphism). For all s ∈ V ∗D, the following equalities hold: ϕu(s) = ϕd(ρ(s))R and
ϕu(s) = ϕd(ρ(s))R. (resp., ϕu(s) = ϕd(ρ(s)) and ϕu(s) = ϕd(ρ(s))).

Proposition 2. Let ρ : VD → VD be extended to an anti-morphism (resp., to
a morphism). Let s ∈ V ∗D, u, v, x, y, z ∈ Σ∗ and θ be an anti-morphism (resp.,
morphism). The memberships u ∈ x ϕu(s) y and θ(v) ∈ x ϕd(s) z hold if and
only if the memberships v ∈ θ(x) ϕu(ρ(s)) θ(z) and θ(u) ∈ θ(x) ϕd(ρ(s)) θ(y)
hold.

We now show that adding the ρ-image of DNA trajectories in S does not change
the set of languages which are bond-free:

Theorem 2. Let θ be an anti-morphic involution (resp., morphic involution),
ρ : VD → VD be extended to a anti-morphism (resp., morphism) and S ⊆ V ∗D.
Let S′ = S ∪ ρ(S). Then S-bond-freeness and S′-bond-freeness with respect to θ
coincide.
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We can generalize Theorem 2 as follows: if S′ is any set of DNA trajectories
with S ⊆ S′ ⊆ S ∪ ρ(S), then S-bond-freeness and S′-bond-freeness coincide.
The increased number of DNA trajectories in S′ are redundant, which leads us to
consider the reverse operation of removing DNA trajectories to eliminate some
redundancy from a set of trajectories.

To consider these issues, we first fix an arbitrarily chosen total order on VD,
say

(
b
b

)
<

(
f
f

)
<

(
f
ε

)
<

(
ε
f

)
. Let < also denote the lexicographic order on V ∗D and

x ≤ y for x, y ∈ V ∗D denote that either x < y or x = y.
If S ⊆ V ∗D, let μ(S) be defined by μ(S) = {s ∈ S : ρ(s) /∈ S or s ≤ ρ(s)}.

We can see that μ(S)∪ρ(μ(S)) ⊇ S ⊇ μ(S). Thus, μ(S)-bond-freeness coincides
with S-bond-freeness. (Note that this is true for all fixed total orders on VD,
and is also true if ≤ is replaced by ≥ in the definition of μ(S).) For finite sets of
DNA trajectories S, moving from S to μ(S) reduces the number of trajectories,
and hence reduces the complexity of S. However, in the following example, we
see that μ may nontrivially increase the complexity of a set of trajectories:

Example 3. Let ρ be extended to an anti-morphism. Consider S =
(
b
b

)∗(f
f

)(
b
b

)∗
.

Then under the ordering we have fixed, μ(S) = {
(
b
b

)n(f
f

)(
b
b

)m
: n ≥ m ≥ 0}.

Thus, S is a regular set of DNA trajectories, while μ(S) is context-free.

Example 3 also shows that sometimes, introducing redundancy may reduce the
complexity for infinite sets of DNA trajectories: if we take S = {

(
b
b

)n(f
f

)(
b
b

)m
:

n ≥ m ≥ 0}, then S∪ρ(S) =
(
b
b

)∗(f
f

)(
b
b

)∗
(again, let ρ be anti-morphic). However,

this is not always the case: note that if S1 = {
(
b
b

)n(f
f

)(
b
b

)n
: n ≥ 0}, then

S1 ∪ ρ(S1) = S1 = μ(S1). Further work is necessary to examine the effect of
simplifying sets of DNA trajectories by introducing or removing redundancy.

5.2 Equivalence Via Weakening Bonds

We now consider another way for distinct sets of trajectories to be equivalent.
The important observation is that if bonds in a DNA trajectory are replaced
with non-bonded regions, the resulting trajectory represents all the bonding of
the original trajectory, plus some additional bonding situations. Thus, a set of
trajectories which includes both the original and modified trajectories contains
some redundancy. To formalize this, we define a partial order ≺ on words over
V ∗D. Let s1, s2 ∈ V ∗D with

ϕu(s1) =
n∏

i=1

1ji0ki , and ϕd(s1) =
n∏

i=1

1�i0ki ,

for n ≥ 0 and ji, ki, �i ≥ 0 for all 1 ≤ i ≤ n. Then s2 ≺ s1 if there exist
α1, . . . , αn ∈ {0, 1}∗ such that the following three conditions hold:

(i) ϕu(s2) =
∏n

i=1 1jiαi and ϕd(s2) =
∏n

i=1 1�iαi;
(ii) |αi| = ki for all 1 ≤ i ≤ n; and
(iii)

∏n
i=1 αi /∈ 1∗.
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ik

ik

Fig. 4. A portion of s1 is shown on the left, and a portion of s2 is shown on the right

The situation is illustrated in Figure 4, which demonstrates that if s2 ≺ s1, then
we can modify s1 to get s2 by replacing a bonded region of length ki in s1 with
a region in s2 which possibly contains some non-bonded regions. The relation
≺ has also been employed in the study of hairpin conditions defined by DNA
trajectories [3], where it is important in studying closure properties.

Example 4. Consider s1, s2 ∈ V ∗D given by

s1 =
(
b

b

)(
b

b

)(
f

ε

)(
b

b

)(
f

f

)
, s2 =

(
b

b

)(
f

f

)(
f

ε

)(
f

ε

)(
f

f

)(
ε

f

)
.

Note that ϕu(s1) = 00101, ϕu(s2) = 01111, ϕd(s1) = 0001, and ϕd(s2) = 0111.
Thus, s2 ≺ s1 holds with α1 = 01 and α2 = 1.

Note that Example 4 demonstrates that the relation ≺ is not simply defined
by the idea “possibly replace

(
b
b

)
with

(
f
f

)
” (an alternate characterization of

≺ of a similar form can be given via a rewriting system [3]). We now define
the minimal set of DNA trajectories with respect to ≺. Let S ⊆ V ∗D. Then
min(S) = {s ∈ S : ∀t(�= s) ∈ S, t �≺ s}.

Theorem 3. Let S ⊆ V ∗D. Then for all Σ, all L ⊆ Σ∗ and all morphic or anti-
morphic involutions θ, L is S-bond-free if and only if L is min(S)-bond-free.

6 Decidability

We now turn to decidability problems. We first prove a result which allows us
to give positive decidability results:

Theorem 4. For all alphabets Σ, there exist an alphabet Δ ⊇ Σ, an operation
σ : 2Σ∗×2V ∗

D → 2Δ∗
and regular languages R1, R2 ⊆ Δ∗ such that for all L ⊆ Σ∗

and S ⊆ V ∗D, L is S-bond-free if and only if σ(L, S) ∩R1 ⊆ R2.

Corollary 1. Given a context-free set S ⊆ V ∗D of DNA trajectories and a regular
language L ⊆ Σ∗, it is decidable if L is S-bond-free.

We can also modify the proof of Theorem 4 to give the following result:

Theorem 5. Let S ⊆ V ∗D be a regular set of DNA trajectories. The following
problem is decidable in quadratic time:
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Input: an DFA M .
Output: Is L(M) S-bond-free?

We can also consider undecidability. We prove a undecidability result which
states that S-bond-freeness is undecidable for context-free L with respect to a
fixed regular set of trajectories S. However, the power of the result comes from
L rather than from any interaction between L and S.

Lemma 6. There exists a fixed regular set of DNA trajectories S such that the
following problem is undecidable: “Given an alphabet Σ, an anti-morphic (resp.,
morphic) involution θ : Σ∗ → Σ∗ and a CFL L ⊆ Σ∗, is L S-bond-free?”

7 Conclusions

In this paper, we have given a new definition of bond-freeness with respect to
sets of DNA trajectories. The new definition, called S-bond-freeness, is able to
express more complex properties than previous definitions which used either
binary trajectories or DNA trajectories. We have illustrated some significant
bonding conditions expressible through S-bond-freeness, and also proven that it
is more expressive than previous definitions.

We have investigated properties of DNA trajectories related to equivalence, ro-
tations and weakening of bonding. These characterizations are clearly expressed
in terms of morphisms and partial orders. We have also examined the decidability
properties of S-bond-free languages: it is decidable whether a regular language
L is S-bond-free for any context-free set of DNA trajectories S. We have proven
it is undecidable to determine if a context-free language L is S-bond-free with
respect to regular sets of DNA trajectories S.
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in DNA words. In Carbone, A., Daley, M., Kari, L., McQuillan, I., Pierce, N.,
eds.: The 11th International Meeting on DNA Computing: DNA 11, Preliminary
Proceedings. (2005) 267–277

8. Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-
free DNA languages. Acta Inform. 40 (2003) 119–157
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Abstract. In this paper we study a generalization of the classical no-
tions of solid codes and comma-free codes: involution solid codes (θ-solid)
and involution join codes (θ-join). These notions are motivated by DNA
strand design where Watson-Crick complementarity can be formalized
as an antimorphic involution. We investigate closure properties of these
codes, as well as necessary conditions for θ-solid codes to be maximal.
We show how the concept of θ-join can be utilized such that codes that
are not themselves θ-comma free can be split into a union of subcodes
that are θ-comma free.

1 Introduction

When using single stranded DNA molecules in DNA nanotechnology and DNA
computing it is important to minimize the errors that are due to unwanted cross-
hybridization. Such errors occur if two different bits of information are encoded
as single stranded DNA molecules that are totally or partially complementary.
This complementarity induces unintentional hybridizations and such encodings
should be avoided (See Fig. 1).

Several attempts have been made to address this issue and many authors have
proposed various solutions. Such approaches to the design of DNA encodings
without undesirable bonds and secondary structures were summarized in [20]
and [24]. For more details we refer the reader to [1, 3, 4, 5, 6, 8, 23]. One approach
to this issue of “good encodings” is theoretical study of the algebraic and code-
theoretic properties of DNA encodings through formal language theory. In [11],
Kari et al. introduced such theoretical approach to the problem of designing
code words. Properties of languages that avoid certain undesirable bonds were
discussed in several follow-up papers [13, 18, 19, 21, 22].

This paper follows the approach introduced in [11] and investigate the formal
language and coding theoretic notions inspired and motivated by DNA encoded
information. In order to model the characteristics of the biologically encoded in-
formation, we replace the identity function by a composition of the complement
function with the mirror-image function (such a function is a correct mathemat-
ical model of the Watson-Crick complement of DNA strands) or, more generally,
by an arbitrary involution (a function θ with the property that θ2 equals identity)
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[20]. Moreover, as needed, we replace regular homomorphisms by antimorphic
functions, to allow for the property of reversal in complementary DNA strands.
These lead to natural, as well as theoretically elegant, generalizations of classi-
cal notions such as prefix codes, suffix codes, infix codes, bifix codes, intercodes,
comma-free codes, etc [13, 18, 19, 22]. These are but some examples of ways in
which classical notions and results in formal language theory and algebraic infor-
matics can be meaningfully generalized. This paper continues this line of research
by introducing and studying the notions of θ-solid and θ-join codes. If θ is the
identity function, the θ-solid codes and θ-join codes respectively become the well
known solid and join codes respectively.

Section 2 includes the definitions and we introduce the new concept of θ-solid
codes and include some properties of θ-overlap-free codes. Section 3 contains
the closure properties of θ-solid codes. Note that the results obtained for θ-solid
codes hold true for solid codes when θ is the identity function. We show that the
property of being a θ-solid code is decidable for regular languages and provide
results about maximal θ-solid codes. In Section 4 we generalize the concept
of join codes to θ-join codes and develop a method to extract a sequence of
subsets which are θ-comma-free from a set that is not θ-comma-free. Due to
space restrictions, some of the proofs are omitted.

2 Definitions

An alphabet Σ is a finite non-empty set of symbols. A word u over Σ is a finite
sequence of symbols in Σ. We denote by Σ∗ the set of all words over Σ, including
the empty word 1 and, by Σ+, the set of all non-empty words over Σ. For a word
w ∈ Σ∗, the length of w is the number of non empty symbols in w and is denoted
by |w|. Throughout the rest of the paper, we concentrate on sets X ⊆ Σ+ that
are codes such that every word in X+ can be written uniquely as a product of
words in X , or equivalently, X+ is a free semigroup generated by X . For the
background on codes we refer the reader to [2, 26]. For a language X ⊆ Σ∗, let

PPref(X) = {u ∈ Σ+ | ∃v ∈ Σ+, uv ∈ X }
PSuff(X) = {u ∈ Σ+ | ∃v ∈ Σ+, vu ∈ X }
PSub(X) = {u ∈ Σ+ | ∃v1 , v2 ∈ Σ∗, v1 v2 �= 1 , v1uv2 ∈ X }

We recall the definitions initiated in [11, 18] and used in [12, 19].
An involution θ : Σ → Σ of a set Σ is a mapping such that θ2 equals the

identity mapping.

Definition 1. Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution and
X ⊆ Σ+ be a code.

1. The set X is called θ-strict if X ∩ θ(X) = ∅.
2. The set X is called θ-infix if Σ∗θ(X)Σ+ ∩X = ∅ and Σ+θ(X)Σ∗ ∩X = ∅.
3. The set X is called θ-comma-free if X2 ∩Σ+θ(X)Σ+ = ∅.
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Forbidden annealings for involution codes

−prefixθ −infixθ −suffixθ

−comma−freeθ−overlap−freeθ

Fig. 1. Schematic representation for forbidden inter molecular DNA hybridizations.
The 3′ ends are indicated with an arrow.

Note that when θ is identity θ-infix code and θ-comma-free code are just infix
and comma-free codes [2, 26]. In [12, 13] θ-strict codes are called strictly θ and
in [18] they are called θ-non overlapping.

Solid codes were introduced in [25]. Certain combinatorial and closure prop-
erties of solid codes were discussed in [15]. We recall the definition of solid codes
used in [17] defined by using a characterization given in [15].

Definition 2. A set X ⊆ Σ+ is a solid-code if

1. X is an infix code
2. PPref(X) ∩ PSuff(X) = ∅.

The notion of solid codes was extended to involution solid codes in [22]. Note
that when the involution map denotes the Watson-Crick complement, the set of
involution-solid codes comprises of DNA strands that do not overlap with the
complement of any other DNA strand (see Fig.1).

Definition 3. Let X ⊆ Σ+.

1. The set X is called θ-overlap free if PPref(X) ∩ PSuff(θ(X)) = ∅ and
PSuff(X) ∩ PPref(θ(X)) = ∅.

2. X is a θ-solid code if X is θ-infix and θ-overlap free.
3. X is a maximal θ-solid code iff for no word u ∈ Σ+\X, the language X∪{u}

is a θ-solid code.

Note 1. Let X be such that Xn is θ-overlap free for some n ≥ 1 then X i,
1 ≤ i ≤ n is also θ-overlap free.

Throughout the rest of the paper we use θ to be either a morphic or antimorphic
involution unless specified otherwise. Note that X is θ-overlap free (θ-solid) iff
θ(X) is θ-overlap free (θ-solid).

Proposition 1. If X is a θ-strict-solid code then X+ is θ-overlap free.
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Proof. We need to show that PPref(X+) ∩ PSuff(θ(X+)) = ∅ and PSuff(X+) ∩
PPref(θ(X+)) = ∅. Suppose there exists x ∈ PPref(X+) ∩ PSuff(θ(X+)) such
that x = x1x2..xia = θ(b)θ(y1)...θ(yj) for xi, yj ∈ X for all i, j and a ∈ PPref(X)
and θ(b) ∈ PSuff(θ(X)). Then x1 is not a subword of θ(b) as this contradicts
the assumption that X is θ-infix. Also, θ(b) being in PPref(x1)) contradicts the
assumption that X is θ-solid. Hence PPref(X+) ∩ PSuff(θ(X+)) = ∅. Similarly,
PSuff(X+) ∩ PPref(θ(X+)) = ∅. �

Corollary 1. Let X,Y ⊆ Σ+ be such that X ∪ Y is θ-strict-solid. Then XY is
θ-overlap free.

Proposition 2. Let X be a regular language. It is decidable whether or not X
is θ-overlap free.

3 Properties of Involution Solid Codes

In this section we consider the closure properties of the class of involution solid
codes. It turns out that involution solid codes are closed under a restricted kind
of product, arbitrary intersections and catenation closure while not closed under
union, complement, product and homomorphisms. The first two properties are
immediate consequences of the definitions.

Proposition 3. The class of θ-solid codes is closed under arbitrary intersection
and θ-solid codes is not closed under union, complement, concatenation and
homomorphism.

Example 1. Consider the θ-solid codes {a} and {ab} over the alphabet set Σ =
{a, b} and with θ being an antimorphic involution that maps a �→ b and b �→ a.
The sets {a, ab} = {a}∪{ab} and {aba} = {ab}{a} are not θ-solid. Let h : Σ∗ �→
Σ∗ be homomorphism such that h(a) = aba and h(b) = bab. Note that {a} is
θ-solid but h(a) = aba is not θ-solid.

Proposition 4. If X is a θ-solid code then X is a θ-comma-free code.

Proof. According to proposition 3.5 in [14], X is θ-comma-free if and only if
X is θ-infix and XipXis ∩ θ(X) = ∅ where Xip = PPref(θ(X)) ∩ PSuff(X) and
Xis = PSuff(θ(X))∩PPref(X). SinceX is θ-solid,X is θ-infix andXip = Xis = ∅
and hence XipXis ∩ θ(X) = ∅. �

Note that the converse of the above proposition does not hold in general.
For example let X = {aa, baa} and let θ be an antimorphic involution such
that θ : a → b, b → a, then θ(X) = {bb, bba}. It is easy to check that X is
θ-comma-free. But ba ∈ PPref(X) ∩ PSuff(θ(X)) which contradicts condition 2
of definition 3.

Proposition 5. Let X,Y ⊆ Σ+ be such that X and Y are θ-strict and X ∩
θ(Y ) = ∅. If X ∪ Y is θ-solid then XY is θ-solid.
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Proof. Suppose XY is not θ-infix, then there exists x1, x2 ∈ X and y1, y2 ∈ Y
such that x1y1 = aθ(x2y2)b for some a, b ∈ Σ∗ not both empty. When θ is
morphic, x1y1 = aθ(x2)θ(y2)b. Then either θ(x2) is a subword of x1 or θ(y2)
is a subword of y1 which is a contradiction with X ∪ Y being θ-infix. Similar
contradiction arises when θ is antimorphic. From Corollary 1, XY is θ-overlap
free and hence XY is θ-solid. �

Corollary 2. X is a θ-strict-solid code if and only if X+ is a θ-strict-solid code.

Proposition 6. Let X be a regular language. It is decidable whether or not X
is a θ-solid code.

Proof. It has been proved in [11] that it is decidable whether X is θ-infix or not.
From Proposition 2 it is decidable whether X is θ-overlap free or not. Hence for
a regular X , one can decide whether X is θ-solid or not.

The following proposition gives a method for constructing θ-strict-solid codes.

Proposition 7. Let θ be a morphic or antimorphic involution and X ⊆ Σ+ be
θ-strict-solid code. Then Y = {u1vu2 : u1u2, v ∈ X,u1, u2 ∈ Σ∗} is a θ-solid
code.

The next proposition provides a general method for constructing not just θ-solid
codes, but maximal θ-solid codes.

Proposition 8. Let θ be an antimorphic involution. Let Σ = A ∪ B ∪ C such
that A,B,C are disjoint sets such that A and C are θ-strict and A ∩ θ(B) = ∅
and C ∩ θ(B) = ∅. Then X = AB∗C is a maximal θ-solid code.

Example 2. Let Σ = {a, b, c, d} and θ be an antimorphic involution such that θ
maps a �→ c and b �→ d. Then X = {a}{b, d}∗{c} is a maximal θ-solid code.

From the above definitions and propositions we can deduce the following.

Lemma 1. Let θ be an antimorphic involution.

1. Let Σ1, ..., Σn be a partition of Σ such that Σi is θ-strict for all i. Then
every language ΣiΣj is θ-solid.

2. If Σ1, Σ2 is a partition of Σ such that Σi is θ-strict for i = 1, 2, then Σ1Σ2
is maximal θ-solid code.

3. Let A ⊆ Σ such that A = θ(A) and X ⊆ A+. Then X is maximal θ-solid
code over A if and only if X ∪ (Σ \A) is maximal θ-solid code over Σ.

4. Let B ⊆ Σ such that B ∩ θ(B) = ∅. Then X = B+ is θ-solid code.

The next proposition provides conditions under which the involution solid codes
are preserved under a morphic or antimorphic mapping.

Proposition 9. Let Σ1 and Σ2 be finite alphabet sets and let f be an injective
morphism or antimorphism from Σ1 to Σ∗2 . Let θ1 : Σ∗1 �→ Σ∗1 and θ2 : Σ∗2 �→ Σ∗2
be both morphic or both antimorphic involutions such that f(θ1(x)) = θ2(f(x)).
Define P = Pref(θ2(f(X)), S = Suff(θ2(f(X)) and A = Σ∗2 \ f(Σ∗1 ).
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Suppose (A+P ∩ SA+) ∩ f(Σ+
1 ) = ∅ and A+PA+ ∩ f(Σ1) = ∅. Then

1. If X is θ1-strict-infix (comma-free) then f(X) is θ2-strict-infix (comma-free).
2. If X is a θ1-solid code then f(X) is a θ2-solid code.

Proof. The first statement was proved in [14]. We consider the case of θ-solid
codes. Let X be θ1-solid code. Note that f(X) is θ2-infix by the first part of
the proposition. We need to show that PPref(f(X)) ∩ PSuff(θ2(f(X))) = ∅ and
PSuff(f(X)) ∩ PPref(θ2(f(X))) = ∅. Let θ1 and θ2 be morphic involutions and
let f be an injective antimorphism. Suppose there exists a ∈ Σ+ such that
a ∈ PPref(f(x1x2)) and a ∈ PSuff(θ2(f(y1y2)) for some x1x2, y1y2 ∈ X . Note
that f(x1x2) = f(x2)f(x1) and θ2(f(y1y2)) = f(θ1(y1y2)) = f(θ1(y1)θ1(y2)) =
f(θ1(y2))f(θ1(y1)). Hence if a = f(x2) = f(θ1(y1)) then x2 = θ1(y1) since f is
injective which is a contradiction to PPref(X) ∩ PSuff(θ1(X)) = ∅. The other
case follows similarly. Hence f(X) is θ2-solid. �

4 Involution Join Codes

In [10], Head, by using the coding properties relative to a language [9], showed
how a sequence of subsets which are comma-free ([2, 16, 26]) from a set that is
not comma-free can be obtained. The codes of this sequence are called join codes
Similarly a sequence of subsets which are θ-comma-free codes from a given set
that is not θ-comma-free can be obtained ([11, 12, 13, 18, 14]). The ith element in
this sequence of codes θ-join codes is called θ-join code of level i. In this section
we have several observations about these codes.

Definition 4. Let X ⊆ Σ∗ and w ∈ Σ∗. Then the context of the word w in X
is defined as the set CX(w) = {(u, v) : uwv ∈ X,u, v ∈ Σ∗}.
The following was defined in [10] and used in [7].

Definition 5. A word w in X is a join for X if (u, v) ∈ CX∗(w) then both u
and v are in X∗. The set of all joins for X is denoted J(X).

Recall that when X is a code, J(X) is comma-free subset of X (see [10]), but
J(X) is not necessarily the maximal comma-free subset of X .s

Example 3. Let X = {aab, aba, bab} over the alphabet set Σ = {a, b}. Note that
J(X) = {aab} but Y = {aab, bab} ⊆ X is the maximal comma-free subset of X
since Σ+Y Σ+ ∩ Y 2 = ∅.
Similar to the definition for J(X), we define Jθ(X) such that Jθ(X) is θ-
comma-free. The authors in [7] define Jθ(X) as J(X) \ θ(J(X)), but such de-
fined Jθ(X) is not necessarily θ-comma-free in general. For example, consider
X = {aab, bab, abbb}. For an antimorphic involution θ with a → b and b → a,
θ(X) = {abb, aba, aaab}. Note that Σ+{aab, abbb}Σ+ ∩X2 = ∅ but Σ+XΣ+ ∩
X2 �= ∅. Hence J(X) = {aab, abbb} is comma-free subset ofX and Jθ(X) = J(X)
since θ(J(X)) ∩ J(X) = ∅. But Jθ(X) is not θ-comma-free since, aabθ(aab)b =
aab.abbb ∈ (Jθ(X))2. We alter the definition for Jθ(X) such that Jθ(X) becomes
θ-comma-free for all involutions θ.
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Definition 6. A word w ∈ X is a θ-join for X if (u, v) ∈ CX∗(θ(w)), then both
u and v are also in X∗. The set of all θ-joins for X is denoted with Jθ(X).

Lemma 2. Let X ⊆ Σ+ and θ be a morphic or antimorphic involution. Then
the following hold true.

1. Jθ(X) = J(X) when θ is identity.
2. Let X ∪ θ(X) be a code. When X is θ-comma-free, Jθ(X) = X.
3. X ∪ θ(X) is θ-comma-free if and only if X ∪ θ(X) is comma-free and hence

X ∪ θ(X) is an infix code.

Note that X ∪ θ(X) being θ-infix does not necessarily imply that X ∪ θ(X) is θ-
comma-free. For example let X = {aa, aba} with θ being antimorphic involution
mapping a → b and b → a. Then we have θ(X) = {bb, bab}. It is easy to check
that X ∪θ(X) is θ-infix but not θ-comma-free since ababb = a(bab)b = aθ(aba)b.

Lemma 3. If X ∪ θ(X) is a code then Jθ(X) is θ-comma-free.

Proof. Suppose Jθ(X) is not θ-comma-free, then there are x, y, z ∈ Jθ(X) such
that aθ(z)b = xy for some a, b ∈ Σ∗. Since z ∈ Jθ(X) with aθ(z)b ∈ X∗, for
a, b ∈ X , xy has two distinct factorizations in X ∪ θ(X). This contradicts that
X ∪ θ(X) is a code. Hence Jθ(X) is θ-comma-free. �

Corollary 3. If X ∪ θ(X) is a code then Σ+θ(Jθ(X))Σ+ ∩X2 = ∅.

Note that Jθ(X) is not necessarily the maximal θ-comma-free subset of X .

Example 4. Let X = {abb, aab, aba} over the alphabet set Σ = {a, b} and for
an antimorphic θ with a → b and b → a, θ(X) = {abb, bab, aab}. Note that
Y = {aab, abb} is the maximal θ-comma-free subset of X . But Jθ(X) = {aab}.

Lemma 4. Let X ∪ θ(X) be a code and let Y be the maximal subset of X such
that Σ+θ(Y )Σ+ ∩X2 = ∅. Then Y = Jθ(X).

Proof. Since Jθ(X) is θ-comma-free, Jθ(X) ⊆ Y . Note that Σ+θ(Y )Σ+∩X2 = ∅
if and only if Σ+θ(Y )Σ+ ∩ X∗ = ∅. Then for w ∈ Y and for all (u, v) ∈
CX∗(θ(w)), u = v = 1 which implies w ∈ Jθ(X). Hence Jθ(X) = Y .

A possible communication by transferring single stranded DNA molecules can
be done in the following way. To derive the meaning represented by a single
stranded DNA molecule, by allowing attachments of complementary pieces of
single stranded molecules. The meaning conveyed by the message molecule is
expressed by the sequence of complementary code word molecules that attach. In
such cases, each code word that is part of a θ-comma-free code has a unique place
for hybridization, and the whole “message” molecule can be recovered. However,
if the set of code words is not θ-comma-free, then we can extract a subset of
code words that form a θ-comma-free set, i.e., the θ-joins for the code words.
These code words would have unique places for annealing to the “message” DNA
(see Fig. 2) leaving positions complementary to other words “empty”. From the
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(a) ssDNA to be decoded

θ(c) Step 2: use    −join of level 2.

θ(d) Step 3: use    −join of level 3 to decode.

θ(b) Step 1: use    −joins for the set of code words 

Fig. 2. Step-by-step recovery of a “message” encoded within a single stranded DNA

remaining code words another θ-comma-free set can be extracted, i.e., the θ-
joins for the remaining code words. Now these words can anneal in a unique
way to the the empty places that were not occupied by the first set of words.
If this process ends, the “message” can be uniquely decoded. This process is
schematically represented in Fig. 2.

Formally, let X = X0 and X1 = X \ Jθ(X). We define Xi, i ≥ 0, a chain of
descending subsets of X such that Xi+1 = Xi \ Jθ(Xi) where Jθ(Xi) is a θ-join
of Xi (see Fig. 3). We call Jθ(Xi) the θ-join at level i. When θ is identity the
θ-join code at level 1 is precisely J(X).

Definition 7. The set X is called as θ-split code if X =
⋃∞

k=0 Jθ(Xk).
If there exists m such that Xm+1 = ∅ then X is called as θ-k-split where k =

min{m : Xm+1 = ∅}.

Example 5. Let X = {abb, aab, aba} over the alphabet set Σ = {a, b} and for
an antimorphic θ with a → b and b → a, θ(X) = {abb, bab, aab}. Note that
Jθ(X) = {aab} and hence X1 = X \Jθ(X) = {abb, aba}. But Jθ(X1) = ∅. Hence
X is not a θ-split code.

We assume that for a set X , X ∪ θ(X) is a code throughout the rest of this
section.

Proposition 10. X is a θ-split code if and only if θ(X) is θ-split code.

Note that it is possible to find an X such that X is θ-infix but not θ-split. For
example let X = {aba, bab} and let θ be an antimorphic involution such that θ
maps a �→ b. Then X is θ-infix and Jθ(X) = ∅.
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X

θJ  (X)

J  (X  )θ 1 X2

J  (X  )θ 2 X3

Xn

J  (X  )θ 2X2

J  (X  )θ 1X1

θJ  (X)X1 =       \

=       \

X n−1

=       \

X

=           \ θ n−1 θ n−1J  (X      ) J  (X      )

Fig. 3. The construction of θ-split code

Corollary 4. If X and Y are such that X ∪ Y is a θ-split code, then XY is
θ-split code.

Corollary 5. If X is a θ-split code, than Xn is a θ-split code for all n ≥ 1.

5 Concluding Remarks

The theory of codes, born in the context of information theory, has been devel-
oped as an independent subject using both combinatorial and algebraic methods.
The objective of the theory of codes, from an elementary point of view, is the
study of properties concerning factorizations of words into a sequence of words
taken from a given set. Solid codes were introduced in [25] in the context of the
study of disjunctive domains. Certain combinatorial properties of solid codes
have been investigated in [15] and results concerning maximal solid codes of
variable length were presented in [17]. In the hierarchy of codes, solid codes
lie below the class of comma-free codes. By using code properties relative to
a language [9], a sequence of generalizations of the concept of a comma-free
code was developed in [10]. In other words, Head showed a way to partition
a non-necessarily comma-free code into a sequence of subsets all of which are
comma-free. The codes of this sequence are the join codes of various levels. The
comma-free codes are precisely the join codes of the first level. The split codes of
level k allow the segmentation of messages to be made in a sequence of k steps
for which each step has the simplicity of a comma-free segmentation.

In this paper we extended the concepts of solid codes and join codes to incor-
porate the notion of an involution function replacing the identity function (An
involution function θ is such that θ2 equals identity). An involution code refers to
any of the generalization of classical notion of codes ([2, 16, 26]) that replace the
identity function with the involution morphic or antimorphic function in a way
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explained in Definition 1. Involution codes were introduced in [11] in the process
of designing DNA strands suitable for computation. Along these lines properties
of θ-comma-free codes, θ-infix codes, θ-prefix codes, θ-outfix codes, θ-intercodes
were introduced and studied in [11, 13, 14, 19, 21]. This paper completes this line
of research by investigating the notions of θ-solid codes and θ-join codes. Several
closure properties of θ-overlap free and θ-solid codes were discussed and we in-
troduced θ-split codes as codes that can be “split”, i.e., partition into a sequence
of θ-comma-free codes. Properties of a code X that is a θ-split code of finite or
infinite level remain to be determined. Note that if θ is the identity function,
these notions become the well known notions of solid respectively join codes and
the results obtained hold true for solid respectively join codes. Generalizations
where θ is substituted with an arbitrary morphism seem as a natural next step.
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Abstract. Boolean grammars [A. Okhotin, Information and Computa-
tion 194 (2004) 19-48] are a promising extension of context-free gram-
mars that supports conjunction and negation. In this paper we give a
novel semantics for boolean grammars which applies to all such gram-
mars, independently of their syntax. The key idea of our proposal comes
from the area of negation in logic programming, and in particular from
the so-called well-founded semantics which is widely accepted in this area
to be the “correct” approach to negation. We show that for every boolean
grammar there exists a distinguished (three-valued) language which is a
model of the grammar and at the same time the least fixed point of an
operator associated with the grammar. Every boolean grammar can be
transformed into an equivalent (under the new semantics) grammar in
normal form. Based on this normal form, we propose an O(n3) algo-
rithm for parsing that applies to any such normalized boolean grammar.
In summary, the main contribution of this paper is to provide a semantics
which applies to all boolean grammars while at the same time retaining
the complexity of parsing associated with this type of grammars.

1 Introduction

Boolean grammars constitute a new and promising formalism, proposed by A.
Okhotin in [Okh04], which extends the class of conjunctive grammars introduced
by the same author in [Okh01]. The basic idea behind this new formalism is to
allow intersection and negation in the right-hand side of (context-free) rules.
It is immediately obvious that the class of languages that can be produced by
boolean grammars is a proper superset of the class of context-free languages.

Despite their syntactical simplicity, boolean grammars appear to be non-
trivial from a semantic point of view. As we are going to see in the next section,
the existing approaches for assigning meaning to boolean grammars suffer from
certain shortcomings (one of which is that they do not give a meaning to all such
grammars).
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In this paper we propose a new semantics (the well-founded semantics) which
applies to all boolean grammars. More specifically, we demonstrate that for every
boolean grammar there exists a distinguished (three-valued, see below) language
that can be taken as the meaning of this grammar; this language is the unique
least fixed point of an appropriate operator associated with the grammar (and
therefore it is easy to see that it satisfies all the rules of the grammar).

Our ideas originate from an important area of research in the theory of logic
programming, that has been very active for more than two decades (references
such as [AB94, PP90] provide nice surveys). In this area, there is nowadays an
almost unanimous agreement that if one seeks a unique model of a logic program
with negation, then one has to search for a three-valued one. In other words,
classical two-valued logic is not sufficient in order to assign a proper meaning to
logic programs with negation. Actually, it can be demonstrated that every logic
program with negation has a distinguished three-valued model, which is usually
termed the well-founded model [vGRS91].

We follow the same ideas here: we consider three-valued languages, namely
languages in which the membership of strings may be characterized as true, false,
or unknown. As we will see, this simple extension solves the semantic problems
associated with negation in boolean grammars. Moreover, we demonstrate that
under this new semantics, every boolean grammar has an equivalent grammar
in normal form (similar to that of [Okh04]). Finally, we show that for every
such normalized grammar, there is an O(n3) parsing algorithm under our new
semantics. Our results indicate that there may be other fruitful connections
between formal language theory and the theory of logic programming.

2 Why an Alternative Semantics for Boolean grammars?

In [Okh04] A. Okhotin proposed the class of boolean grammars. Formally:

Definition 1 ([Okh04]). A Boolean grammar is a quadruple G = (Σ,N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively, P is a finite set of rules, each of the form

A→ α1& · · ·&αm&¬β1& · · ·&¬βn (m+ n ≥ 1, αi, βi ∈ (Σ ∪N)∗),

and S ∈ N is the start symbol of the grammar. We will call the αi’s positive
literals and the ¬βi’s negative.

To illustrate the use of Boolean grammars, consider a slightly modified example
from [Okh04]:
Example 1. Let Σ = {a, b}. We define:

S → ¬(AB) & ¬(BA) & ¬A & ¬B
A → a
A → CAC
B → b
B → CBC
C → a
C → b
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It can be shown that the above grammar defines the language {ww | w ∈ {a, b}∗}
(see [Okh04] for details). It is well-known that this language is not context-free.

Okhotin proposed two semantics intended to capture the meaning of boolean
grammars. In this section we demonstrate some deficiencies of these two ap-
proaches, which led us to the definition of the well-founded semantics. Both
semantics proposed in [Okh04] are defined using a system of equations, which is
obtained from the given grammar.

In the first approach, the semantics is defined only in the case that the system
of equations has a unique solution. This is a restrictive choice: actually most in-
teresting grammars do not correspond to systems of equations having a unique
solution. For example, even the simplest context-free grammars generating infi-
nite languages, give systems of equations which have infinitely many solutions.
For such grammars, it seems that the desired property is a form of minimality
rather than uniqueness of the solution.

Apart from its limited applicability, the unique solution semantics also demon-
strates a kind of instability. For example, let Σ = {0, 1} and consider the boolean
grammar consisting of the two rules A → ¬A&¬B and B → 0&1. The corre-
sponding system of equations has no solution and therefore the unique solution
semantics for this grammar is not defined. Suppose that we augment the above
grammar with the rule B → B. Seen from a constructive point of view, the
new rule does not offer to the grammar any additional information. It is rea-
sonable to expect that such a rule would not change the semantics of the gram-
mar. However, the augmented grammar has unique solution semantics, namely
(A,B) = (∅, Σ∗). On the other hand, suppose that we augment the initial gram-
mar with the rule A → A. Then, the unique solution semantics is also defined,
but now the solution is (A,B) = (Σ∗, ∅). Consequently by adding to an ini-
tially meaningless grammar two different information-free rules, we obtained
two grammars defining complementary languages. To put it another way, three
grammars that look equivalent, have completely different semantics.

Let’s now turn to the second approach proposed in [Okh04], namely the natu-
rally feasible solution semantics. Contrary to the unique solution semantics, the
feasible solution semantics generalizes the semantics of context-free and conjunc-
tive languages (see [Okh04][Theorem 3]). However, when negation appears, there
are cases that this approach does not behave in an expected manner. Consider
for example the boolean grammar with rules:

A→ ¬B, B → C&¬D, C → D, D → A

This grammar has the naturally feasible solution (A,B,C,D) = (Σ∗, ∅, Σ∗, Σ∗).
It is reasonable to expect that composing two rules would not affect the semantics
of the grammar. For example in context-free grammars such a composition is
a natural transformation rule that simply allows to perform two steps of the
production in a single step. However, if we add C → A to the above set of rules,
then the naturally feasible solution semantics of the resulting grammar is not
defined. On the other hand, the technique we will define shortly, does not suffer
from this shortcoming.
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Furthermore, there exist grammars for which the naturally feasible solution
semantics is undefined, although they may have a clear intuitive meaning. For
example, let Σ = {a} and consider the following set of eight rules:

A→ ¬B, A→ D, B → ¬C, B → D,

C → ¬A, C → D, D → aD, D → ε

The semantics of this grammar should clearly be (A,B,C,D)=(Σ∗, Σ∗, Σ∗, Σ∗),
and actually this is what the well-founded semantics will produce. On the other
hand the naturally feasible solution semantics is undefined.

The problem of giving semantics to recursive formalisms in the presence of
negation has been extensively studied in the context of logic programming. Ac-
tually, the unique solution semantics can be paralleled with one of the early
attempts to give semantics to logic programs with negation, namely what is now
called the Clark’s completion semantics (which actually presents similar short-
comings with the unique solution approach). On the other hand, the naturally
feasible solution can be thought of as a first approximation to the procedure of
constructing the intended minimal model of a logic program with negation (see
also Theorem 3 that will follow). Since the most broadly accepted semantic ap-
proach for logic programs with negation is the well-founded semantics, we adopt
this approach in this paper.

At this point we should also mention a recent work on the stratified semantics
of Boolean grammars [Wro05], an idea that also originates from logic program-
ming. However, the stratified semantics is less general than the well-founded one
(since the former does not cover the whole class of Boolean grammars).

3 Interpretations and Models for Boolean Grammars

In this section we formally define the notion of model for boolean grammars. In
context-free grammars, an interpretation is a function that assigns to each non-
terminal symbol of the grammar a set of strings over the set of terminal symbols
of the grammar. An interpretation of a context-free grammar is a model of the
grammar if it satisfies all the rules of the grammar. The usual semantics of
context-free grammars dictate that every such grammar has a minimum model,
which is taken to be as its intended meaning.

When one considers boolean grammars, the situation becomes much more
complicated. For example, a grammar with the unique rule S → ¬S appears
to be meaningless. More generally, in many cases where negation is used in a
circular way, the corresponding grammar looks problematic. However, these diffi-
culties arise because we are trying to find classical models of boolean grammars,
which are based on classical two-valued logic. If however we shift to three-valued
models, every boolean grammar has a well-defined meaning. We need of course
to redefine many notions, starting even from the notion of a language:

Definition 2. Let Σ be a finite non-empty set of symbols. Then, a (three-valued)
language over Σ is a function from Σ∗ to the set

{
0, 1

2 , 1
}
.
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Intuitively, given a three-valued language L and a string w over the alphabet of
L, there are three-cases: either w ∈ L (ie., L(w) = 1), or w �∈ L (ie., L(w) = 0), or
finally, the membership of w in L is unclear (ie., L(w) = 1

2 ). Given this extended
notion of language, it is now possible to interpret the grammar S → ¬S: its
meaning is the language which assigns to every string the value 1

2 .
The following definition, which generalizes the familiar notion of concatena-

tion of languages, will be used in the following:

Definition 3. Let Σ be a finite set of symbols and let L1, . . . , Ln be (three-
valued) languages over Σ. We define the three-valued concatenation of the lan-
guages L1, . . . , Ln to be the language L such that:

L(w) = max
(w1,...,wn):
w=w1···wn

(
min

1≤i≤n
Li(wi)

)
The concatenation of L1, . . . , Ln will be denoted by L1 ◦ · · · ◦ Ln.

We can now define the notion of interpretation of a given boolean grammar:

Definition 4. An interpretation I of a boolean grammar G = (Σ,N, P, S) is a
function I : N →

(
Σ∗ →

{
0, 1

2 , 1
})

.

An interpretation I can be recursively extended to apply to expressions that
appear as the right-hand sides of boolean grammar rules:

Definition 5. Let G = (Σ,N, P, S) be a boolean grammar and I be an interpre-
tation of G. Then I can be extended to become a truth valuation Î as follows:

– For the empty sequence ε and for all w ∈ Σ∗, it is Î(ε)(w) = 1 if w = ε and
0 otherwise.

– Let a ∈ Σ be a terminal symbol. Then, for every w ∈ Σ∗, Î(a)(w) = 1 if
w = a and 0 otherwise.

– Let α = α1 · · ·αn, n ≥ 1, be a sequence in (Σ∪N)∗. Then, for every w ∈ Σ∗,
it is Î(α)(w) = (Î(α1) ◦ · · · ◦ Î(αn))(w).

– Let α ∈ (Σ ∪N)∗. Then, for every w ∈ Σ∗, Î(¬α)(w) = 1− Î(α)(w).
– Let l1, . . . , ln be literals. Then, for every string w ∈ Σ∗, Î(l1& · · ·&ln)(w) =

min{Î(l1)(w), . . . , Î(ln)(w)}.

We are now in a position to define the notion of a model of a boolean grammar:

Definition 6. Let G = (Σ,N, P, S) be a boolean grammar and I an interpreta-
tion of G. Then, I is a model of G if for every rule A → l1& · · ·&ln in P and
for every w ∈ Σ∗, it is Î(A)(w) ≥ Î(l1& · · ·&ln)(w).

In the definition of the well-founded model, two orderings on interpretations play
a crucial role (see [PP90]). Given two interpretations, the first ordering (usually
called the standard ordering) compares their degree of truth:

Definition 7. Let G = (Σ,N, P, S) be a boolean grammar and I, J be two in-
terpretations of G. Then, we say that I � J if for all A ∈ N and for all w ∈ Σ∗,
I(A)(w) ≤ J(A)(w).
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Among the interpretations of a given boolean grammar, there is one which is
the least with respect to the � ordering, namely the interpretation ⊥ which for
all A and all w, ⊥(A)(w) = 0.

The second ordering (usually called the Fitting ordering) compares the degree
of information of two interpretations:

Definition 8. Let G = (Σ,N, P, S) be a boolean grammar and I, J be two inter-
pretations of G. Then, we say that I �F J if for all A ∈ N and for all w ∈ Σ∗,
if I(A)(w) = 0 then J(A)(w) = 0 and if I(A)(w) = 1 then J(A)(w) = 1.

Among the interpretations of a given boolean grammar, there is one which is
the least with respect to the �F ordering, namely the interpretation ⊥F which
for all A and all w, ⊥F (A)(w) = 1

2 .
Given a set U of interpretations, we will write lub�U (respectively lub�FU)

for the least upper bound of the members of U under the standard ordering
(respectively, the Fitting ordering).

4 Well-Founded Semantics for Boolean Grammars

In this section we will define the well-founded semantics of boolean grammars.
The basic idea behind the well-founded semantics is that the intended model
of the grammar is constructed in stages, ie., there is a stratification process
involved that is related to the levels of negation used by the grammar. For every
nonterminal symbol, at each step of this process, the values of certain strings
are computed and fixed (as either true or false); at each new level, the values
of more and more strings become fixed (and this is a monotonic procedure in
the sense that values of strings that have been fixed for a given nonterminal in
a previous stage, cannot be be altered by the next stages). At the end of all the
stages, certain strings for certain nonterminals may have not managed to get the
status of either true or false (this will be due to circularities through negation
in the grammar). Such strings are classified as unknown (ie., 1

2 ).
Consider the boolean grammar G. Then, for any interpretation J of G we

define the operator ΘJ : I → I on the set I of all 3-valued interpretations of
G. This operator is analogous to the one used in the logic programming domain
(see for example [PP90]).

Definition 9. Let G = (Σ,N, P, S) be a boolean grammar, let I be the set of
all three-valued interpretations of G and let J ∈ I. The operator ΘJ : I → I is
defined as follows. For every I ∈ I, for all A ∈ N and for all w ∈ Σ∗:

1. ΘJ (I)(A)(w) = 1 if there is a rule A → l1& · · ·&ln in P such that, for all
i ≤ n, either Ĵ(li)(w) = 1 or li is positive and Î(li)(w) = 1;

2. ΘJ (I)(A)(w) = 0 if for every rule A → l1& · · ·&ln in P , there is an i ≤ n
such that either Ĵ(li)(w) = 0 or li is positive and Î(li)(w) = 0;

3. ΘJ (I)(A)(w) = 1
2 , otherwise.

An important fact regarding the operator ΘJ is that it is monotonic with respect
to the � ordering of interpretations:



Well-Founded Semantics for Boolean Grammars 209

Theorem 1. Let G be a boolean grammar and let J be an interpretation of G.
Then, the operator ΘJ is monotonic with respect to the � ordering of interpreta-
tions. Moreover, ΘJ has a unique least (with respect to �) fixed point Θ↑ωJ which
is defined as follows:

Θ↑0J = ⊥
Θ↑n+1

J = ΘJ (Θ↑nJ )
Θ↑ωJ = lub�{Θ↑nJ | n < ω}

Proof. The proof essentially follows the same lines of thought as that of the logic
programming case (see [Prz89]). �

We will denote by Ω(J) the least fixed point of ΘJ . Given a grammar G, we can
use the Ω operator to construct a sequence of interpretations whose ω-limit MG

will prove to be a distinguished model of G:

M0 = ⊥F

Mn+1 = Ω(Mn)
MG = lub�F {Mn | n < ω}

Notice that here we have an essential difference with respect to the well-founded
semantics of logic programming: there, the construction of the well-founded
model may require a transfinite number of iterations which is greater than ω.
In other words, the well-founded semantics of logic programs is not computable
in the general case. However, in the case of Boolean grammars, the model is
constructed in at most ω iterations:

Theorem 2. Let G be a boolean grammar. Then, MG is a model of G (which
will be called the well-founded model of G). Moreover, MG is the least (with
respect to the �F ordering) fixed point of the operator Ω.

Proof. Technically, the proof is very similar to that of the logic programming
case (see [Prz89]). �

Actually, it can be shown (following a similar reasoning as in [RW05]) that the
model MG is the least model of G according to a syntax-independent relation.

The construction of the well-founded model is illustrated by the following
example:

Example 2. Let G be the grammar given in Example 1. Then, it is easy to see
that MG = M2, ie., that in order to converge to the well-founded model of
G we need exactly two iterations of Ω. More specifically, in M1 = Ω(M0) the
denotations of the non-terminals A,B and C stabilize (notice that the definitions
of these nonterminals are standard context-free rules). However, in order for the
denotation of S to stabilize, an additional iteration of Ω is required. Notice that
the language produced by this grammar is two-valued.

We can now state the relationship between the well-founded semantics and the
naturally feasible semantics of boolean grammars:
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Theorem 3. Suppose that a boolean grammar G has a two-valued (ie., with
values 0 and 1) well-founded semantics. Then the naturally feasible solution for
this grammar either coincides with the well-founded semantics or is undefined.

It is easy to see that if a boolean grammar has a naturally feasible solution se-
mantics, then it is possible that this semantics differs from the well-founded one.
For example, in the four-rule grammar of Section 2, the well-founded semantics
assigns the ⊥F interpretation to all the nonterminal symbols of the grammar.
Notice that although the naturally feasible semantics for this grammar is defined,
it appears to be counterintuitive.

5 Normal Form

In this section we demonstrate that every boolean grammar can be converted
into an equivalent one that belongs to the following normal form:

Definition 10. A Boolean grammar G = (Σ,N, P, S) is said to be in binary
normal form if P contains the rules U → ¬U and T → ¬ε, where U and T are
two special symbols in N − {S}, and every other rule in P is of the form:

A→ B1C1& · · ·&BmCm&¬(D1E1)& · · ·&¬(DnEn)&TT [&U ] (m,n ≥ 0)
A→ a[&U ]
S → ε[&U ] (only if S does not appear in right-hand sides of rules)

where A,Bi, Ci, Dj , Ej ∈ N−{U, T }, a ∈ Σ, and the brackets denote an optional
part.

The basic theorem of this section states that for every boolean grammar G there
exists a boolean grammar in binary normal form that defines the same language
as G. More formally:

Theorem 4. Let G = (Σ,N, P, S) be a boolean grammar. Then there exists a
grammar G′ = (Σ,N ′, P ′, S) in binary normal form such that MG(S) = MG′(S).

The proof of Theorem 4 is based on several transformations, justified by some
lemmata given below. We give here an outline of how the binary normal form is
constructed.

Consider a boolean grammar G = (Σ,N, P, S). Without loss of generality we
may assume that S does not appear in the right-hand side of any rule (other-
wise we can replace S with S′ in every rule, and add a rule S → S′). Initially,
we bring the grammar into a form, which we call pre-normal form (see Defini-
tion 11). This is performed using Lemmas 1,2 and 3. More specifically, Lemma 1
is used to eliminate terminal symbols from rules containing boolean connectives
or concatenation; Lemma 2 separates boolean connectives from concatenation;
and, Lemma 3 is used to eliminate “long” concatenations. Based on the pre-
normal form, we then construct an ε-free version of the grammar (Definition
12). The ε-free version is then brought into binary-normal form (see Definition
10 above) using the technique described in Definition 15. Detailed proofs of lem-
mas comprising this procedure are lengthy, and are omitted in the current form
of the paper.
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Lemma 1. Let G = (Σ,N, P, S) be a boolean grammar, and let G′ be the gram-
mar (Σ,N ∪ {Aa | a ∈ Σ}, P ′ ∪ {Aa → a | a ∈ Σ}, S) where:

– {Aa | a ∈ Σ} ∩N = ∅.
– P ′ is obtained from P by replacing each occurrence of the terminal symbol a

with Aa, in every rule that contains concatenation or boolean connectives.

Then, for every C ∈ N , MG(C) = MG′(C).

Lemma 2. Let G = (Σ,N, P, S) be a boolean grammar, and let β ∈ Nk, k ≥ 2,
be a sequence of non-terminal symbols. Let G′ = (Σ,N ∪{B}, P ′ ∪ {B → β}, S)
where:

– B /∈ N is a new non-terminal symbol.
– For every rule A → α1& · · ·&αm&¬αm+1& · · ·&¬αn in P , P ′ contains the

rule A → α′1& · · ·&α′m&¬α′m+1& · · ·&¬α′n, where α′i = B if αi = β, other-
wise α′i = αi.

Then, for every C ∈ N , MG(C) = MG′(C).

Lemma 3. Let G = (Σ,N, P, S) be a boolean grammar, let A→ B1B2B3 . . . Bk,
A,Bi ∈ N , k ≥ 3, be a rule of P and let G′ = (Σ,N ∪ {D}, P ′, S) where:

– D /∈ N is a new non-terminal symbol.
– P ′ = (P − {A→ B1B2B3 . . . Bk}) ∪ {A→ DB3 . . . Bk, D → B1B2}.

Then, for every C ∈ N , MG(C) = MG′(C).

Using the above lemmas it is straightforward to bring the initial grammar into
the following form:

Definition 11. A Boolean grammar G = (Σ,N, P, S) is said to be in pre-
normal form if every rule in P is of the form:

A→ B1& · · ·&Bm&¬C1& · · ·&¬Cn (m+ n ≥ 1, Bi, Cj ∈ N ∪ {ε})
A→ BC (B,C ∈ N)
A→ a (a ∈ Σ)

Based on the pre-normal form of the grammar, we can now define its ε-free
version:

Definition 12. Let G = (Σ,N, P, S) be a boolean grammar in pre-normal form.
The ε-free version ofG, denoted by Gε, is the boolean grammar (Σ,N∪{U}, P ′, S)
where P ′ is obtained as follows:

– P ′ contains a rule U → ¬U , where U /∈ N is a special non-terminal symbol,
which represents the set in which all strings have the value 1

2 .
– For every rule of the form A → B1& · · ·&Bm&¬C1& · · ·&¬Cn, (m + n ≥

1, Bi, Cj ∈ N ∪ {ε}) in P
• If Bi = ε for some i, then the rule is ignored in the construction of P ′.
• Otherwise, if Ci = ε for some i, then the rule is included in P ′ as it is.
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• Otherwise, P ′ contains the rule A→ B1& · · ·&Bm&¬C1& · · ·&¬Cn&¬ε
– For every rule of the form A→ BC in P

• P ′ contains the rule A→ BC&¬ε
• If MG(B)(ε) = 1 (respectively MG(C)(ε) = 1), then P ′ contains the rule
A→ C&¬ε (respectively the rule A→ B&¬ε).

• If MG(B)(ε) = 1
2 (respectively MG(C)(ε) = 1

2), then P ′ contains the rule
A→ C&U&¬ε (respectively the rule A→ B&U&¬ε).

– For every a ∈ Σ and A ∈ N , if MG(A)(a) = 1 then P ′ contains the rule
A→ a and if MG(A)(a) = 1

2 then P ′ contains the rule A→ a&U

Lemma 4. Let G = (Σ,N, P, S) be a boolean grammar in pre-normal form, and
let Gε be its ε-free version. Then, for every C ∈ N and for every w ∈ Σ∗, w �= ε
implies MG(C)(w) = MGε(C)(w).

In order to obtain a grammar in binary normal form, we need to eliminate rules
of the form A → B1& · · ·&Bm&¬C1& · · ·&¬Cn&¬ε. Membership in MG(A)
depends only on membership in each of M̂G(BC), for all BC that appear in the
right-hand sides of rules. We can express this dependency directly by a set of
rules. In order to do this we treat each BC that appears in the right-hand side
of a rule as a boolean variable (see also [Okh04]).

Definition 13. Let X be a set of variables and let V,W be functions from X
to

{
0, 1

2 , 1
}
. We denote by Vi the set {x ∈ X | V (x) = i}. We write V / W if

V0 ⊆W0 and V1 ⊆W1

Definition 14. Let G be a grammar in pre-normal form and let Gε=(Σ,N, P, S)
be the ε-free version of G. Let X = {BC | A → BC ∈ P} and let V be a func-
tion from X to

{
0, 1

2 , 1
}
. Then, the extension of V to non-terminal symbols

in N , denoted by V̂ , is defined as follows: V̂ (A) is the value MGε(A)(w) when
MGε(BC)(w) = V (BC), for all BC ∈ X and for arbitrary w.

Notice that V̂ is well-defined and can be computed in finitely many steps from V .

Definition 15. Let G be a grammar in pre-normal form, let Gε = (Σ,N, P, S)
be the ε-free version of G. Let X = {BC | A→ BC ∈ P} and let V be the set of
all functions from X to

{
0, 1

2 , 1
}
. The normal form Gn = (Σ,N ∪{T }, P ′, S) of

G is the grammar obtained from Gε as follows:

– P ′ contains all the rules in P of the form A → a and A → a&U , where
a ∈ Σ, the rule U → ¬U in P and the rule T → ¬ε, where T /∈ N is a
special symbol which represents the set in which all non-empty strings have
value 1.

– For every A ∈ N let TA = {V ∈ V | V̂ (A) = 1}. For every minimal (with
respect to /) element V of TA, P ′ contains the rule:

A→ xi1& . . .&xim&¬yj1& . . .&¬yjn&TT

where {xi1 , . . . , xim} = V1 and {yj1 , . . . , yjn} = V0.
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– For every A ∈ N let UA = {V ∈ V | V̂ (A) = 1
2}. For every maximal (with

respect to /) element V of UA, P ′ contains the rule:

A→ xi1&¬xi1& . . .&xim&¬xim&TT&U

where {xi1 , . . . , xim} = V 1
2
.

Notice that in the former case we consider only minimal elements, because if
V ′ / V and V̂ ′(A) = 1 then V̂ (A) = 1. Similarly in the latter case we consider
only maximal elements, because if V ′ / V and V̂ (A) = 1

2 then V̂ ′(A) = 1
2 . The

above properties follow from the monotonicity of the Ω operator, with respect
to the �F (Fitting) ordering.

Lemma 5. Let G = (Σ,N, P, S) be a boolean grammar in pre-normal form, and
let Gn be its binary normal form. Then, for every A ∈ N and for every w ∈ Σ∗,
w �= ε implies MG(A)(w) = MGn(A)(w).

Given the above lemmas, a simple step remains in order to reach the statement of
Theorem 4: if in the original grammar G it is MG(S)(ε) �= 0, then an appropriate
rule of the form S → ε or S → ε&U is added to the grammar that has resulted
after the processing implied by all the above lemmas. The resulting grammar is
then in binary normal form and defines the same language as the initial one.

6 Parsing Under the Well-Founded Semantics

We next present an algorithm that computes the truth value of the membership
of an input string w �= ε in a language defined by a grammarG, which is assumed
to be in binary normal form. The algorithm computes the value of MG(A)(u)
for every non-terminal symbol A and every substring u of w in a bottom up
manner. By convention min0

i=1vi = 1.

Algorithm for parsing an input string w = a1 · · · an:

for i := 1 to n do begin
for every A ∈ N do

if there exist a rule A → ai then MG(A)(ai) := 1
else if there exist a rule A → ai&U then MG(A)(ai) := 1

2
else MG(A)(ai) := 0

end

for d := 2 to n do
for i := 1 to n − d + 1 do begin

j := i + d − 1
for every B, C ∈ N such that BC appears in the right-hand side of a rule do

M̂G(BC)(ai . . . aj) := maxj−1
k=i min{MG(B)(ai . . . ak), MG(C)(ak+1 . . . aj)}

for every A ∈ N do MG(A)(ai . . . aj):=0
for every rule A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DrEr&TT&U do begin

v := min{ 1
2 , minm

p=1 M̂G(BpCp)(ai . . . aj), minr
q=1(1 − M̂G(DqEq)(ai . . . aj))}
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if v > MG(A)(ai . . . aj) then MG(A)(ai . . . aj) := v
end
for every rule A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DrEr&TT do begin

v := min{minm
p=1 M̂G(BpCp)(ai . . . aj), minr

q=1(1 − M̂G(DqEq)(ai . . . aj))}
if v > MG(A)(ai . . . aj) then MG(A)(ai . . . aj) := v

end
end

return MG(S)(a1 · · · an)

For a fixed grammar the above algorithm runs in time O(n3): the value
MG(A)(u) is computed for O(n2) substrings u of w; each computation requires
to break u in two parts in all possible ways, and there are O(n) appropriate
breakpoints.

7 Conclusions

We have presented a novel semantics for boolean grammars, based on techniques
that have been developed in the logic programming domain. Under this new
semantics every boolean grammar has a distinguished language that satisfies
its rules. Moreover, we have demonstrated that every boolean grammar can be
transformed into an equivalent one in a binary normal form. For grammars in
binary normal form, we have derived an O(n3) parsing algorithm.

We believe that a further investigation of the connections between formal
language theory and the theory of logic programming will prove to be very
rewarding.
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Abstract. Tree series transformations computed by polynomial top-
down and bottom-up tree series transducers are considered. The hierar-
chy of tree series transformations obtained in [Fülöp, Gazdag, Vogler: Hi-
erarchies of Tree Series Transformations. Theoret. Comput. Sci. 314(3),
p. 387–429, 2004] for commutative izz-semirings (izz abbreviates idempo-
tent, zero-sum and zero-divisor free) is generalized to arbitrary positive
(i. e., zero-sum and zero-divisor free) commutative semirings. The latter
class of semirings includes prominent examples such as the natural num-
bers semiring and the least common multiple semiring, which are not
members of the former class.

1 Introduction

Tree series transducers were introduced in [1, 2, 3] as a generalization of top-down
and bottom-up tree transducers. With the advent of tree series [4, 5, 6, 7, 8], espe-
cially recognizable tree series [9, 10], in formal language theory also transducing
devices capable of (finitely) representing transformations on tree series became
interesting. For example, in [11] the power of (top-down) tree series transducers
for natural language processing was recognized.

In the seminal paper [12] the hierarchy of top-down tree transformation classes
was proved to be proper. This result lead to the hierarchy of top-down and
bottom-up tree transformation classes (as, e. g., displayed in [13]). This hierarchy
was generalized to classes of top-down and bottom-up tree series transformations
over izz-semirings (izz abbreviates idempotent, zero-divisor and zero-sum free)
in [14]. Let us explain this generalization in some more detail.

By p–TOPε(A) and p–BOTε(A) we denote the classes of tree-to-tree-series
transformations computable by polynomial top-down and bottom-up tree series
transducers [2] over the semiring A [15, 16], respectively. Such a tree-to-tree-
series transformation is a mapping τ : TΣ −→ A〈〈TΔ〉〉 for some ranked alphabets
Σ and Δ. Given ranked alphabets Σ, Δ, and Γ and τ1 : TΣ −→ A〈〈TΔ〉〉 and
τ2 : TΔ −→ A〈〈TΓ 〉〉, the composition of τ1 with τ2 is denoted by τ1 ◦ τ2 and is
a mapping τ : TΣ −→ A〈〈TΓ 〉〉 (an output tree u produced by τ1 is subjected
to τ2, and the result is multiplied by the weight of u in the series produced
� Financially supported by the German Research Foundation (DFG GK/334).
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by τ1). This composition is lifted to classes of transformations, and we write
p–TOPn

ε (A) and p–BOTn
ε (A) for the n-fold composition of p–TOPε(A) and

p–BOTε(A), respectively.
In [14] it is first proved that

p–TOPn
ε (A) ⊆ p–BOTn+1

ε (A) and p–BOTn
ε (A) ⊆ p–TOPn+1

ε (A)

for every commutative semiring and n � 1 (see Theorems 5.1 and 5.7 in [14],
respectively). Then in [14, Theorem 6.20] it is proved that

p–TOPn
ε (A) �⊆ p–BOTn

ε (A) and p–BOTn
ε (A) �⊆ p–TOPn

ε (A)

for every izz-semiring and n � 1. Thus the hierarchy that is obtained in [14] is
proved for commutative izz-semirings. We generalize the incomparability result
to positive (i. e., zero-sum and zero-divisor free) semirings and thereby obtain
the hierarchy for all positive and commutative semirings (see Figure 1 for the
Hasse diagram).

Our approach used to prove the incomparability is (in essence) similar to the
one presented in [14]. However, we carefully avoid the introduction of idempo-
tency by a simpler proof method. We furthermore claim that our method of
proof is more illustrative than the one of [14].

Apart from this introduction, the paper has 3 sections. Section 2 introduces
the essential notation, Section 3 generalizes the mentioned incomparability re-
sult, and Section 4 presents the obtained hierarchy (see Figure 1).

2 Preliminaries

We use N to represent the nonnegative integers and N+ = N \ {0}. In the sequel,
let k, n ∈ N and [k] be an abbreviation for {i ∈ N | 1 � i � k}. A set Σ that
is nonempty and finite is also called an alphabet, and the elements thereof are
called symbols. As usual, Σ∗ denotes the set of all finite sequences of symbols
of Σ (also called Σ-words). Given w ∈ Σ∗, the length of w is denoted by |w|.

A ranked alphabet is an alphabet Σ with a mapping rkΣ : Σ −→ N, which
associates to each symbol a rank. We use Σk to represent the set of symbols
of Σ that have rank k. Moreover, we use the set X = {xi | i ∈ N+} of (formal)
variables and Xk = {xi | i ∈ [k]}. Given a ranked alphabet Σ and V ⊆ X, the
set of Σ-trees indexed by V , denoted by TΣ(V ), is inductively defined to be the
smallest set T such that (i) V ⊆ T and (ii) for every k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . Since we generally assume that Σ ∩X = ∅,
we write α instead of α() whenever α ∈ Σ0. Moreover, we also write TΣ to denote
TΣ(∅).

Given t1, . . . , tn ∈ TΣ(X), the expression t[t1, . . . , tn] denotes the result of
substituting in t every xi by ti for every i ∈ [n]. Let V ⊆ X. We say that
t ∈ TΣ(X) is linear and nondeleting in V , if every x ∈ V occurs at most once
and at least once in t, respectively.

A semiring is an algebraic structure A = (A,+, ·, 0, 1) consisting of a com-
mutative monoid (A,+, 0) and a monoid (A, ·, 1) such that · distributes over +
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and 0 is absorbing with respect to · . The semiring is called commutative, if · is
commutative. As usual we use

∑
i∈I ai for sums of families (ai)i∈I of ai ∈ A

where for only finitely many i ∈ I we have ai �= 0. Let A = (A,+, ·, 0A, 1A) and
B = (B,⊕,", 0B, 1B) be semirings and h : A −→ B. The mapping h is called
homomorphism from A to B, if

– h(0A) = 0B and h(1A) = 1B, and
– h(a+ b) = h(a)⊕ h(b) and h(a · b) = h(a)" h(b) for every a, b ∈ A.

A semiring A = (A,+, ·, 0, 1) is called idempotent, if 1 + 1 = 1. Moreover, we
say that a semiring A = (A,+, ·, 0, 1) is zero-sum free, if a+ b = 0 implies that
a = 0 = b for every a, b ∈ A. Moreover, A is zero-divisor free, if a · b = 0 implies
that 0 ∈ {a, b} for every a, b ∈ A. A zero-sum and zero-divisor free semiring is
also called positive. The Boolean semiring B = ({0, 1},∨,∧, 0, 1) with the usual
disjunction ∨ and conjunction ∧ is an example of a positive semiring.

Let S be a set and A = (A,+, ·, 0, 1) be a semiring. A (formal) power series ψ
is a mapping ψ : S −→ A. Given s ∈ S, we denote ψ(s) also by (ψ, s) and write
the series as

∑
s∈S(ψ, s) s. The support of ψ is supp(ψ) = {s ∈ S | (ψ, s) �= 0}.

Power series with finite support are called polynomials. We denote the set of
all power series by A〈〈S〉〉 and the set of polynomials by A〈S〉. The polynomial
with empty support is denoted by 0̃. Power series ψ, ψ′ ∈ A〈〈S〉〉 are added
componentwise; i. e., (ψ + ψ′, s) = (ψ, s) + (ψ′, s) for every s ∈ S, and we
multiply ψ with a coefficient a ∈ A componentwise; i. e., (a ·ψ, s) = a · (ψ, s) for
every s ∈ S.

In this paper, we only consider power series in which the set S is a set of trees.
Such power series are also called tree series. Let Δ be a ranked alphabet. A tree
series ψ ∈ A〈〈TΔ(X)〉〉 is said to be linear and nondeleting in V ⊆ X, if every
t ∈ supp(ψ) is linear and nondeleting in V , respectively. Let ψ ∈ A〈TΔ(X)〉
and ψ1, . . . , ψn ∈ A〈TΔ(X)〉. The pure IO tree series substitution (for short:
pure substitution) (of ψ1, . . . , ψn into ψ) [17, 2], denoted by ψ←−ε (ψ1, . . . , ψn),
is defined by

ψ←−ε (ψ1, . . . , ψn) =
∑

t∈TΔ(X),
t1,...,tn∈TΔ(X)

(ψ, t) · (ψ1, t1) · . . . · (ψn, tn) t[t1, . . . , tn] .

Let Q be an alphabet. We write Q(V ) for {q(v) | q ∈ Q, v ∈ V }. We use
the notions of linearity and nondeletion in V accordingly also for w ∈ Q(X)∗.
Let A = (A,+, ·, 0, 1) be a semiring and Σ and Δ be ranked alphabets. A tree
representation μ (over Q, Σ, Δ, and A) [2] is a family (μ(σ))σ∈Σ of matrices
μ(σ) ∈ A〈〈TΔ(X)〉〉Q×Q(Xk)∗

where k = rkΣ(σ) such that for every q ∈ Q and
w ∈ Q(Xk)∗ it holds that μ(σ)q,w ∈ A〈〈TΔ(Xn)〉〉 with n = |w|, and μ(σ)q,w �= 0̃
for only finitely many (q, w) ∈ Q×Q(Xk)∗. A tree representation μ is said to be

– polynomial, if μ(σ)q,w is polynomial for every k ∈ N, σ ∈ Σk, q ∈ Q, and
w ∈ Q(Xk)∗;

– linear, if μ(σ)q,w is linear in X|w| and w is linear in Xk for every k ∈ N,
σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗ such that μ(σ)q,w �= 0̃;
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– top-down (respectively, top-down with regular look-ahead), if μ(σ)q,w is linear
and nondeleting (respectively, linear) in X|w| for every k ∈ N, σ ∈ Σk, q ∈ Q,
and w ∈ Q(Xk)∗; and

– bottom-up, if for every k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗ such that
μ(σ)q,w �= 0̃ we have w = q1(x1) · · · qk(xk) for some q1, . . . , qk ∈ Q.

A tree series transducer [2, 6] (with designated states), in the sequel abbrevi-
ated to tst, is a sixtuple M = (Q,Σ,Δ,A, F, μ) consisting of

– an alphabet Q of states,
– ranked alphabets Σ and Δ, also called input and output ranked alphabet,

respectively,
– a semiring A = (A,+, ·, 0, 1),
– a subset F ⊆ Q of designated states, and
– a tree representation μ over Q, Σ, Δ, and A.

Tst inherit the properties from their tree representation; e. g., a tst with a
polynomial bottom-up tree representation is called a polynomial bottom-up tst.
Additionally, we abbreviate bottom-up tst to bu-tst and top-down tst to td-tst.

We introduce the semantics only for polynomial tst because we defined pure
substitution only for polynomial tree series (in order to avoid a well-definedness
issue related to infinite sums). Let M = (Q,Σ,Δ,A, F, μ) be a polynomial tst.
Then M induces a mapping ‖M‖ : TΣ −→ A〈TΔ〉 as follows. For every k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ we define the mapping hμ : TΣ −→ A〈TΔ〉Q compo-
nentwise for every q ∈ Q by

hμ(σ(t1, . . . , tk))q =
∑

w∈Q(Xk)∗,
w=q1(xi1 )···qn(xin )

μk(σ)q,w ←−ε (hμ(ti1)q1 , . . . , hμ(tin)qn) .

For every t ∈ TΣ the tree-to-tree-series (for short: ε-t-ts) transformation com-
puted by M is ‖M‖(t) =

∑
q∈F hμ(t)q.

By p–TOPε(A) and p–BOTε(A) we denote the class of ε-t-ts transformations
computable by polynomial td-tst and bu-tst over the semiring A, respectively.
Likewise we use the prefix l for the linearity property and the stems TOPR

ε and
GSTε for td-tst with regular look-ahead and unrestricted tst, respectively.

We compose ε-t-ts transformations as follows. Let τ1 : TΣ −→ A〈TΔ〉 and
τ2 : TΔ −→ A〈TΓ 〉 then (τ1 ◦ τ2)(t) =

∑
u∈TΔ

(τ1(t), u) · τ2(u) for every t ∈ TΣ.
This composition is extended to classes of ε-t-ts transformations in the usual
manner. By p–TOPn

ε (A) and p–BOTn
ε (A) with n ∈ N+ we denote the n-fold

composition p–TOPε(A) ◦ · · · ◦ p–TOPε(A) and p–BOTε(A) ◦ · · · ◦ p–BOTε(A),
respectively.

3 Incomparability Results

We show the incomparability of p–TOPn
ε (A) and p–BOTn

ε (A) for every n ∈ N+

and positive semiring A. Together with the results of [14] this yields the Hasse
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diagram (see Figure 1) that displays the top-down, bottom-up, and alternating
hierarchy of tree series transformations. We arrive at the same Hasse diagram
as [14], but we can prove it for a distinctively larger class of semirings; namely
positive commutative semirings instead of positive, idempotent, and commuta-
tive semirings as in [14].

First we show the main property that we exploit in the sequel. Roughly speak-
ing, given a positive semiring A we present a specific homomorphism from A to
the Boolean semiring B. We later use this homomorphism to lift the incompara-
bility of the top-down and bottom-up tree transformation classes to the level of
ε-t-ts transformation classes.

Lemma 1. Let A = (A,+, ·, 0A, 1A) be a positive semiring. Let χ : A −→ {0, 1}
be such that χ(0A) = 0 and χ(a) = 1 for every a ∈ A \ {0A}. Then χ is a
homomorphism from A to B.

Let A = (A,+, ·, 0A, 1A) and B = (B,⊕,", 0B, 1B) be two semirings and
τ : TΣ −→ A〈〈TΔ〉〉 and h : A −→ B. The image of τ under h, denoted by h(τ),
is defined by (h(τ)(t), u) = h((τ(t), u)) for every t ∈ TΣ and u ∈ TΔ. Clearly,
h(τ) : TΣ −→ B〈〈TΔ〉〉. If h is a homomorphism, then we also call h(τ) the homo-
morphic image of τ . This notion of (homomorphic) image is lifted to classes of
ε-t-ts transformations in the usual manner.

Next we show that, given an ε-t-ts transformation τ computed by a polynomial
td-tst or bu-tst M over the semiring A and a homomorphism h from A to B,
there exists a polynomial td-tst or bu-tst M ′ over the semiring B such that
M ′ computes the homomorphic image of τ ; i. e., h is applied to all coefficients
in the range of the ε-t-ts transformation τ . This is also the main idea of the
construction; we simply apply the homomorphism to all coefficients in the tree
representation of M to obtain the tree representation of M ′.

Moreover, we show that computable ε-t-ts transformations are also closed
under inverse homomorphisms. For this we need the following definition. Let
h : A −→ B and τ ′ : TΣ −→ B〈〈TΔ〉〉. By h−1(τ ′) we denote the set

{τ ∈ A〈〈TΔ〉〉TΣ | h(τ) = τ ′} .

This is again lifted to classes as usual.

Lemma 2. Let A and B be semirings and h be a homomorphism from A to B.

h(p–TOPε(A)) ⊆ p–TOPε(B) and h(p–BOTε(A)) ⊆ p–BOTε(B)

If h is surjective, then also

h−1(p–TOPε(B)) ⊆ p–TOPε(A) and h−1(p–BOTε(B)) ⊆ p–BOTε(A)

Proof. Let C = (C,+, ·, 0C , 1C) and D = (D,⊕,", 0D, 1D). Let f : C −→ D and
M = (Q,Σ,Δ, C, F, μ) be a tst. We construct the tst f(M) = (Q,Σ,Δ,D, F, μ′)
as follows. For every k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗

μ′(σ)q,w =
⊕

u∈supp(μ(σ)q,w)

f((μ(σ)q,w , u)) u .
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Clearly, f(M) is top-down and bottom-up whenever M is top-down and bottom-
up, respectively.

Let us prove the former statement. Let τ ∈ p–TOPε(A) or τ ∈ p–BOTε(A).
There exists a polynomial td-tst or bu-tst M such that ‖M‖ = τ . We claim that
‖h(M)‖ = h(‖M‖). The proof of this statement can be found below.

For the second statement, let τ ∈ p–TOPε(B) or τ ∈ p–BOTε(B). There exists
a polynomial td-tst or bu-tstM such that ‖M‖ = τ . Moreover, let f : B −→ A be
such that h(f(b)) = b for every b ∈ B. Such an f exists, because h is surjective.
The claim ‖f(M)‖ ∈ h−1(‖M‖) follows from h(‖f(M)‖) = ‖M‖, whose proof
can also be found below.

Now we prove the mentioned result. Let h be a homomorphism from A to B
with A = (A,+, ·, 0A, 1A) and B = (B,⊕,", 0B, 1B). Let M = (Q,Σ,Δ,A, F, μ)
be a tst. Then ‖h(M)‖ = h(‖M‖). Let h(M) = (Q,Σ,Δ,B, F, μ′). We first prove
the auxiliary statement that (hμ′(t)q, u) = h((hμ(t)q, u)) for every q ∈ Q, t ∈ TΣ,
and u ∈ TΔ. This is proved inductively, so let t = σ(t1, . . . , tk) for some k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ.

(hμ′ (σ(t1, . . . , tk))q, u)
= (by definition of hμ′)( ⊕

w∈Q(Xk)∗,
w=q1(xi1 )···qn(xin )

μ′(σ)q,w ←−ε (hμ′(ti1 )q1 , . . . , hμ′(tin)qn), u
)

= (by definition of ←−ε )( ⊕
w∈Q(Xk)∗,

w=q1(xi1 )···qn(xin )

⊕
u′∈TΔ(Xn),
u1,...,un∈TΔ

(μ′(σ)q,w , u
′)"

" (hμ′(ti1)q1 , u1)" · · · " (hμ′(tin)qn , un) u′[u1, . . . , un], u
)

= (by definition of μ′ and induction hypothesis)( ⊕
w∈Q(Xk)∗,

w=q1(xi1 )···qn(xin )

⊕
u′∈TΔ(Xn),
u1,...,un∈TΔ

h((μ(σ)q,w , u
′))"

" h((hμ(ti1)q1 , u1))" · · · " h((hμ(tin)qn , un)) u′[u1, . . . , un], u
)

= (by homomorphism property)⊕
w∈Q(Xk)∗,

w=q1(xi1)···qn(xin )

( ⊕
u′∈TΔ(Xn),
u1,...,un∈TΔ

h
(
(μ(σ)q,w , u

′) ·

· (hμ(ti1)q1 , u1) · . . . · (hμ(tin)qn , un)
)
u′[u1, . . . , un], u

)
= (by homomorphism property and definition of ←−ε )⊕

w∈Q(Xk)∗,
w=q1(xi1)···qn(xin )

h
(
μ(σ)q,w ←−ε (hμ(ti1)q1 , . . . , hμ(tin)qn), u

)
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= (by homomorphism property)

h
( ∑

w∈Q(Xk)∗,
w=q1(xi1 )···qn(xin )

μ(σ)q,w←−ε (hμ(ti1)q1 , . . . , hμ(tin)qn), u
)

= (by definition of hμ)
h((hμ(σ(t1, . . . , tk))q, u))

With this statement the proof is easy. We observe that for every t ∈ TΣ and
u ∈ TΔ

(‖h(M)‖(t), u) =
(⊕

q∈F

hμ′(t)q, u
)

=
⊕
q∈F

(hμ′(t)q, u)

= (by the auxiliary statement)⊕
q∈F

h((hμ(t)q, u)) = h
(∑

q∈F

(hμ(t)q, u)
)

= h
((∑

q∈F

hμ(t)q , u
))

= h((‖M‖(t), u)) .

This lemma admits an important corollary, which will form the basis of our
new lifting result. Roughly, the corollary states that every ε-t-ts transformation
computed by a polynomial td-tst or bu-tst over B can also be computed as
the homomorphic image (under χ) of the ε-t-ts transformation computed by a
polynomial td-tst or bu-tst over the positive semiring A. The statement also
holds vice versa.

Corollary 1. Let A be a positive semiring.

χ(p–TOPε(A)) = p–TOPε(B) and χ(p–BOTε(A)) = p–BOTε(B)

Proof. We have seen in Lemma 1 that χ is a homomorphism from A to B.
Consequently, the statement holds by Lemma 2 because χ is surjective.

Next we show that homomorphisms are compatible with the composition intro-
duced for ε-t-ts transformations.

Lemma 3. Let h be a homomorphism from the semiring A to the semiring B.
Moreover, let τ1 : TΣ −→ A〈TΔ〉 and τ2 : TΔ −→ A〈TΓ 〉.

h(τ1 ◦ τ2) = h(τ1) ◦ h(τ2)

Proof. Let t ∈ TΣ and u′ ∈ TΓ be an input and output tree, respectively. Further,
let A = (A,+, ·, 0A, 1A) and B = (B,⊕,", 0B, 1B).

h
(
((τ1 ◦ τ2)(t), u′)

)
= h

(( ∑
u∈TΔ

(τ1(t), u) · τ2(u), u′
))

=
⊕

u∈TΔ

h
(
((τ1(t), u) · τ2(u), u′)

)
=

⊕
u∈TΔ

h((τ1(t), u))" h((τ2(u), u′))

=
⊕

u∈TΔ

(h(τ1)(t), u)" (h(τ2)(u), u′) =
(
(h(τ1) ◦ h(τ2))(t), u′

)
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Now we ready to state our main theorem, which states the incomparability of
p–TOPn

ε (A) and p–BOTn
ε (A) in all positive semirings.

Theorem 1. Let A be a positive semiring and n ∈ N+.

p–TOPn
ε (A) �⊆ p–BOTn

ε (A) p–BOTn
ε (A) �⊆ p–TOPn

ε (A)

Proof. We prove the statement by contradiction. To this end, suppose that
p–TOPn

ε (A) ⊆ p–BOTn
ε (A). Then

χ(p–TOPn
ε (A))

= χ(p–TOPε(A)) ◦ · · · ◦ χ(p–TOPε(A)) by Lemma 3
= p–TOPε(B) ◦ · · · ◦ p–TOPε(B) by Corollary 1
= p–TOPn

ε (B) by definition

Analogously we obtain χ(p–BOTn
ε (A)) = p–BOTn

ε (B). It follows that we also
have p–TOPn

ε (B) ⊆ p–BOTn
ε (B). This, however, contradicts the famous tree

transducer hierarchy [18] due to [2, Corollaries 4.7 and 4.14]. The second state-
ment is proved analogously.

4 Hierarchy Results

In this section we state the hierarchy result that can be obtained with the new
incomparability result. First we recall the inclusion results of [14].

. . . . . .

p–BOTn+1
ε (A) p–TOPn+1

ε (A)

p–BOTn
ε (A) p–TOPn

ε (A)

. . . . . .

p–BOT2
ε(A) p–TOP2

ε(A)

p–BOT1
ε(A) p–TOP1

ε(A)

Fig. 1. Hasse diagram of the hierarchies



Hierarchies of Tree Series Transformations Revisited 223

Proposition 1 (Theorems 5.1 and 5.7 of [14]). Let A be commutative and
n ∈ N+.

p–BOTn
ε (A) ⊆ p–TOPn+1

ε (A) p–TOPn
ε (A) ⊆ p–BOTn+1

ε (A)

With these inclusions and the incomparability results of Theorem 1 we obtain
the following hierarchy result for positive and commutative semirings. Important
semirings like

– the semiring of nonnegative integers N = (N,+, ·, 0, 1),
– the least common multiple semiring Lcm = (N, lcm, ·, 0, 1), and
– the matrix semiring Matn(N+) = (Nn×n

+ ∪ {0, 1},+, ·, 0, 1) over N+ (where 0
is the n× n zero matrix and 1 is the n× n unit matrix)

are all positive, but not idempotent. However, the matrix semiring is not com-
mutative.

p–GSTε(A)

p–TOPR
ε (A)

p–TOPε(A)

p–BOTε(A)

lp–BOTε(A)
= lp–TOPR

ε (A)

lp–TOPε(A)

Fig. 2. Hasse diagram of general tst

Theorem 2. Let A be a positive and commutative semiring. Figure 1 is the
Hasse diagram for the depicted classes of transformations (ordered by inclu-
sion).

Proof. The inclusions are trivial or follow from Proposition 1. Incomparability
is shown in Theorem 1.

Similarly, we can use the approach also for other incomparability results. For
example, in [19] a diagram of inclusions is presented (for commutative semirings,
cf. Section 6 of [20]), however the properness of the inclusions remained open.
Using our approach we can now prove this diagram to be a Hasse diagram.

Theorem 3. Let A be a positive and commutative semiring. Figure 2 is the
Hasse diagram for the depicted classes of transformations (ordered by inclu-
sion).
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Proof. Note that the inclusions are proved in [19]. It remains to prove strictness
and incomparability.

First we note that the construction of Lemma 2 preserves all introduced prop-
erties (thus also linearity and top-down with regular look-ahead). Thus we obtain
the following statements.

χ(p–TOPR
ε (A)) = p–TOPR

ε (B) χ(p–GSTε(A)) = p–GSTε(B)

χ(lp–TOPR
ε (A)) = lp–TOPR

ε (B) χ(lp–GSTε(A)) = lp–GSTε(B)
χ(lp–TOPε(A)) = lp–TOPε(B) χ(lp–BOTε(A)) = lp–BOTε(B)

In Section 5 of [20] the diagram is proved to be Hasse diagram for the Boolean
semiring and we lift the incomparability results of this diagram using the ap-
proach used in the proof of Theorem 2. This proves the correctness of the diagram
presented in Figure 2.

References

1. Kuich, W.: Tree transducers and formal tree series. Acta Cybernet. 14 (1999)
135–149
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Abstract. We introduce bag context, a device for regulated rewriting
in tree grammars. Rather than being part of the developing tree, bag
context (bc) evolves on its own during a derivation. We show that the
class of bc tree languages is the closure of the class of random context
tree languages under linear top-down tree transductions. Further, an
interchange theorem for subtrees of dense trees in bc tree languages is
established. This result implies that the class of bc tree languages is
incomparable with the class of branching synchronization tree languages.

1 Introduction

In [DTE+05] we started an investigation into random context in tree grammars
and tree transducers. In a random context (rc) tree grammar the derivations are
regulated by context conditions that require the presence or absence of certain
nonterminals in the current sentential form. If one is interested in the properties
of the resulting language class one may, e.g., want to prove that it is closed under
a certain operation. A standard approach would be to apply the operation to the
right-hand sides of all rules. However, many natural operations on trees, such as
extracting a path, delete parts of the trees they are applied to. In such a situation,
the mentioned approach does not work, because it leads to a kind of grammar
where the rewriting is regulated by context which has been deleted. Thus, the
context is “out there” somewhere, rather than being part of the sentential form.
These considerations lead naturally to what we call bag context in tree and in
string grammars. The purpose of this paper is the introduction and investigation
of the resulting tree grammars and languages.
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A bag context tree grammar is a regular tree grammar in which the application
of the rules is regulated by a vector of integers, the bag, which evolves with the
tree under construction. The application of a particular rule is possible at a given
stage if the bag at that stage is within the range defined, as part of the rule,
by a lower limit and an upper limit. If a rule is applied, it affects not only the
tree, but also the bag by means of a bag adjustment which is also part of the
rule. (Bag context string grammars can, of course, be defined analogously by
extending context-free grammars.)

Bag context tree grammars properly generalize random context tree gram-
mars. One may say that their regulation mechanism is an extension of the one
used in multiplicative valence grammars [DP89]. The latter correspond to the
case where rules are always applicable (regardless of the bag contents), but the
bag value must be the zero vector at the end of the derivation.

The layout of this paper is as follows. In the next section, we define bag
context tree grammars and discuss an example as well as equivalent definitions.
In Section 3, we compare random context and bag context tree grammars. In the
last section, we show that bag context tree languages obey structural limitations.
In particular, we prove an interchange theorem stating that sufficiently dense
trees contain subtrees that can be interchanged without leaving the language.

2 Bag Context Tree Grammars

We denote the set of natural numbers (including 0) by N and the set of all
integers by Z. The sets N ∪ {∞} and Z ∪ {±∞} are denoted by N∞ and Z∞,
resp. If I = {1, . . . , k} then elements of ZI

∞ will be written as k-tuples. On ZI
∞,

arithmetic operations such as addition, subtraction, and scalar multiplication
are defined componentwise. An element q of Z∞ which occurs in the place of a
vector denotes (q, . . . , q). For β ∈ ZI and A ∈ I, β(A) may also be denoted βA.

A signature is a set Σ of ranked symbols f (k) (where k ≥ 0 is the rank).
The set TΣ of all trees over Σ contains every a such that a(0) ∈ Σ, and every
f [t1, . . . , tk] such that f (k) ∈ Σ (k ≥ 1) and t1, . . . , tk ∈ TΣ . For t ∈ TΣ ,
yield(t) denotes the string of leaves of t, read from left to right, and height(t)
and nodes(t) denote its height and set of nodes, respectively. For a node v, t(v)
and t/v denote the symbol at node v and the subtree rooted at v, respectively.
(The set of nodes of t equals {ε} ∪ {iv | 1 ≤ i ≤ k, v ∈ nodes(ti)}, where k is
the rank of the root symbol and t1, . . . , tk are the direct subtrees of t.)

Let x(0)
1 , x

(0)
2 , . . . /∈ Σ be pairwise distinct symbols, and let t ∈ TΣ∪{x1,...,xk}

contain each of x1, . . . , xk exactly once. Given trees t1, . . . , tk, we denote by
t[[t1, . . . , tn]] the tree obtained from t by replacing each xi with ti, for i = 1, . . . , k.
Thus, each ti refers to a specific occurrence of this subtree in t[[t1, . . . , tn]].

Definition 1. A bag context (bc for short) tree grammar is a sextuple G = (N,
Σ,R, S, I, β0) consisting of

- finite disjoint signatures N and Σ of nonterminals of rank 0 and terminals;
- a finite set R of rules of derivation;
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- an initial nonterminal S ∈ N ;
- a finite bag index set, I; and
- a vector β0 ∈ ZI , the initial bag.

A rule in R has the generic form A → t (λ, μ;α), where A ∈ N , t ∈ TΣ∪N ,
λ, μ ∈ ZI

∞ are the lower and upper limits respectively, and α ∈ ZI is the bag
adjustment.

There is a derivation step from (s, β) = (u[[A]], β) to (s′, β′) = (u[[t]], β′),
written (s, β)⇒G (s′, β′) or just (s, β)⇒(s′, β′), if there is a rule A→ t (λ, μ;α)
in R, with λ ≤ β ≤ μ and β′ = β + α. The relation ⇒∗ is defined as usual, and
the language generated by G is L(G) = {t ∈ TΣ | (S, β0) ⇒∗ (t, β), β ∈ ZI}. A
rule of the form A→ t (−∞,∞; 0) will usually be written simply as A→ t.

Let us briefly discuss an example. It exploits the bag context for generating a
tree language which does not seem to belong to the class TBY+(REGT), i.e.,
the closure of the regular tree languages under macro tree transductions (see
[DE98] for a study of this class as well as for further references).

Let Σ = {f (2), a(0)}. The aim is to generate the language L consisting of all
trees t over Σ having the following property. Suppose the height of t is n and
let, for 0 ≤ i ≤ n, #i(t) denote the number of nodes v ∈ nodes(t) such that
|v| = i and t(v) = a. Intuitively, #i(t) is the number of a’s at level i in t. Now,
L contains t if and only if, for all i ∈ {1, . . . , n− 1}, #i−1(t) ≤ #i(t).

We generate an element of L levelwise, starting with the root which is the
zeroth level, then the first level, and so on. Two bag positions are used to keep
track of how many a’s we still have to generate at the current level and how many
have already been generated. The next two bag positions count nonterminals
(to make sure that an entire level is generated), and the fifth holds some state
information used to distinguish two stages in the generation of a level. Here is
the grammar: G = ({A,B}, Σ,R,A, {1, . . . , 5}, (0, 0, 1, 0, 0)), where

R = {A→ a ((1, 0, 1, 0, 0), (∞,∞,∞,∞, 0); (−1, 1,−1, 0, 0))
A→ a ((0, 0, 1, 0, 0), (0,∞,∞,∞, 0); (0, 1,−1, 0, 0))
A→ f [B,B] ((0, 0, 1, 0, 0), (∞,∞,∞,∞, 0); (0, 0,−1, 2, 0))

B → B ((0, 0, 0, 0, 0), (0,∞, 0,∞, 0); (0, 0, 0, 0, 1))

B → A ((0, 0, 0, 1, 1), (0,∞,∞,∞, 1); (0, 0, 1,−1, 0))
A→ A ((0, 1, 0, 0, 1), (∞,∞,∞,∞, 1); (1,−1, 0, 0, 0))

A→ A ((0, 0, 0, 0, 1), (∞, 0,∞, 0, 1); (0, 0, 0, 0,−1))}.
At the first stage, which is implemented by the first three rules, enough A’s

must be replaced by a to decrease the first bag component to zero. The remaining
A’s must be replaced by f [B,B] to decrease the third bag component to zero
as well. Only then can the fourth rule be applied, thus turning to the next
stage. Now, each B is turned into an A again, and the value of the second bag
component is moved to the first. When this has been done, the last rule switches
back to the first stage and the next level is generated. The generation of the
third level may, for instance, take the following form:
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A (0, 0, 1, 0, 0)
⇒∗ f [f [f [A,A], a], f [a, f [A,A]]] (2, 0, 4, 0, 0)
⇒4 f [f [f [a, a], a], f [a, f [f [B,B], a]]] (0, 3, 0, 2, 0)
⇒ f [f [f [a, a], a], f [a, f [f [B,B], a]]] (0, 3, 0, 2, 1)
⇒5 f [f [f [a, a], a], f [a, f [f [A,A], a]]] (3, 0, 2, 0, 1)
⇒ f [f [f [a, a], a], f [a, f [f [A,A], a]]] (3, 0, 2, 0, 0)
⇒ · · · .

We now discuss some equivalent formulations of bc tree grammars. For this, we
denote by BCTG the class of bag context tree grammars. The subset of BCTG
consisting of bc tree grammars in which every rule A → t (λ, μ;α) satisfies
λ, μ, λ+α ∈ NI

∞, and in which the initial bag is required to be an element of NI ,
is denoted by BCTG+. (Clearly, this implies in particular that after any number
of derivation steps the bag will be an element of NI .)

Given a bc tree grammar, we denote by L0(G) the set of all trees that can
be generated by a derivation in which the final bag value is the zero vector.1

Hence, L0(G) ⊆ L(G). Looking at all combinations, we get the following lan-
guage classes:

BCTL = {L(G) | G ∈ BCTG}
BCTL0 = {L0(G) | G ∈ BCTG}
BCTL+ = {L(G) | G ∈ BCTG+}
BCTL0

+ = {L0(G) | G ∈ BCTG+}.

We show in this section that BCTL = BCTL0 = BCTL+ = BCTL0
+.

It often simplifies arguments if the assumption is made that a bc tree grammar
is in the normal form described by the next theorem.

Lemma 2. (Normal form) For every bc tree grammar G = (N,Σ,R, S, I, β0),
there is a bc tree grammar G′ = (N ′, Σ,R′, S, I, β0) with L(G) = L(G′) and
L0(G) = L0(G′), such that each rule in R′ has one of the following formats:
1. A→ f [B1, B2, . . . , Br] (λ, μ;α)
2. A→ B (λ, μ;α)
3. A→ a

where A,B,B1, B2, . . . , Br ∈ N ′, f (r) ∈ Σ for some r ≥ 1, and a(0) ∈ Σ. More-
over, if G ∈ BCTG+, then G′ ∈ BCTG+.

The proof is straightforward, using standard techniques. Using this normal form,
it can be shown that the four variants of BCTL defined above are equal.

Theorem 3. BCTL = BCTL0 = BCTL+ = BCTL0
+.

To prove the theorem, one may first establish that BCTL = BCTL+ and
BCTL0 = BCTL0

+ by showing how a bc tree grammar can be turned into an

1 As mentioned in the introduction, this additional requirement is known from the
definition of valence grammars [DP89].
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equivalent one in BCTG+. This can be done in a variety of ways. For example,
replace each bag index i by indices i+ and i−, such that β(i+) and β(i−) are al-
ways nonnegative, and β(i) in G corresponds to β(i+)−β(i−) in G′ at every point
in a derivation. The reader should easily be able to work out the details. Now,
to finish the proof of the theorem, it suffices to show that BCTL0 = BCTL. Of
the two inclusions, BCTL ⊆ BCTL0 is the more interesting one. The reasoning
is as follows.

Let G ∈ BCTG be in normal form. We construct G′ ∈ BCTG by adding
another bag position to the bag of G and making the following changes.

- The additional bag position is equal to 1 in the initial bag.
- Each rule A → t (λ, μ;α) in G is modified as follows to obtain a rule in
G′. If t is not a leaf, then we add A → t (λ′, μ′;α′) to the rules of G′,
where λ′, μ′ and α′ are obtained from λ, μ and α, respectively, by setting
the additional component equal to 1 in λ′ and μ′, and equal to 0 in α′. All
other bag positions stay unchanged in λ′, μ′ and α′. If t is a leaf, then we
add A→ t (0, 0; 0) to the rules of G′.

- We add for each nonterminal B in G, the rule B → B (−∞,+∞;α′), where
all positions in α′ are equal to 0, except that the additional bag position has
an entry of −1.

- We add for each nonterminal B in G the rule B → B (λ′, μ′;α′), where the
new bag position in α′ is equal to 0 and all other positions in α′, except for
one, are equal to 0. The component in α′ that is not equal to 0, is equal to 1
or −1. All bag positions in λ′ are equal to −∞, except for the new position,
that has the value 0. All bag positions in μ′ are equal to ∞, except for the
new position, that has the value 0.

Consider a derivation of s ∈ L(G). We may assume that this derivation is done
in two stages. First we use rules of the form A → t (λ, μ;α), with t not a leaf,
and then rules of the form A → a, with a(0) ∈ Σ. The first stage is used in the
obvious manner to provide the first stage of a derivation for s in G′. Then we
change the additional bag position to 0, then all other bag positions to 0, and
finally we use the second stage of the derivation of s in G, in the obvious manner,
to obtain the second stage of the derivation of s in G′. It should be clear that
L(G) = L(G′) = L0(G′), as required.

3 Comparison of Bag Context and Random Context

In this section, we characterize the bc tree languages in terms of random context
tree languages and top-down tree transducers.

A random context tree grammar (rc tree grammar) G = (N,Σ,R, S) consists
of finite signatures N and Σ of nonterminals and terminals, respectively, where
the nonterminals have rank 0, an initial nonterminal S ∈ N , and a finite set
R of rules. Each rule has the form A → t (P ;F ), where A ∈ N , t ∈ TΣ∪N ,
and P, F ⊆ N . The sets P and F are called the permitting context and the
forbidding context, respectively. The rule is applicable to a tree s[[A]], thus giving
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rise to a derivation step s[[A]] ⇒G s[[t]], if all nonterminals in P occur in s and
none of those in F does. The language generated by G is then defined as usual:
L(G) = {t ∈ TΣ | S ⇒∗

G t}.
Let us first define a notation useful for the technical constructions in this

section. Suppose we are interested in a (bag or rc) tree grammar generating
trees over Σ, using a set N = {A1, . . . , Am} of nonterminals (where the order of
elements in N is arbitrary but fixed). For a tree t ∈ TΣ∪N , we denote by cnt(t)
the m-tuple (n1, . . . , nm) such that ni is equal to the number of occurrences of
Ai in t. In particular, for A ∈ N , cnt(A) is the m-tuple in which the component
corresponding to A is set to 1, whereas all others are set to 0. For a set T ⊆ TΣ ,
we let cnt(T ) =

∑
t∈T cnt(t).

From an rc tree grammar G = (N,Σ,R, S), we may construct a bc tree
grammar with the bag index set N to record, at all times during a derivation,
the number of occurrences of A ∈ N in the A-entry of the bag. In this way, it is
not difficult to simulate an rc tree grammar by a bc tree grammar, which yields
the following result.

Lemma 4. For every random context tree grammar G = (N,Σ,R, S) there is
an equivalent bag context tree grammar G′ = (N,Σ,R′, S,N, cnt(S)).

In the remainder of this section, we show that bc tree languages are precisely
the images of the rc tree languages under linear top-down tree transductions.
For this, let us first recall the definition of top-down tree transducers.

A top-down tree transducer (td transducer) td = (Σ,Σ′, Q,R, q0) consists
of finite signatures Σ,Σ′ of input and output symbols, respectively, a finite
signature Q of states of rank 1, an initial state q0 ∈ Q, and a finite set of rules R.
Each rule in R has the form q f → t[[q1[xi1 ], . . . , ql[xil

]]], where q, q1, . . . , ql ∈ Q,
f (k) ∈ Σ, i1, . . . , il ∈ {1, . . . , k}, and t ∈ TΣ′∪{x1,...,xl} for some k, l ∈ N. The
rules are interpreted as term rewrite rules in the usual way, where the left-
hand side q f is an abbreviation that stands for the tree q[f [x1, . . . , xk]]. Thus,
a computation step using the rule q f → t[[q1[xi1 ], . . . , ql[xil

]]] has the form

s[[q[f [s1, . . . , sk]]]]⇒td s[[t[[q1[si1 ], . . . , ql[sil
]]]]].

For every tree t ∈ TΣ, we let td(t) = {t′ ∈ TΣ′ | q0[t] ⇒∗
td t′}. The transfor-

mation of a tree language L ⊆ TΣ is given by td(L) =
⋃

t∈L td(t).
Two special cases of td transducers will be of particular interest in the fol-

lowing. For this, call a rule q f (k) → t[[q1[xi1 ], . . . , ql[xil
]]] linear if xi1 , . . . , xil

are pairwise distinct and nondeleting if {xi1 , . . . , xil
} = {x1, . . . , xk}. A td

transducer is linear (nondeleting) if all of its rules are linear (nondeleting, re-
spectively). Naturally, a td transduction is called linear if there is a linear td
transducer computing it – and similarly for the nondeleting and linear nondelet-
ing cases.

Below, we shall use the following notation for classes of tree languages and
tree transductions: RCTL denotes the class of rc tree languages, i.e., the class of
all languages generated by rc tree grammars. The classes of all td transductions,
linear td transductions, nondeleting td transductions, and linear nondeleting td
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transductions are denoted by TD, lTD, nTD, and lnTD, resp. If L is a class of
tree languages and T is a class of tree transductions, we let T (L) = {τ(L) | τ ∈
T and L ∈ L}. If T is a singleton {τ}, we may also denote T (L) by τ(L).

Next we show that the class of random context tree languages is closed under
linear nondeleting td transductions. This will be used later on, in order to derive
the main result of this section.

Theorem 5. lnTD(RCTL) = RCTL.

Proof. Of course, RCTL ⊆ lnTD(RCTL) since lnTD contains the identity on
TΣ , for every finite signature Σ. For the other direction, let G = (N,Σ,R, S)
and td = (Σ,Σ′, Q,Rtd , q0) be an rc tree grammar and a linear nondeleting
td transducer, respectively. We construct an rc tree grammar G′ generating
td(L(G)) by means of a standard technique. The nonterminals of G′ are the pairs
(q, A) ∈ Q × N and the rules are obtained by “running” td on the right-hand
sides of the rules in R. For this, we extend td to input trees in TΣ∪N by defining
q[A]⇒td (q, A) for all q ∈ Q and A ∈ N . Thus, the output trees of the extended
td transducer are trees over Σ′ ∪ Q × N . Now, G′ = (Q × N,Σ′, R′, (q0, S)),
where R′ contains, for all q ∈ Q and all rules A → t (P ;F ) in R, all rules
(q, A) → t′ (P ′;F ′) such that

- q[t]⇒∗
td t

′,
- P = {B ∈ N | (q′, B) ∈ P ′ for some q′ ∈ Q}, and
- F ′ = Q× F .

(Since the second item does not yield a unique set P ′, several copies of the rule,
which are only distinguished by their permitting contexts, belong to R′.)

As td is linear and nondeleting, it preserves the occurrences of nonterminals.
More precisely, if t = s[[A1, . . . , Ak]], where t ∈ TΣ∪{x1,...,xk} and A1, . . . , Ak ∈
N , then td(t) is of the form s′[[(q1, A1), . . . , (qk, Ak)]], where s′ ∈ TΣ′∪{x1,...,xk}
and q1, . . . , qk ∈ Q. Using this, and keeping in mind the way in which the permit-
ting and forbidding contexts P ′ and F ′ were defined above, it should be obvious
that L(G′) = L(G); the formal proof of this fact is thus omitted. �
To investigate the relationship between the classes RCTL and BCTL, it is useful
to introduce a generalization of rc tree grammars, called counting rc tree gram-
mars. These grammars are defined in exactly the same way as rc tree grammars,
but the permitting and forbidding contexts are multisets of nonterminals rather
than ordinary sets. More precisely, every rule of a counting rc tree grammar is
of the form A → t (P ;F ), where P and F map the set N of nonterminals to
N and N ∪ {∞}, respectively. Such a rule is applicable to a tree s[[A]] if each
nonterminal B ∈ N occurs at least P (B) but at most F (B) times in s. The
remaining definitions carry over from the case of rc tree grammars; the class of
all tree languages generated by counting rc tree grammars is denoted by cRCTL.
Clearly, a rule A → t (P ;F ) in an ordinary rc tree grammar can be identified
with the rule A→ t (P ′;F ′) where

P ′(B) =

{
1 if B ∈ P
0 otherwise

F ′(B) =

{
0 if B ∈ F
∞ otherwise
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for all B ∈ N . Thus, RCTL ⊆ cRCTL. To show that the converse holds as
well, we may invent copies A1, . . . , Am of each nonterminal A, where m is the
maximum finite multiplicity of elements in the sets P and F occurring in a
counting rc tree grammar. In this way, an ordinary rc tree grammar can count
up to m copies of A, and is thus able to express that a given sentential form
contains at most or at least k occurrences of A (k ∈ {0, . . . ,m}). Thus, the
following lemma is obtained.

Lemma 6. cRCTL = RCTL.

Now, we come to the main constructions of this section. Suppose we are given a
signature Σ containing some binary symbol aux(2) ∈ Σ. We are going to consider
the td transduction ‘cleanaux’ which turns trees over Σ into trees over Σ \{aux},
as follows: For every symbol a(0) ∈ Σ, we let cleanaux(a) = a. Furthermore, for
all trees t = f [t1, . . . , tk] with k ≥ 1,

cleanaux(t) =

{
cleanaux(t1) if f = aux
f [cleanaux(t1), . . . , cleanaux(tk)] otherwise.

Thus, we simply remove all occurrences of aux, together with its second subtrees.
Clearly, cleanaux is a td transduction. By using additional bag positions to keep
track of the number of nonterminals in deleted parts of the tree, one can show
that BCTL is closed under clean, i.e., we have the following lemma.

Lemma 7. clean(BCTL) ⊆ BCTL.

Continuing this chain, the application of clean to RCTL yields all of BCTL.

Lemma 8. BCTL ⊆ clean(RCTL).

Proof. By Theorem 3 and Lemma 6, it suffices to prove the inclusion BCTL0
+ ⊆

clean(cRCTL). For this, let G = (N,Σ,R, S, I, β0) ∈ BCTG+. We may assume
that β0 = (0, . . . , 0). Our construction of a counting rc tree grammar G′ with
cleanaux(L(G′)) = L0(G) (where aux(2) is any binary symbol not in Σ), is based
on the following idea. The set of nonterminals is given by the disjoint union
N ′ = N ∪

⋃
i∈I{i, i′, i↓, i′↓}. Intuitively, the nonterminals in N play the same role

as in G, while the number of occurrences of i ∈ I in a derived tree corresponds
to the bag value β(i). These copies of i will be stored in the parts of the tree
that are deleted by cleanaux. The nonterminals of the form i′, i↓, i′↓ are auxiliary
ones used to decrease the number of occurrences of i in a controlled way if the
bag value is adjusted downwards.

Following this intuition, the set R′ of rules of G′ is given by R′ = R′1 ∪ R′2,
where R′1 and R′2 are constructed as follows:

- For each rule A→ t (λ, μ;α) in R, R′1 contains the rule A→ aux[t, t′] (P ;F ),
where t′, P , and F are given as follows. The tree t′ is any tree over Σ ∪
{aux} ∪

⋃
i∈I{i, i↓} such that the following holds for every i ∈ I. If αi ≥ 0,
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then t′ contains αi occurrences of i and no occurrence of i↓. If αi ≤ 0, then
t′ contains −αi occurrences of i↓ and no occurrence of i.2

The multisets P and F are given by

P (x) = {λii | i ∈ I} and F (x) = {μii | i ∈ I} ∪ {∞A | A ∈ N}.

(Here, we define P and F using set notation extended by multiplicities.) Note
that, since F (i′) = F (i↓) = F (i′↓) = 0 for all i ∈ I, this rule is applicable to
an occurrence of A only if the tree does not contain any of the symbols i′, i↓,
and i′↓. The rationale behind the additional subtree t′ on the right-hand side
is to adjust the number of occurrences of i ∈ I according to α. If αi ≥ 0, this
can be done immediately by adding as many occurrences of i. However, if
αi < 0, we have to delete some of the existing occurrences. Since this cannot
be done in a single stroke, we add −αi occurrences of i↓. The rules in R′2
described next will make sure that i and i↓ cancel each other out.

- For every i ∈ I, we let R′2 contain the rules

i → i′ (∅; {i′, i′↓})
i↓ → i′↓ ({i′}; {i′↓})
i′ → a ({i′↓}; ∅)
i′↓ → a (∅; {i′})

for some arbitrary symbol a(0) ∈ Σ. These rules ensure that all occurrences of
i↓ are turned into a, at the same time turning exactly as many occurrences
of i into a. (Note that, since we started out with BCTL0

+, the number of
occurrences of i and i↓ must finally cancel each other out.)

Naturally, the initial nonterminal of G′ is S. Once again, the correctness of the
construction should be rather obvious, i.e., cleanaux(L(G′)) = L0(G). �

We can now prove the main result of this section.

Theorem 9. RCTL � lTD(RCTL) = clean(RCTL) = BCTL.

Proof. Clearly, BCTL �= RCTL because the monadic tree languages in RCTL
are regular (see also [DTE+05]), whereas it is easy to generate, e.g., {an[bn[ε]] |
n ∈ N} using a single bag position.

Now, consider the equality BCTL = clean(RCTL). Lemma 8 yields the inclu-
sion BCTL ⊆ clean(RCTL). From Lemma 4, RCTL ⊆ BCTL and thus, using
Lemma 7, clean(RCTL) ⊆ clean(BCTL) ⊆ BCTL. Thus BCTL = clean(RCTL).

To complete the proof, note first that clean(RCTL) ⊆ lTD(RCTL) since
clean ∈ lTD. Hence, it remains to show that lTD(RCTL) ⊆ BCTL. However, for
td ∈ lTD it is straightforward to construct a nondeleting variant td ′ ∈ lnTD in
such a way that td = cleanaux ◦ td ′, i.e., td is the composition of td ′ (first) and
cleanaux (second): td ′ simply preserves the subtrees that td deletes, storing them

2 Clearly, we may assume that Σ contains at least one symbol of rank 0.
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as the second subtrees of additional aux symbols. I.e., if td contains the rule
q f (2) → g[h[a], q′[x1]], in td ′ this becomes q f (2) → aux[g[h[a], q′[x1]], qid[x2]].
Here, qid is a new state which computes the identity using linear nondeleting
rules. Obviously, td = cleanaux ◦ td ′, as required.

Hence, lTD(RCTL) ⊆ clean(lnTD(RCTL)) ⊆ clean(RCTL) ⊆ BCTL, using
Theorem 5 for the second inclusion. �

Owing to [Bak79, Corollary 4(2)] by Baker, we have lTD ◦ clean ⊆ lTD. Us-
ing the previous theorem, we thus get lTD(BCTL) = lTD(clean(RCTL)) ⊆
lTD(RCTL) = BCTL. Since the identity on TΣ belongs to lTD, the converse
inclusion holds as well, which yields the following corollary.

Corollary 10. lTD(BCTL) = BCTL.

4 The Interchange Theorem for bc Tree Languages

If an intermediate tree in a derivation in a bc tree grammar contains some
nonterminal twice, then there is no means of distinguishing between the two.
Consequently, in such a case two trees can be generated, each of which could be
changed into the other by swapping appropriate subtrees. Clearly, such a situ-
ation must necessarily arise if the generated tree is sufficiently dense. Pursuing
this line of thought, it is possible to find candidates for tree languages that do
not seem to be bag context tree languages, such as the following.

For n ≥ 1, let t〈n〉 be the complete binary tree with the following properties:

1. t〈n〉 is of height 2n;
2. every internal node of t〈n〉 is labelled f (2);
3. yield(t〈n〉) = w1w2 . . . w2n , where wi = ai−1ba2n−i.

Let Lbin = {t〈n〉 | n ≥ 1}.
We shall prove that Lbin �∈ BCTL. To begin with, the following lemma is

easily proved by induction on the length of derivations.

Lemma 11. Let (t[[A1, . . . , Am]], β) ∗⇒ (t[[t1, . . . , tm]], β′) be a derivation in a
bc tree grammar. If p is a permutation of {1, . . . ,m} with Ai = Ap(i) for all
i ∈ {1, . . . ,m}, then (t[[A1, . . . , Am]], β) ∗⇒ (t[[tp(1), . . . , tp(m)]], β′).

Now, consider a tree t〈n〉 in Lbin, for large enough n. Intuitively, the derivation
must contain an intermediate tree t[[A1, . . . , Am]] of height less than n, such that
at least one nonterminal occurs twice among A1, . . . , Am. Thus, the correspond-
ing subtrees in t〈n〉 can be interchanged. Obviously, the resulting tree is not a
member of Lbin.

In the following, we will develop general notions and results that formalize
this intuition. We use the notion of a run to reflect the top-down manner in
which bc tree grammars generate trees. To obtain a sufficiently general definition,
we parametrize it by node properties. Here, we define a node property to be a
predicate Ψ that determines, for every tree t, a nonempty prefix-closed subset
Ψt of nodes(t). For v ∈ nodes(t), we say that v satisfies Ψt if v ∈ Ψt.
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Definition 12 (run, density). Let Ψ be a node property and t a tree. A Ψ -run
on t is a sequence N0 · · ·Nm of subsets of nodes(t) such that (a) N0 = {λ},
(b) for every i ∈ {1, . . . ,m}, there is some v ∈ Ni−1 with

Ni = (Ni−1 \ {v}) ∪ {vj ∈ nodes(t) | j ∈ N and vj satisfies Ψt},

and (c) Nm = ∅. The Ψ -density of t is given by

densityΨ (t) = min{ max
0≤i≤m

|Ni| | N0 · · ·Nm is a Ψ -run on t}.

Note that, if Ψ is the trivial property that holds for all nodes of a given tree,
then a Ψ -run on t corresponds in a straightforward way to a node-by-node top-
down construction of t. Choosing less general properties allows us to focus on
particular types of nodes and to disregard all others. Intuitively, the density of t
is the smallest number d such that t can be constructed by a run in which each
node set contains at most d elements.

Consider a bc tree grammar in normal form, and let (t0, β0)⇒ · · · ⇒ (tm, βm)
be a derivation, where t0 is a single nonterminal, and t = tm is a terminal tree.
This derivation yields a Ψ -run on t, as follows: for i ∈ {1, . . . ,m}, let Ni be the
set of all nonterminal nodes v of ti that satisfy Ψt. The desired run is obtained
from N0 · · ·Nm by discarding all Ni (1 ≤ i ≤ m) for which Ni = Ni−1. By
the definition of density, this means that the derivation must contain at least
one tree ti having densityΨ (t) pairwise distinct nodes v such that (a) ti(v) is a
nonterminal and (b) v satisfies Ψt. Thus, if densityΨ (t) exceeds the number of
nonterminals of the grammar, Lemma 11 implies that there exist two subtrees
of t such that (a) the tree obtained by interchanging these two subtrees can also
be generated from t0, and (b) both nodes satisfy Ψt. Furthermore, none of these
nodes is a prefix of the other – we say that they are independent. Clearly, the
mentioned arguments are still valid if t occurs as a subtree within a larger tree
generated. This proves the interchange theorem, which we state next. Here, we
denote by tu↔v the tree obtained from t by interchanging the subtrees rooted at
nodes u and v, respectively.

Theorem 13 (interchange theorem). For every bc tree language L, there
exists a constant k such that the following holds. Let Ψ be a node property,
and assume that L contains a tree s[[t]], where densityΨ (t) > k. Then there are
independent nodes u, v ∈ nodes(t) which satisfy Ψt, such that s[[tu↔v]] ∈ L.

The interchange theorem proves that Lbin is not a bag context tree language:
Let k be the constant of the theorem, and let a node v ∈ nodes(t) satisfy Ψ if
|v| < height(t)/2. Then consider t = t〈n〉 for some n > k.

The interchange theorem makes it possible to compare the class of bc tree
languages with other classes of tree languages. One such class is the class of
branching synchronization tree languages [DE04], which is identical to the clo-
sure of the class of regular tree languages under top-down tree transductions.
Hence, there are bc tree languages which are not branching synchronization tree
languages. (Recall that {an[bn[ε]] | n ∈ N} ∈ BCTL.) To show that the converse
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holds as well, we use the interchange theorem. Let Σ = {f (2), g(1), h(0)}, and let
L0 be the set of all trees over Σ such that every path from the root to a leaf
contains exactly one g. Even a branching ET0L tree grammar (or, equivalently,
a regular tree grammar followed by a top-down tree transducer) can generate
the language Lcopy = {f [t, t] | t ∈ L0}. Assume that this language is a bc tree
language, and let k be as in Theorem 13. For a tree t ∈ TΣ , let Ψt be the node
property that is satisfied by v ∈ nodes(t) if t(v′) = f for all proper prefixes v′ of
v. Now, choose a tree t ∈ L0 such that (a) the subtrees whose roots are labelled
with g are pairwise distinct, and (b) densityΨ (t) > k. Clearly, such a tree t exists.
Choosing s = f [t, x1] in Theorem 13, it follows that f [t, tu↔v] ∈ L, where u and
v are independent nodes satisfying Ψt. However, by the choice of t and Ψ , the
latter means that t/u �= t/v, and thus f [t, tu↔v] /∈ L – a contradiction. Thus, we
have proved the following theorem.

Theorem 14. There exist bc tree languages which are not branching synchro-
nization tree languages (i.e., cannot be obtained by applying a finite sequence of
top-down tree transductions to a regular tree language). Conversely, there are
branching ET0L tree languages (i.e., images of regular tree languages under top-
down tree transductions) which are not bc tree languages.

Acknowledgment. We thank the referees for suggesting several improvements
to the text.
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Abstract. Duplication is an operation generating a language from a
single word by iterated application of rewriting rules u → uu on factors.
We extend this operation to entire languages and investigate, whether the
classes of the Chomsky hierarchy are closed under duplication. Here we
treat mainly bounded duplication, where the factors duplicated cannot
exceed a given length.

While over two letters the regular languages are closed under bounded
duplication, over three or more letters they are not, if the length bound
is 4 or greater. For 2 they are closed under duplication, the case of 3
remains open. Finally, the class of context-free languages is closed under
duplication over alphabets of any size.

1 Duplication

In a series of recent articles, languages generated from a single word by iteration
of the duplication operation have been investigated. This operation was inspired
by a behaviour observed in strands of DNA: certain factors of such sequences
can be duplicated within their strand forming a so-called tandem repeat; from
a formal language point of view, a word uvw is transformed into uvvw.

The first mechanism for generating languages derived from this behaviour
were the so-called duplication grammars [9],[10]. Then a great deal of interest
was paid to languages generated from a word by iterated application of the
duplication operation as introduced by Dassow et al. [3]. The main focus in
these investigations was on determining under which conditions those languages
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are regular. In this context also the restriction of the duplicated factor’s length
to a maximum or one fixed length has been investigated [5],[6],[7],[8],[12].

The objective of this article will be the investigation of the duplication clo-
sure on entire languages rather than single words. The duplication closure of a
language is the union of all the closures of the words contained in that language.
Our main focus will be on the question, under which conditions this operation
preserves regularity and context-freeness. It is rather obvious that all versions of
duplication preserve context-sensitivity.

In Section 3 we establish that the class of regular languages is closed under
2-bounded duplication, but not under 4-bounded duplication; the case of 3 re-
mains open. Further we show that over a two-letter alphabet 2-boundedness is
equivalent to any longer bound and even to unbounded duplication. In combina-
tion with the preceding results this proves that over two letters regular languages
are closed under general duplication and all bounded versions.

The class of context-free languages is the focus of Section 4. We establish its
closure under bounded duplication, and further give a result that shows that
this does not help us to answer the case of general duplication, because the n-
bounded duplication languages of the word abc form an infinite hierarchy with
the unbounded duplication language as its supremum.

2 Definitions

We now provide the formal definitions concerning the duplication operation. For
this, we take for granted elementary concepts from the theory of formal languages
as exposed, for example, by Harrison [4] or Salomaa [11]. A few notations we use
are: |w| for the length of the word w, w[i] for the i-th letter of w, and w[i . . . j]
for the factor of w starting at position i and ending at position j. A period of
a word w is an integer k such that for all i ≤ |w| − k we have w[i] = w[i + k].
For an alphabet Σ, the set Σn consists of all the words of length n over this
alphabet, further Σ≤n :=

⋃
i≤n Σ

i.
An important notion that will be used is the relation ∼L over Σ∗ × Σ∗ for

a language L ⊂ Σ∗, which is the syntactic right-congruence and is defined as
follows:

u ∼L v :↔ ∀w ∈ Σ∗(uw ∈ L↔ vw ∈ L).

This is obviously an equivalence relation. It is well-known from the Kleene-
Myhill-Nerode Theorem that a language L is regular, if and only if the corre-
sponding relation ∼L has a finite number of equivalence classes; this number is
called the index of ∼L.

Theorem 1 ([11]). A language L is regular, if and only if ∼L has finite index.

With this we come to the central notion of this article. We will use a rewriting
relation to generate duplication languages. For details on string-rewriting sys-
tems we refer the reader to the book by Book and Otto [1], whose terminology
we will follow here.
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The relation we define will be denoted by ♥; with the origin on the bottom
expanding to two equal halves, this symbol seems quite appropriate for duplica-
tion. So, in detail, the duplication relation is defined as

u♥v :⇔ ∃w[u = u1wu2 ∧ v = u1wwu2].

With ♥∗ we denote the relation’s reflexive and transitive closure. We generate
languages with it in the following way.

Definition 2. The duplication language generated by a word w is

w♥ := {u : w♥∗u}.

Thus w♥ is the language of all words that can be obtained from w by a finite
number of duplications. Apart from general duplication, also two restricted vari-
ants have been investigated, namely bounded and uniformly bounded duplication.
These are defined for some integer n as

u♥≤nv :⇔ ∃w[u = u1wu2 ∧ v = u1wwu2 ∧ |w| ≤ n]

and
u♥=nv :⇔ ∃w[u = u1wu2 ∧ v = u1wwu2 ∧ |w| = n]

respectively. So the n-bounded variant admits duplications of factors up to length
n, the uniformly n-bounded one admits duplications of factors of length exactly
n. The languages w♥≤n and w♥=n are defined analogously to the unrestricted
case. The latter variant we write also simply w♥n.

We will now illustrate these definitions with two simple examples over the
two-letter alphabet Σ = {a, b}. (aba)♥ is the language aΣ∗a. (aba)♥≤2 = aΣ∗a.
On the other hand (aba)♥2 = (ab)∗a.

In the canonical way, the duplication operation is extended to sets of words,
setting for such a set W its language generated by duplication as

W♥ :=
⋃

w∈W

w♥.

This is the form, in which we will now apply duplication to languages and then
investigate, whether this preserves regularity and context-freeness.

3 Closure of Regular Languages

We start out with the closure of regular languages. Here the size of the alphabet
will play an important role, and first we treat the three-letter case, where closure
is not given in most of the cases. All results for this alphabet size also carry over
to bigger alphabets.

It is known that the 4-bounded duplication closure of the word abc is not reg-
ular [8]. As one can see from the original proof, duplications longer than 4 do not
affect the construction used, and therefore the result extends to longer bounds.
Thus the class of regular languages is not closed under n-bounded duplication
for n ≥ 4, since singular sets are of course regular.
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Proposition 3. For n ≥ 4 the class of regular languages is not closed under
n-bounded duplication.

On the other hand, it is trivial to see that 1-bounded duplication preserves
regularity: the only possible change in the original word is that every letter a
can be blown up to any word from a+. We now take a look at the two cases
inbetween, that is length-bounds of 2 and 3.

We now fix some notation, which will be convenient in the proof that follows.
For a right-syntactic congruence ∼L we denote the set of all possible right con-
texts of a word u by ∼L (u) := {w : uw ∈ L}. By [u]∼L we denote the congruence
class of u; notice that for all u1, u2 ∈ [u]∼L we have ∼L (u1) =∼L (u2).

Proposition 4. The class of regular languages is closed under 2-bounded
duplication.

Proof. Let L be a regular language, and ∼L the corresponding right-syntactic
congruence. The right-syntactic congruence ∼L♥≤2 we will denote more simply
by ∼. We will show that the number of congruence classes of ∼ is bounded by
a function of the number of congruence classes of ∼L.

First notice that always (∼L (u))♥≤2 ⊆ ∼ (u), i.e. if v is a possible right
context of u in L, then all words in v♥≤2 are possible right contexts of u in
L♥≤2. If the two sets are not equal, this can be caused only by some duplication
transgressing the border between u and v. Duplications of length one cannot do
this, thus the only possibility is one of length two affecting the last letter of u
and the first letter of v.

If the two letters are the same, say a, then the result will be a4, which could
have been obtained also by duplicating twice the a in v, so the result is in v♥≤2.
If the two letters are distinct, say a and b, then the result of the duplication will
be abab. If the following letter in v is an a, then we could have obtained the
same by duplicating the prefix ba of v, so the result is in v♥≤2.

Otherwise the result will be ababc for some letter c different from a. The
resulting right context is not in v♥≤2, so in this case a new congruence class
for u is created in ∼. More duplications on the right side will not lead to new
classes, because now we have bab following the final a of u. The number of such
constellations of two different letters at the border with a different one from the
first one following is bounded by the total number of letters in the alphabet. Thus
every congruence class of ∼L results in a finite number of congruence classes for
∼, except possibly for the one of words not being a prefix of a word in L.

Therefore it remains to show that the u, which are not prefixes of a word in
L but are prefixes of a word in L♥≤2, do not generate an infinite number of new
congruence classes. So let uv ∈ L♥≤2. If there exists u′v′ that u ∈ u′♥≤2 and
v ∈ v′♥≤2, then we are done. Otherwise in the generation of uv from u′v′ there
is a duplication transgressing the border between the two words.

Similarly as above, this is interesting only in the configuration ca|b, where |
denotes the border between u′ and v′ (or rather between the two intermediate
words generated from them). The result of this duplication is caba|b. Let us call
the word on the left u′′. No further duplications transgressing the border can be
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necessary, since (caba)♥≤2b♥≤2 = (cabab)♥≤2. Thus for all words u here we have
either [u]∼ = [u′]∼ or [u]∼ = [u′′]∼. Thus also here the increase of the index of ∼
compared to ∼L preserves finiteness, and thus the resulting language is regular
by Theorem 1, if the original language was regular. �

It appears possible to extend this proof technique to 3-bounded duplication
under use of the fact that over two-letters the longest square-free word has length
3. While we leave this case open here, over an alphabet of only two letters things
are not as complicated. To see this we first state a result that relates bounded
and unbounded duplication. This will then allow us to state the closure of regular
languages under these variants of duplication.

For the remainder of this section, → will denote the derivation relation of the
string-rewriting system R = {a → aa, b → bb, ab → abab, ba → baba}, which
generates the language w♥≤2 for any word w ∈ {a, b}.

Lemma 5. For every word u ∈ {a, b}∗ we have ab ∗→ abubab, ab ∗→ abuaab, and
ab

∗→ abuab.

Proof. We prove this statement by induction on the length of u. For |u| = 0 the
three derivations

ab
ab→abab→ abab

b→bb→ abbab = abubab

ab
ab→abab→ abab

a→aa→ abaab = abuaab

ab
ab→abab→ abab = abuab

show us that the lemma holds. So let us suppose it holds for all words, which
are shorter than a number n. Any word u of length n has a factorization either
as va or vb for a word v of length n − 1. For this word v the Lemma holds by
our assumption. But then for u = va the derivations

ab
∗→ abvab

ab→abab→ abvabab = abubab

ab
∗→ abvaab

a→aa→ abvaaab = abuaab

ab
∗→ abvaab = abuab

and for u = vb the derivations

ab
∗→ abvbab

b→bb→ abvbbab = abubab

ab
∗→ abvbab

a→aa→ abvbaab = abuaab

ab
∗→ abvbab = abuab

show us that the lemma holds also for u and thus for all words. �

Proposition 6. Over an alphabet of two letters we have w♥≤n = w♥≤2 and
consequently w♥ = w♥≤2 for all words w and for n ≥ 2.

Proof. From Lemma 5 we know that ab ∗→ abuab holds for every word u, and
applying this to the initial factor ab in abu we obtain abu

∗→ abuabu. Just
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interchanging the letters a and b everything still is valid, and thus we see that
also bau ∗→ baubau holds.

Now we prove that aau ∗→ aauaau. If u ∈ a∗, then the statement is obviously
true. Otherwise there is at least one b in u, and therefore u can be factorized as
u = ambv for some word v and an integer m ≥ 0. Now the derivation

aau = aam(ab)v Lemma 5→ aamabvabv
∗→ aaambvaaambv = aauaau

shows that the statement above holds. Interchanging the letters again provides
us with the dual statement bbu ∗→ bbubbu.

Because any word z longer than 1 has to start with either ab, ba, aa, or bb,
this shows that we can always obtain by duplications of length at most 2 the
word zz from z and thus w♥≤n ⊆ w♥≤2. On the other hand, every duplication
relation ♥≤n for n ≥ 2 includes the relation ♥≤2 and so does ♥. This suffices to
prove that for all n > 1 we have w♥≤n = w♥≤2, and w♥ = w♥≤2 immediately
follows from this, because in any derivation the length of duplications used is
bounded. �

Combining the results of this section we are now able to state the closure of
regular languages under duplication.

Proposition 7. The class of regular languages over two-letter alphabet is closed
under n-bounded duplication and under general duplication.

Proof. Proposition 4 states that regular languages are closed under 2-bounded
duplication over any alphabet, and from Proposition 6 we see that in the two-
letter case for any n > 1 the n-bounded and general duplication operations are
equivalent to the 2-bounded one. �

4 Closure of Context-Free Languages

When we talk about context-free languages, there is no difference between al-
phabets of size 2 and 3. It is already known that languages w♥≤n are always
context-free [8]. By further refining the push-down automaton used in that
proof, we can establish the closure of context-free languages under bounded
duplication.

Proposition 8. The class of context-free languages is closed under bounded
duplication.

Proof. We will show this by constructing a Push-Down Automaton in a way
rather analogous to the one used in earlier work for the bounded duplication
closure of a single word [8]. There the PDA reduces the results of duplications
uu to their origin u and matches the reduced string against the original word.
Here, we also have to simulate a second PDA accepting the context-free input
language. This can be done, because of the two components reducing duplications
and accepting the original language, the latter one does not need to access the
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stack ever, while the first one is working. With this sketch of the proof idea we
now proceed to the technical details.

We start out from a PDA M , which accepts the language L. Let the PDA be
M = [Q,Σ, Γ, ϕ, qo,⊥], where Q is the set of states, Σ the tape alphabet, and Γ
the stack alphabet. ϕ : Q×(Σ∪{λ})×Γ → Q×Γ ∗ is the state transition function;
i.e. we allow transitions without reading input and we always take the topmost
symbol off the stack replacing it by an arbitrary number of stack symbols. q0 is
the start state, and ⊥ marks the stack’s bottom. The acceptance mode does not
really need to be specified, since any common acceptance condition will carry
over to the new PDA.

We now define the PDA A, which accepts L♥≤n. The state set is S := Q ×
(Σ∪Σ)≤n×Σ≤n, where Σ := {a : a ∈ Σ} is a marked copy of the tape alphabet.
States s ∈ S we will denote in the way s = q|uv , where q ∈ Q, u ∈ (Σ ∪Σ)≤n is
called the match, and v ∈ Σ≤n the memory; then q0|λλ is the start state of S. The
stack alphabet is Γ ′ := Γ ∪(Σ∪Σ)≤n. The tape alphabet Σ and bottom-of-stack
marker ⊥ are as for M . What remains to be defined is the transition function δ.
We first define the part

δ(q|λλ, x, γ) := (q′|λλ, α) where ϕ(q, x, γ) = (q′, α) (1)

for x ∈ Σ ∪ {λ}, γ ∈ Γ , and α ∈ Γ ∗. We see that when guess and memory
are empty, A works just as M ; we will see that these are the only transitions
changing the component from Q of A’s states. Thus the simulation of M and the
undoing of duplications, which uses match and memory leaving the component
from Q unchanged, are done more or less independently. The next kind of tran-
sition makes a guess that the following letters on the input tape are the result
of a duplication. Transitions

δ(q|uv , x, γ) := (q|wv , uγ)

are defined for any words u ∈ (Σ ∪ Σ)≤n and v, w ∈ Σ≤n. Whatever is in the
match is put on the stack to continue processing later. Note that the word u is
put on the stack as a single symbol.

Next A checks whether the input continues with ww. This is done by matching
the guess twice against the input, which is read, the first time underlining it in
the guess, then undoing this. When both are matched, our PDA should continue
as if there was one occurrence of w left on the input tape. However, both are
already read. Thus we put w into the memory and read from there as if it was the
input tape. Since in this construction the contents of the memory are thought
to be situated in front of the input tape contents, nothing is ever read from the
input tape, while the memory is not empty. For both situations all transitions
are defined in parallel.

The variables used in the definition are quantified as follows: q ∈ Q, x ∈ Σ,
u, v, z ∈ Σ∗, γ ∈ Γ ′, β ∈ Γ , and w ∈ Σ∗ · Σ∗ ∪ Σ∗ · Σ∗ with |w| ≤ n. Further,
all catenations of words and letters are supposed to be no longer than n, and
underlining a word from Σ∗ shall signify the corresponding word overΣ obtained
by underlining all the individual letters.
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δ(q|zxu
λ , x, γ) := (q|zxu

λ , γ) and δ(q|zxu
xv , λ, γ) := (q|zxu

v , γ)

δ(q|xu
λ , x, γ) := (q|xu

λ , γ) and δ(q|xu
xv , λ, γ) := (q|xu

v , γ)

δ(q|zxu
λ , x, γ) := (q|zxu

λ , γ) and δ(q|zxu
xv , λ, γ) := (q|zxu

v , γ)

δ(q|zx
λ , x, w) := (q|wzx, λ) and δ(q|zx

xv, λ, w) := (q|wzxv, λ)

δ(q|zx
λ , x, β) := (q|λzx, β) and δ(q|zx

xv, λ, β) := (q|λzxv, β)

Finally, also the simulation of M must be possible, when the memory is not
empty. Thus for x ∈ Σ we define the analogue to transitions defined in 1 for
reading from the tape:

δ(q|λxv, λ, γ) := (q′|λv , α) where ϕ(q, x, γ) = (q′, α).

There are no other transitions than the ones defined above. We now prove
that L♥≤n ⊆ L(A). For this, one observation is essential, whose truth should
be immediately comprehensible after what we have already said about the way
that A works.

Lemma 9. If from a state q|uλ with vw next on the working tape and γ on the
stack there exists an accepting computation for A, then from q|uv with w next on
the working tape and γ on the stack there also exists an accepting computation.

With this we can prove L♥≤n ⊆ L(A) by induction on the number of duplications
used to reach a word w ∈ L♥≤n from a word u ∈ L. While neither u nor the
number need to be unique, they both must exist for all words in L♥≤n. So let u
be a word such that w ∈ u♥≤n via k + 1 duplications. Then there exists a word
u′ reachable from u via k duplications such that u′ ♥≤nw.

Let us suppose that all words, which can be generated by k duplications from
words in L, are accepted by A; then u′ ∈ L(A), and there exists an accepting
computation of A for u′, let us call it Ξ. Further let i, � be integers such that
the duplication of the factor of length � starting at position i in u′ results in
w, i.e. w = u′[1 . . . i − 1]u′[i . . . i + � − 1]2u′[i + � . . . |u′|]. Obviously A can on
input w follow the computation Ξ on the prefix u′[1 . . . i − 1]. Let us call the
configuration reached in the step before reading the next input letter ξ and let
its state be s. Then in s the memory is empty, otherwise A would not read from
the input tape.

Now instead of following Ξ further, we guess the duplication of u′[i . . . i+�−1]
and reduce it in the manner described above. At the end of this process we will
have reached a state equal to s except for the fact that its memory contains
u′[i . . . i+ �− 1]. On the tape we have left u′[i+ � . . . |u′|]. By Lemma 9 there is
an accepting computation for this configuration if there is one for ξ. Since Ξ is
such an accepting computation, also w is accepted by A.

Further, A can obviously simulate any computation of M and thus L(M) ⊆
L(A), i.e. all words reachable by zero duplications are in L(A). Thus also the
basis for our induction is given and we have L♥≤n ⊆ L(A).

We do not prove in detail that L(A) ⊆ L≤n. The two parts of A, the one
deterministically reducing duplications and the one simulating the original PDA
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M work practically independently, as the corresponding state sets are disjoint
and separated by the match being filled or not. From these facts L(A) ⊆ L≤n

should be comprehensible rather easily. �

Of course, the same construction works for any finite set of factors that can be
duplicated, and we immediately obtain a corollary.

Corollary 10. The class of context-free languages is closed under the operation
of uniformly bounded duplication.

For general duplication this proof technique does not apply, because over three
letters there is no n such that (abc)♥ = (abc)♥≤n. In fact, n-bounded duplication
grows more powerful with every increase of n. Here we will use the following two
notions: a word w is square-free, if it does not contain any non-empty factor of
the form uu = u2; w is circular square-free, if the same holds true for w written
along a circle, or equivalently if ww contains no square shorter than itself.

Proposition 11. For two integers m and n with 17 < m < n the inclusion
(abc)♥≤m ⊂ (abc)♥≤n is proper.

Proof. First we show that for every square-free word u over three letters starting
with abc there exists a word v, such that uv ∈ (abc)♥≤k for k ≥ 4. This word
is constructed from left to right in the following manner. The first three letters
are abc and thus do not need to be constructed.

The fourth letter is created by going from the third letter left to the last
occurrence of this desired letter. Since abc is a prefix of the word all three letters
do have such an occurrence. Now the factor from this rightmost occurrence to the
third letter is duplicated. In this way the fourth letter of the new word becomes
the desired one. Then we move to the fifth letter, obtain it by duplicating the
factor reaching back till its rightmost occurrence, and so on.

The last occurrence of any letter in the part of u already constructed can be
at most four positions from the last, because there are only two more different
letters and the longest square-free word over two letters has length three. Of
course, if in some step more than one letter of u is produced, the process can
advance to the next wrong one without further duplications.

We will illustrate this construction with a short example. From abc we con-
struct abcbacb as a prefix. Underlining signals the factor duplicated to obtain
the following word, the horizontal bar signals the end of the prefix of abcbacb
constructed at the respective point. abc→ abcb|c→ abcba|bcbc→ abcbacb|abcbc

We now establish some bounds for the number of additional symbols produced.
Since abc is already there, |u| − 3 letters need to be constructed. In every step
at most 2k − 1 letters of u can be constructed, because u is square-free; thus
at least one letter is added to v. At the same time at most 2k − 1 letters are
added to v, since no useless duplications are done. Thus we have |u| − 3 ≤ |v| ≤
(|u| − 3)(2k − 1). Of course, every circular square-free word is square-free and
can be constructed in this way, too. Starting from lengths of 18, such a word
always exists [2].
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Now we construct in this way a circular square-free word w of length n as a
prefix of a word wv′ in (abc)♥≤n. We can expand this prefix to wi in i− 1 steps
for any given i ≥ 1 by the rule w → ww, so all wiv′ are in (abc)♥≤n. Further,
wi contains no squares shorter than 2n, because w is circular square-free. Thus
for constructing the same prefix in (abc)♥≤m also the bounds |wi| − 3 ≤ |v| ≤
(|wi| − 3)(2m − 1) for the corresponding suffix v apply. For big enough i the
shortest such v will be longer than v′. Thus such a wiv′ cannot be in (abc)♥≤m,
while it is in (abc)♥≤n. �

5 Conclusions

Thus the problem, which has received most attention in investigations on dupli-
cation remains open: Is the general duplication closure of a word over three letters
always context-free? Probably this is equivalent to asking whether context-free
languages are closed under general duplication. Our investigations on the length-
bounded case may have shed some more light on the nature of the problem,
though.

Another problem is raised by Proposition 11: Are the inclusions (abc)♥≤m ⊂
(abc)♥≤n for m < n proper also for n ≤ 17? Or do these inclusions hold only
when a circular square-free word of the corresponding length exists?
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Abstract. The class of growing context-sensitive languages (GCSL) is a
naturally defined subclass of context-sensitive languages whose member-
ship problem is solvable in polynomial time. GCSL and its determinis-
tic counterpart called Church-Rosser Languages (CRL) complement the
Chomsky hierarchy in a natural way [9]. In this paper, the extension of
GCSL obtained by closures of this class under the boolean operations are
investigated. We show that there exists an infinite intersection hierarchy,
answering an open problem from [1]. Further, we compare the expressive
power of the boolean closures of GCSL, CRL, CFL and LOGCFL.

1 Introduction

Formalisms defining language classes located between context-free languages
(CFL) and context-sensitive languages (CSL) have been intensively studies for
many years. One of the motivations was to find families which possess an ac-
ceptable computational complexity, large expressibility, and natural character-
izations by grammars and a machine model. Neither CSL nor CFL fulfil these
demands. For the first class the membership problem is PSPACE-complete what
makes it in its full generality too powerful. Context-free grammars are e.g. not
powerful enough to express all syntactical aspects of programming languages.

One of the most interesting proposals was presented by Dahlhaus and War-
muth [3], who considered grammars with strictly growing rules, i.e., such that the
righthand side of the production is longer than the lefthand side. They showed
a rather surprising result that each language generated by a growing grammar
can be recognized in deterministic polynomial time (and it is even included in
LOGCFL). Buntrock and Loryś showed that this class forms an abstract family
of languages. They also proved that the class GCSL can be characterized by less
restricted grammars.

Machine model characterizations of GCSL were investigated in the sequence of
papers [2, 12, 11]. Finally, the characterization by the so-called length-reducing
two-pushdown automata (lrTPDA) has been found. Recently, Holzer and Otto
considered generalizations of these automata [4].

The class of languages recognized by deterministic lrTPDAs is equal to the
class of Church-Rosser languages (CRL) [12], introduced by McNaughton et al.

O.H. Ibarra and Z. Dang (Eds.): DLT 2006, LNCS 4036, pp. 248–259, 2006.
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[10] in terms of string-rewriting systems [2, 11]. So, CRL is a deterministic coun-
terpart of GCSL. The class of Church-Rosser languages posses very useful prop-
erties, discussed in [11]. GCSL and CRL complement the Chomsky hierarchy in
a natural way [9], as these classes fill the gap between CFL and CSL:

CFL � GCSL � CSL

� � ⊆

DCFL � CRL � DCSL

where DCFL is the set of deterministic context-free languages and DCSL is the
set of deterministic context-sensitive languages (equal to DLINSPACE(n)).

Though GCSL and CRL have many good properties, their weakness seems to
be evident. For example, GCSL does not even contain the language {wcw |w ∈
{a, b}∗}, and CRL does not contain the language of palindromes [5]. In this
paper, we study extensions of GCSL and CRL obtained by the closure of this
classes under the boolean operations. Note that the recognition of each language
from these closures is polynomial. So, a natural question arises how do they
extend the appropriate classes. Such questions motivated the considerations of
the boolean closures of many formal language classes [6, 14, 15, 16, 8]. An elegant
generalization of the notion of the boolean closure of CFL was introduced by
Okhotin [13].

First, we show that there exist infinite intersection hierarchies, Λ∩i(X) �
Λ∩i+1(X) for each i ≥ 1, X ∈ {CRL,GCSL}, where Λ∩i(X) is the class of
languages obtained by intersections of i languages from the class X . This re-
sult solves an open problem from [1]. An analogous hierarchy for context-free
languages is infinite as well [8]. Indeed, our result is related to this hierarchy,
because the witness language for the inclusions Λ∩i(GCSL) � Λ∩i+1(GCSL) and
Λ∩i(CRL) � Λ∩i+1(CRL) belongs to Λ∩i+1(DCFL) \ Λ∩i(GCSL). (Similar lan-
guages were used in order to show the analogous hierarchy for context-free gram-
mars.) Further, we investigate the expressive power of the closures of GCSL and
CRL under the boolean operations. We compare these classes with the boolean
closures of CFL and LOGCFL.

The paper is organized as follows. In Section 2 we introduce some basic notions
and definitions. Sections 3 describes formal tools used in our proofs. Section 4
presents the intersection hierarchies. In Section 5 we compare the expressive
power of the boolean closures of CRL, CFL, GCSL, and LOGCFL. Finally, in Sec-
tion 6, we show that neither GCSL nor CRL is closed under the shuffle operation.

2 Preliminaries

Throughout the paper ε denotes the empty word, N, N+ denote the set of non-
negative and positive integers. For a word x, let |x|, x[i] and x[i, j] denote the
length of x, the ith symbol of x and the factor x[i] . . . x[j] respectively, for 0 <
i ≤ j ≤ |x|. Further, let [i, j] = {l ∈ N | i ≤ l ≤ j}, let xR denote the reverse of
the word x, that is, xR = x[n]x[n− 1] . . . x[2]x[1] for |x| = n.
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Let x = x1y1x2y2 . . . xnynxn+1, n > 0, where xi, yi ∈ Σ∗ for the alphabet Σ
(i ∈ [1, n+ 1]), let yi in the above factorization of x denote the leftmost occur-
rence of yi as a subword of x (so, the above factorization is possible only if the
leftmost occurrence of yi+1 is located to the right of the leftmost occurrence of
yi). Then,

x− y1 = x1 x2y2x3y3 . . . xnynxn+1,
x− y1 + z1 = x1z1x2y2 . . . xnynxn+1,

x− (y1, . . . , yn) = x1x2 . . . xn+1,
x− (y1, . . . , yn) + (z1, . . . , zn) = x1z1x2z2 . . . xnznxn+1.

Let L be a family of languages and op1, . . . , opk, k ∈ N, be a finite number of
operations defined on L. Then Λop1,...,opk

(L) denotes the least family of languages
which contains L and is closed under op1, . . . , opk. We consider the operations
complementation (∼), union (∪), intersection (∩) and shuffle (#$). We write also
ΛBool for Λ∼,∩,∪.

We will make use of the notion of Kolmogorov complexity K(x) of words x
over a binary alphabet [7].

Fact 1. [7] 1. For each n ∈ N, there exists a word x ∈ {0, 1}n such that K(x) >
n− 1.
2. Let X be a set of words such that |X | ≥ m. Then, there exists x ∈ X such
that K(x) ≥ *logm+ − 1.
3. Assume that K(x1x2x3) > n − p, where n = |x1x2x3|. Then, K(x2|x1x3) >
|x2| − p − O(log n), where K(x|y) denotes Kolmogorov complexity of x when y
is known.

Growing context-sensitive languages are basically defined by growing gram-
mars and Church-Rosser languages are defined in terms of string-rewriting sys-
tems [3, 10]. We use characterizations of these classes by length-reducing two-
pushdown automata.

A two-pushdown automaton (TPDA) M = (Q,Σ, Γ, q0,⊥, F, δ) with a window
of length k = 2j is a nondeterministic automaton with two pushdown stores. It
is defined by the set of states Q, the input alphabet Σ, the tape alphabet Γ
(Σ ⊆ Γ ), the initial state q0 ∈ Q, the bottom marker of the pushdown stores
⊥∈ Γ\Σ, the set of accepting states F ⊆ Q and the transition relation δ :
Q×Γ⊥,j×Γj,⊥ → P(Q×Γ ∗×Γ ∗), where Γ⊥,j = Γ j∪{⊥ v : |v| ≤ j−1, v ∈ Γ ∗},
Γj,⊥ = Γ j ∪ {v ⊥: |v| ≤ j − 1, v ∈ Γ ∗}, P(Q× Γ ∗ × Γ ∗) denotes the set of finite
subsets of Q × Γ ∗ × Γ ∗. The automaton M is deterministic (DTPDA) if δ is a
(partial) function from Q× Γ⊥,j × Γj,⊥ into Q× Γ ∗ × Γ ∗. A (D)TPDA is called
length-reducing (lr(D)TPDA) if (p, u′, v′) ∈ δ(q, u, v) implies |u′v′| < |uv|, for all
q ∈ Q, u ∈ Γ⊥,j, and v ∈ Γj,⊥.

A configuration of a (D)TPDA M is described by the word uqiv
R, where

qi is the current state, u, v ∈ Γ ∗ are the contents of the first pushdown store
and the second pushdown store, resp. Note that the bottom marker ⊥ occurs
on both ends of the word uqiv

R. The transition δ(q, u, v) = (q′, u′, v′) will be
described as uqvR → u′q′(v′)R. We define a single step computation relation &M

on configurations in a natural way, i.e., uzqxv &M uz′q′x′v if zqx→ z′q′x′.
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For an input word x ∈ Σ∗, the corresponding initial configuration is ⊥ q0x ⊥,
i.e., the input word is given as the contents of the second pushdown store. The
automaton M finishes its computation by empty pushdown stores. So, L(M) =
{x ∈ Σ∗ : ∃q∈F ⊥ q0x ⊥ &∗M q}, where L(M) is the language accepted by
M . We also require that the special symbol ⊥ occurs only on bottoms of the
pushdowns and no other symbol can occur on the bottom.

Theorem 1 ([11, 12]). A language is accepted by a (deterministic) lrTPDA if
and only if it is a growing context-sensitive language (Church-Rosser language).

The following table summarizes closure properties of GCSL and CRL [11]:

∪ ∩ ∼
GCSL + − −
CRL − − +

3 Lower Bounds Tools

We describe the notion of a computation graph and its properties, see [5]. (The
similar notion of derivation graphs was considered in [3, 2].) Each computation
of a lrTPDA M = (Q,Σ, Γ, q0,⊥, F, δ) corresponds to a planar directed acyclic
graph defined in the following way. Vertices are labeled with symbols, transitions
and states, where ω(π) denotes the label of the vertex π, ω is a function from
the set of the vertices of the graph to Γ ∪Q ∪ δ. Vertices labeled with symbols,
states, and transitions are called symbol vertices, state vertices, and transition
vertices, respectively.

A computation graph G(j) = (Vj , Ej) corresponding to the computation C0 &
. . . & Cj where C0 denotes an initial configuration is defined inductively (see
examples in [5]):

Case 1 : j = 0. Let C0 =⊥ q0x1x2 . . . xn ⊥ be an initial configuration, where
xi ∈ Σ for i ∈ [1, n]. Then G(0) = (V0, E0), where E0 = ∅, V0 = {ρi}n+2

i=−2 such
that ω(ρi) = xi for 1 ≤ i ≤ n, ω(ρi) =⊥ for i ∈ {−2,−1, n + 1, n + 2} and
ω(ρ0) = q0.
Case 2 : j > 0. Assume that the computation C0 &M . . . &M Cj−1 corresponds
to the graph G(j−1), and the transition z → z′ is executed in Cj−1 & Cj for
z, z′ ∈ Γ ∗QΓ ∗, i.e., Cj−1 = y1zy2 &M y1z

′y2 = Cj . Let |z| = p and |z′| = p′.
The graph G(j) is constructed from G(j−1) by adding:

– the vertices π′1, . . . , π′p′ which correspond to the word z′, i.e., ω(π′i) = z′[i] for
i ∈ [1, p′];
– the vertex Dj which corresponds to the transition z → z′;
– the edges (π1, Dj), . . . , (πp, Dj), where the vertices {πi}p

i=1 correspond to z;
– the edges (Dj , π

′
1), . . . , (Dj , π

′
p′).

There is a natural left to right ordering among the sources of a computation
graph, induced by the left to right ordering into the initial configuration. For
two vertices π1 and π2, π1 ≺ π2 denotes that π1 precedes π2 according to this
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ordering. There is also a left to right ordering among the in-neighbours and the
out-neighbours of each transition vertex. This ordering induces a left to right
ordering among the sinks of the computation graph.

Note that the sources (vertices with no incoming edges) of G(j) correspond
to the initial configuration C0, the sequence of their labels will be denoted as
src(G(j)). Similarly, the sinks (vertices with no outcoming edges) of G(j) corre-
spond to the last configuration described by G(j) (i.e., Cj) and the sequence of
their labels is denoted as snk(G). (The vertices ρ−2 and ρn+2 are the artificial
vertices introduced for technical reasons only.)

We extend the single step transition relation &M to computation graphs:G &M

G′ if there exist the configurations C,C′ and C0 such that G corresponds to
the particular computation C0 &∗M C, and G′ corresponds to the computation
C0 &∗ C & C′.

We apply the term path exclusively to paths that start in a source vertex
and finish in a sink. The relation ≺ among vertices of a graph induces a left-to-
right partial ordering of paths. A path σ1 is to the left of a path σ2 iff none of
the vertices of σ1 is to the right of any vertex of σ2. A path σ is the leftmost
(rightmost) path in a set of paths S if it is to the left (right) of every path σ′ ∈ S.

Let σ be a path in G with a sink π. We say that σ is short if there is no
path with the sink π that is shorter than σ. A sink π is i-successor if one of the
short paths with the sink in π starts in ρi, the source vertex associated to the
ith symbol of the initial configuration (i ∈ [−2, n+ 2]). Let us note here that a
sink of a graph may be i-successor for many i’s; on the other hand, it is possible
that no sink is j-successor for some j.

Lemma 1. [5] Let Vsr and Vsn be subsets of the set of sources of the computation
graph G and the set of sinks of G, resp. Then, the set P of short paths with
sources in Vsr and sinks in Vsn contains (if P �= ∅) the path which is to the
right/left of all other paths in P .

Lemma 2. [5] The length of each short path in a computation graph which
describes the computation on an input word of length n is O(log n).

Now, we introduce definitions needed to formulate cut and paste technique for
computation graphs. The description of the path σ = π1, π2 . . . , π2l+1, denoted
desc(σ), consists of the sequence (ω(π1), p1), . . . (ω(π2l+1), p2l+1) such that πi

is the pi-th in-neighbour of πi+1 for odd i < 2l, and πi+1 is the pi+1-st out-
neighbour of πi for even i, p2l+1 = 0. A full description of the path σ in the
computation graph G, descf(σ), is equal to (desc(σ), p), where p is the position
of the source of σ in the initial configuration.

We say that the descriptions γ1, . . . , γl−1 (for l > 1) decompose the compu-
tation graph G into the subgraphs G1, . . . , Gl if G contains paths {σi}l−1

i=1 such
that: desc(σi) = γi for i ∈ [1, l−1], σi is located to the left of σi+1 for i ∈ [1, l−2],
Gi is equal to the subgraph of G which contains all vertices and all edges located
between σi−1 and σi (where σ0 and σl are the “artificial” empty paths located
to the left/right of all other vertices of G). If the descriptions γ1, . . . , γl−1 de-
compose G into the subgraphs G1, . . . , Gl, we write G = G1 . . . Gl. Note that
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src(G) = src(G1) . . . src(Gl) and snk(G) = snk(G1) . . . snk(Gl) forG = G1 . . . Gl

(where the last symbol of src(Gi)/snk(Gi) is identified with the first symbol of
src(Gi+1)/snk(Gi+1) for i ∈ [1, l− 1]).

Lemma 3 (Cut and Paste Lemma). [5] Assume that the descriptions γ1, γ2
decompose a graph G into G1, G2, G3 and a graph H into H1, H2, H3. Then,
J = G1H2G3 is the computation graph corresponding to the computation src(G1)
src(H2)src(G3) &∗M snk(G1)snk(H2)snk(G3). Moreover, γ1, γ2 decompose J into
G1, H2, G3.

Let Gi be a subgraph of G = G1 . . . Gl (l > 1). Then, the surface of Gi, srf(Gi),
is defined as the tuple (desc(σ1), desc(σ2), ω(snk(Gi))), where σ1, σ2 are paths
on the borders of Gi.

Let G be a computation graph corresponding to the computation on the input
word x = x1x2x3, let σ1, and σ2 be the rightmost short path with the source in
x1x2[1] and the leftmost short path with the source in x2[|x2|]x3, resp. (such σ1,
σ2 exist by Lemma 1). Then, if σ1 is not to the left of σ2, the image of x2 (or
(|x1| + 1, |x1x2|)-image) in G is undefined. Otherwise, let G = G1G2G3, where
σ1, σ2 are the paths on the borders of G2. If snk(G2) < 3, then the image of x2 is
undefined as well. Otherwise, the image of x2 is equal to srf(G2), and the length
of the image is equal to |snk(G2)|. Below, we enumerate some basic properties
of images.

Proposition 1. [5] Let G,G′ be computation graphs corresponding to a compu-
tation on an input word of length n, G & G′, and 0 ≤ l < r ≤ n + 1. Assume
that the (l, r)-image is defined in G and it is equal to (σ1, σ2, τ). Then,
(a) For every 1 < i < |τ |, if τ [i] is j-successor then l < j < r.
(b) If |τ | > 2k then the (l, r)-image is defined in G′, and its length is in [|τ | −
k, |τ |+ k].
(c) Assume that the (l′, r′)-image is defined in G for r < l′ < r′ ≤ n+ 1 and it
is equal to (σ′1, σ

′
2, τ

′). Then, |τ ∩ τ ′| ≤ 2.
(d) If the (l, r)-image is undefined in G, it is undefined in G′ as well.

Now, we present some new technical notions and results. Let v = y1 x1 y2 x2 y3 ∈
Σ∗ be the input word of length n, let 0 < c < 1, let C be a computation of a
lrTPDA on v. We say that the pair (x1, x2) is checked with level c during the
computation C, if the images of x1 and x2 are not shorter then c|x1| and c|x2|,
as long as the image of y2 is defined and longer that 2k (where k is equal to the
size of the window).

Proposition 2. Let C be a computation of a length-reducing two-pushdown au-
tomaton M on the input word v = y1 x1 y2 x2 y3 ∈ Σ∗, such that the pair (x1, x2)
is not checked in C with the level c′ and c′|x1|, c′|x2| > 2 + k. Let G be the first
(according to the computation relation &) graph in the computation C such that
the image of x1 is shorter than c′|x1| or the image of x2 is shorter than c′|x2|.
Then, the path on the right border of the subgraph of G defining the image of x1
is to the left of the path on the left border of the (subgraph defining) the image
of x2.
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The proof of the above proposition is based on the observation that the im-
age of y2 is defined in G, so there exists a short path which starts in y2 (by
Proposition 1(a)). Then, the final statement follows from Lemma 1.

Proposition 3. Let {Mi}r
i=1 be lrTPDAs over the alphabet Σ. Let w,w′ ∈

L(Mi) for each i ∈ [1, r], where w = w1w2w3w4w5, w′ = w1w
′
2w3w

′
4w5, |wi| =

|w′i| for i = 2, 4. Assume that, for each i ∈ [1, r], there exists an accepting com-
putation of Mi on w (w′, resp.) which contains the computation graph Gi =
Gi,1Gi,2Gi,3Gi,4Gi,5 (G′i = G′i,1G

′
i,2G

′
i,3G

′
i,4G

′
i,5, resp.) such that:

– descf(σi,j) = descf(σ′i,j) for j ∈ [1, 4], where σi,j (σ′i,j , resp.) is the path on
the border between Gi,j and Gi,j+1 (between G′i,j and G′i,j+1, resp.);

– the surface of Gi,l (G′i,l, resp.) forms the image of wl (w′l, resp.) for l ∈
{2, 4};

– srf(Gi,2) = srf(G′i,2) or srf(Gi,4) = srf(G′i,4).

Then, each of {Mi}r
i=1 accepts w1w

′
2w3w4w5 and w1w2w3w

′
4w5.

Proof. We show that w1w
′
2w3w4w5 ∈ L(Mi) for each i ∈ [1, r]. Note that the

equality of the full descriptions of the paths σi,j and σ′i,j for each i ∈ [1, r],
j ∈ [1, 4] implies that H1H2H3H4H5 is a computation graph, for each Hj ∈
{Gi,j , G

′
i,j} (see Cut and Paste Lemma). Consider two cases:

Case 1 : srf(Gi,2) = srf(G′i,2). Then, the input word corresponding to the com-
putation graph G′′ = Gi,1G

′
i,2Gi,3 Gi,4Gi,5 is equal to w1w

′
2w3w4w5. Moreover,

the (last) configuration corresponding to the graph Gi (i.e., snk(Gi)) and the
configuration corresponding to the graph G′′ (i.e., snk(G′′)) are equal, by the
assumption that srf(Gi,2) = srf(G′i,2). As the configuration snk(Gi) occurs in
the accepting computation of Mi (by the choice of the graphs G1, . . . , Gr), the
automaton Mi can accept starting from the last configuration of G′′. Thus,
w1w

′
2w3w4w5 ∈ L(Mi).

Case 2 : srf(Gi,4) = srf(G′i,4). Then, the input word of the computation graph
G′′ = G′i,1G

′
i,2G

′
i,3 Gi,4G

′
i,5 is equal to w1w

′
2w3w4w5. Moreover, the (last) con-

figurations corresponding to the graphs G′i and G′′ are equal, by the assumption
that srf(Gi,4) = srf(G′i,4). As snk(G′i) occurs in the accepting computation of
Mi, the automaton Mi can accept starting from the last configuration of G′′.
Thus, w1w

′
2w3w4w5 ∈ L(Mi). �

4 Intersection Hierarchies and Their Consequences

Let Lj = {x1# . . .#xj#xR
1 # . . .#xR

j |xi ∈ {0, 1}∗ for i ∈ [1, j]}. Below, we
show that the family {Lj}j∈N certifies the infinite intersection hierarchies.

Lemma 4. Lj ∈ Λ∩j (DCFL) \ Λ∩j−1(GCSL) for each j > 1.

Proof. First, observe that Lj ∈ Λ∩j(DCFL). Indeed, Lj =
⋂j

i=1 L(M ′
i), where

M ′
i is a deterministic pushdown automaton that checks if an input word has the

form x1# . . .#xj# y1# . . .#yj such that xi = yR
i and xl, yl ∈ {0, 1}∗ for each

l ∈ [1, j].
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For the sake of contradiction assume that there exist j − 1 (nondetermin-
istic) length-reducing two-pushdown automata M1, . . . ,Mj−1 such that Lj =⋂j−1

i=1 L(Mi). Now, for m large enough, consider the input word w = x1# . . .#xj

# y1#y2# . . .#yj ∈ Lj , where |xi| = |yi| = m, xi = yR
i for each 1 ≤ i ≤ j,

and K(x) > jm− 1, where x = x1 . . . xj . (In other words, the concatenation of
x1, . . . , xj is an incompressible word.)

As w ∈ Lj, it is accepted by each Mi for i ∈ [1, j − 1]. Let us choose an
accepting computation of Mi on w, Ci, for each i ∈ [1, j − 1]. Let pi be such
that the images of xpi and ypi are longer than c′m for the longest time in the
computation Ci, where c′ = 1/(16j log g), g = |Γ ∪Q|. (If there is more than one
such pi, we choose one arbitrarily.)

Note that Mi can check (with level c′) only the pair (xpi , ypi) in the com-
putation Ci, among the pairs {(xl, yl)}l∈[1,j]. In fact, for each other pair (xl, yl)
(l �= pi), xpi or ypi is located between xl and yl in the input word w. So, the image
of the word separating xl and yl is longer than 2k, until the first configuration
in which the image of xl or the image of yl is shorter than c′m. Indeed, the word
separating xl and yl contains xpi or ypi , so its image is longer than c′m−k > 2k
(for m large enough) until the image of xl or the image of yl becomes shorter
than c′m for the first time (by the choice of pi and Proposition 1(b)).

As we have j−1 automata and j pairs of words, there exists l �∈ {p1, . . . , pj−1}.
That is, the pair (xl, yl) is not checked with level c′ in any of the computations
Ci for i ∈ [1, j − 1].

Now, for each Ci, let us consider the first graph Gi (according to the compu-
tation relation &M ) in the computation Ci such that the image of xl or the
image of yl is shorter than c′m in Gi. Note that, according to this choice,
Gi = Gi,1Gi,2Gi,3Gi,4Gi,5, where Gi,2, Gi,4 are subgraphs defining the image
of xl and the image of yl, respectively (by Proposition 2).

We will store a kind of “compact” description D = (D1, . . . , Dj−1) of the
above decompositions of {Gi}j−1

i=1 . Assume that the image of xl is shorter than
c′m in Gi. Then, Di consists of the image of xl (i.e., the surface of Gi,2) and the
full descriptions of the paths on the borders between Gi,l and Gi,l+1 for l ∈ [1, 4].
If only the image of yl is shorter than c′m in Gi, then the roles of xl and yl are
replaced. The description D consists of O(j) full descriptions of short paths, and
j − 1 words, each shorter than c′m and written over the alphabet Γ ∪Q. Thus,
it requires O(logm) + jc′m · *log g+) ≤ O(logm) + 2jm log g

16j log g < m/4 bits for m
large enough.

We say that the pair (x′l, y
′
l) ∈ Σm × Σm agrees with the description D if

the following condition is satisfied for each automaton Mi, i ∈ [1, j − 1]. There
exists an accepting computation of Mi on w′ = w − (xl, yl) + (x′l, y

′
l), such that

the graph Hi = Hi,1Hi,2Hi,3Hi,4Hi,5 occurs during this computation, and:

– the full description of the path σH
i,l is equal to the full description of the path

σG
i,l for l ∈ [1, 4] where σX

i,l is the path on the right border of Xi,l.
– the surface of Hi,2 (Hi,4, resp.) defines the image of x′l (y′l, respectively);
– if the image of xl in Gi is shorter than c′m, then srf(Gi,2) = srf(Hi,2),

otherwise srf(Gi,4) = srf(Hi,4).
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As xl is incompressible and the description D has ≤ m/4 bits, there exists
another word x′l �= xl such that (x′l, (x

′
l)

R) agrees with the description D. Indeed,
otherwise, we would be able to determine xl, knowing all xi’s except xl, and the
above description D (by checking if z agrees with D for each z ∈ Σm). It implies
that K(xl|(x − xl)) ≤ m/4. On the other hand, K(xl|(x− xl)) ≥ m−O(logm)
for m large enough by Fact 1.3.

So, let x′l �= xl be such that (x′l, (x
′
l)

R) agrees with D. Then, each of the
automata M1, . . . ,Mj−1 accepts w′ = w − xl + x′l by Proposition 3. However,
w′ �∈ Lj . Contradiction. �

As a consequence of the above lemma, we obtain the following result.

Theorem 2. For each i ≥ 0,

(a) Λ∩i(X) � Λ∩i+1(X) for X ∈ {CRL,GCSL}
(b) Λ∩i(X) � Λ∩i(GCSL) for X ∈ {CRL,CFL}
(c) Λ∩i(CFL) and Λ∩i(CRL) are incomparable
(d) Λ∩i+1(DCFL) �⊂ Λ∩i(GCSL)

Proof. (sketch) The items (a) and (d) follow directly from Lemma 4. The re-
maining inequalities follow from the fact that unary context-free languages are
regular, while there exist non-regular unary languages in the classes GCSL and
CRL [11], and the fact that CRL is closed under complement while CFL and GCSL
are not closed under complement. (Observe that the complement of Lj is the
context-free language.) �

5 The Boolean Closures

Theorem 3. For X∈{CFL,CRL}, we have the following relationships: ΛBool(X)
� ΛBool(GCSL); ΛBool(CRL) and ΛBool(CFL) are incomparable.

Proof. Recall that all unary languages in ΛBool(CFL) are regular, while CRL ⊂
GCSL contains unary languages which are not regular [11]. This fact certifies
ΛBool(CRL) �⊂ ΛBool(CFL) and ΛBool(CFL) � ΛBool(GCSL).

Next, we show that the language Lcopy = {w#w |w ∈ {0, 1}∗} does not
belong to ΛBool(CRL). First, we prove that Lcopy does not belong to Λ∩,∪(GCSL).
Observe that Λ∩,∪(GCSL) = Λ∩(GCSL) what follows from the distributive law
(i.e., the fact that

⋂
iAi∪

⋂
j Bj =

⋂
i,j(Ai∪Bj)) and the fact that GCSL is closed

under union. One can show that Lcopy �∈ Λ∩(GCSL) by a simple modification of
the proof of Lemma 4. Indeed, it follows from the observation that one can
define Lcopy as {w1 . . . wl#w1 . . . wl |wi ∈ {0, 1}∗ for i ∈ [1, l]}, and consider the
inputs in which |wi| = m for each i ∈ [1, l] and m large enough. So, assuming
that Lcopy = L(M1) ∩ . . . ∩ L(Mp) for the lrTPDAs M1, . . . ,Mp, we can fool all
automata by choosing an incompressible input w1 . . . wp+1#w1 . . . wp+1 (fooling
method as in the proof of Lemma 4).

As CRL is closed under complement, each language from ΛBool(CRL) belongs
to Λ∩,∪(CRL) which is contained in Λ∩,∪(GCSL) = Λ∩(GCSL). So, Lcopy �∈
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ΛBool(CRL). On the other hand, Lcopy belongs to coCFL, as one can construct
a pushdown automaton which “guesses” the position on which the word pre-
ceding # and the word following # differ. As CFL ⊂ GCSL, Lcopy belongs to
ΛBool(GCSL) as well. �

Recall that GCSL is a strict subset of LOGCFL [3]. A natural question is
whether an analogous inclusion remains strict for the classes ΛBool(GCSL) and
ΛBool(LOGCFL). As the class LOGCFL is closed under union, intersection and
complement, it remains to verify whether ΛBool(GCSL) is a strict subclass of
LOGCFL. We give only a partial answer to this question.

Theorem 4. The class Λ∪,∩(GCSL) ∪ Λ∪,∩(coGCSL) is a strict subset of
LOGCFL.

Proof. The following language L⊕ = {x#y | |x| = |y| and x ◦ y = 1} is the
witness certifying the above relationship, where x ◦ y denotes the scalar product
of x and y over Z2, that is, x◦y = (

∑n
i=1 x[i]y[i]) mod 2, where x[i]y[i] denotes the

product of x[i] and y[i]. First, we show by contradiction that L⊕ �∈ Λ∪,∩(GCSL).
As we observed in the proof of Theorem 3, Λ∪,∩(GCSL) = Λ∩(GCSL). So, each
language L from Λ∪,∩(GCSL) can be expressed as L =

⋂r
l=1 Lj where Lj ∈ GCSL

for l ∈ [1, r], r ∈ N.
As L⊕ ∈ Λ∩(GCSL), L⊕ =

⋂r
l=1 L(Ml) for the length-reducing two-pushdown

automataM1, . . . ,Mr. Let w = x1x2 . . . xr+1#y1 . . . yr+1 be the word in L⊕ such
that |xi| = |yi| = m for i ∈ [1, r+1], m is large enough and K(z) > 2(r+1)m−3,
where z = x1 . . . xr+1y1 . . . yr+1. (The number of words xy such that x#y ∈ L⊕
and |x| = |y| = (r+1)m is 22(r+1)m−1−2(r+1)m−1 ≥ 22(r+1)m−2, so there exists a
word with Kolmogorov complexity not smaller than 2(r+1)m−3 among them, by
Fact 1.) Now, following the arguments from the proof of Lemma 4, we choose the
accepting computations C1, . . . , Cr of M1, . . . ,Mr on w, the computation graphs
G1, . . . , Gr which appear in the computations C1, . . . , Cr and some fixed value
s ∈ [1, r + 1] such that there exists the factorization of Gi into Gi,1Gi,2 . . . Gi,5
for each i ∈ [1, r], where Gi,2 (Gi,4, resp.) defines the image of xs (ys, resp.).
Moreover, the image of xs or the image of ys is shorter than c′m in Gi (where c′ is
the constant from Lemma 4). Then, we define the description D = (D1, . . . , Dr)
of the decompositions of {Gi}r

i=1 of size < m/4 bits such that one can efficiently
check whether the pair (x′s, ys) agrees with D and, if (x′s, ys) agrees with D, then
w − xs + x′s belongs to L⊕ (see Proposition 3 and the proof of Lemma 4).

Let X be the set of such elements x′s that (x′s, ys) agrees with D. We show that
the set X contains at least 2m/2 elements. Indeed, otherwise we could encode
xs with m/4 + m/2 bits by the description D and the number of xs in the
lexicographic order in the set X . This contradicts the fact that K(z) ≥ 2(r +
1)m−3 by Fact 1.3. Thus, each of the automata M1, . . . ,Mr accepts w−xs +x′s
for each x′s ∈ X by Proposition 3. So, as we assumed that

⋂r
l=1 L(Ml) is equal

to L⊕, x′s ◦ys = xs ◦ys for each x′s ∈ X . Indeed, otherwise w−xs +x′s �∈ L⊕. Let
c = xs ◦ ys. As |X | ≥ 2m/2, X contains at least m/2 linearly independent (over
Z2) elements v1, . . . , vm/2. So, xs is one of the solutions of the system of the
linear equations S = {vl ◦ yT = (cm/2)T }m/2

l=1 . The linear independence of the set
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{v1, . . . , vm/2} implies that the number of solutions of S is at most 2m−m/2 =
2m/2. These observations lead to the following algorithm which “compresses” xs

(knowing w − xs):

– determine the set X , defined above;
– find the largest linearly independent subset V = {v1, . . . , vp} of X ; if there

are many linearly independent subsets of X of the largest size, choose the
first one according to the lexicographic order (where the concatenations of
elements of the subsets are compared);

– give the description of xs as: the description D, and the number (in lexi-
cographic order) of xs in the set of solutions of the system S = {vl ◦ yT =
(cm/2)T }m/2

l=1 .

According to the above discussion, we obtain the description of size at most
m/2+m/4. So, if this description determines xs uniquely, we haveK(xs|w−xs) ≤
3m/4, what contradicts Fact 1.3. On the other hand, having D and w− xs, one
can determine the set X , then the set V , and finally having the number of xs in
the set of solutions of the system S (in the lexicographic order), we determine
xs uniquely.

In order to show that L⊕ �∈ Λ∪,∩(coGCSL), it is sufficient to prove that L⊕ �∈
Λ∪,∩(GCSL). Assume that it is not the case, i.e., L⊕ ∈ Λ∪,∩(GCSL). Note that
L⊕∩ {{0, 1}n#{0, 1}n |n ∈ N} is equal to L� = {x#y | |x| = |x|, x ◦ y = 0}.
Following the above arguments, we can show that if a language from Λ∪,∩(GCSL)
contains L�, it contains a word from {{0, 1}n#{0, 1}n |n ∈ N} \ L� for n large
enough. Contradiction to L⊕ ∈ Λ∪,∩(GCSL). �

6 Closure Under the Shuffle Operation

Using a variant of the language L2 from Section 4, we obtain the following result
which solves an open problem from [11].

Theorem 5. The classes CRL and GCSL are not closed under the shuffle oper-
ation.

Proof. Let Σi = {ai,0, ai,1} for each i ∈ [1, 4]. Let ϕ(ai,j) = j for each i ∈ [1, 4],
j ∈ [0, 1]. Finally, let

L′2 = {x1x2x3x4 |xi ∈ Σ∗i , ϕ(x1) = (ϕ(x3))R ∧ ϕ(x2) = (ϕ(x4))R},

and L′2,1 = {x1x3 |ϕ(x1)=(ϕ(x3))R, xi ∈ Σ∗i }, L′2,2 = {x2x4 |ϕ(x2) = (ϕ(x4))R,
xi ∈ Σ∗i }. Observe that L′2 = (L′2,1 #$ L

′
2,2) ∩Σ∗1Σ∗2Σ∗3Σ∗4 .

Proposition 4. L′2 �∈ GCSL

Proof. For the sake of contradiction assume that the length-reducing two-push-
down automaton M recognizes L′2. It is known that GCSL is equal to the set of
languages recognized by so-called shrinking two-pushdown automata (sTPDA)
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[2]. Shrinking TPDAs do not need to be length-reducing, but each step should
reduce the weight, where the weight is a function from the alphabet into nat-
ural numbers (and the weight of a word is equal to the sum of the weights
of its elements). On base of our assumption, we construct a shrinking two-
pushdown automaton M ′ which recognizes L2: first, the automaton rewrites
the input x1#x2#x3#x4 (xi ∈ {0, 1}∗) into η1(x1)η2(x2)η3(x3)η4(x4), where
ηi(j) = ai,j ∈ Σi for i ∈ [1, 4], j ∈ [0, 1]. Next, it simulates M . One can easily
verify that M ′ is shrinking and it recognizes the language L2. So, L2 ∈ GCSL,
what contradicts Lemma 4. �
Assume that CRL or GCSL is closed under shuffle operation. As L′2,1, L

′
2,2 ∈ CRL,

also Lnew = L′2,1 #$ L
′
2,2 ∈ CRL. So, L′2 ∈ CRL, because L′2 = Lnew∩Σ∗1Σ∗2Σ∗3Σ∗4

and CRL is closed under intersection with regular languages. But this contradicts
Proposition 4. �

References
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Abstract. Given a set I of words, the set Lε
�I

of all words obtained by
the shuffle of (copies of) words of I is naturally provided with a partial
order: for u, v in Lε

�I
, u �∗

I v if and only if v is the shuffle of u and
another word of Lε

�I
. In [3], the authors have stated the problem of the

characterization of the finite sets I such that �∗
I is a well quasi-order on

Lε
�I

. In this paper we give the answer in the case when I consists of a
single word w.

1 Introduction

A quasi-order on a set S is called a well quasi-order (wqo) if every non-empty
subset X of S has at least one minimal element in X but no more than a
finite number of (non-equivalent) minimal elements. Well quasi-orders have been
widely investigated in the past. We recall the celebrated Higman and Kruskal
results [9, 14]. Higman gives a very general theorem on division orders in abstract
algebras from which one derives that the subsequence ordering in free monoids
is a wqo. Kruskal extends Higman’s result, proving that certain embeddings on
finite trees are well quasi-orders. Some remarkable extensions of the Kruskal
theorem are given in [11, 16].

In the last years many papers have been devoted to the application of wqo’s
to formal language theory [1, 2, 4, 5, 6, 7, 10, 12, 13].
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In [6], a remarkable class of grammars, called unitary grammars, has been in-
troduced in order to study the relationships between the classes of context-free
and regular languages. If I is a finite set of words then we can consider the set
of productions {ε→ u, u ∈ I}
and the derivation relation ⇒∗

I of the semi-Thue system associated with I. The
language generated by the unitary grammar associated with I is Lε

I = {w ∈
A∗ | ε ⇒∗

I w}. Unavoidable sets of words are characterized in terms of the wqo
property of the unitary grammars. Precisely it is proved that I is unavoidable if
and only if the derivation relation ⇒∗

I is a wqo.
In [8], Haussler investigated the relation &∗I defined as the transitive and re-

flexive closure of &I where, for every pair v, w of words, v &I w if

v = v1v2 · · · vn+1,

w = v1a1v2a2 · · · vnanvn+1,

where the ai’s are letters, and a1a2 · · · an ∈ I. In particular, a characterization
of the wqo property of &∗I in terms of subsequence unavoidable sets of words was
given in [8]. Let Lε

�I
be the set of all words derived from the empty word by

applying &∗I .
A remarkable result proved in [2] states that for any finite set I the derivation

relation &∗I is a wqo on the language Lε
I . It is also proved that, in general, ⇒∗

I is
not a wqo on Lε

I and &∗I is not a wqo on Lε
�I

. In [3] the authors characterize the
finite sets I such that ⇒∗

I is a wqo on Lε
I . Moreover, they have left the following

problem open: characterize the finite sets I such that &∗I is a wqo on Lε
�I

. In this
paper we give the answer in the case when I consists of a single word w.

In this context, it is worth noticing that in [3] the authors prove that &∗{w}
is not a wqo on Lε

�{w} if w = abc. A simple argument allows one to extend the
result above in the case that w = aibjch, i, j, h ≥ 1. By using Lemma 2, this
implies that if a word w contains three distinct letters at least, then &∗{w} is not
a wqo on Lε

�{w} . Therefore, in order to prove our main result, we can focus our
attention to the case where w is a word on the binary alphabet {a, b}. Let E be
the exchange morphism (E(a) = b, E(b) = a), and let w̃ be the mirror image
of w.

Definition 1. A word w is called bad if one of the words w, w̃, E(w) and E(w̃)
has a factor of one of the two following forms

akbh with k, h ≥ 2 (1)
akbalbm with k > l ≥ 1,m ≥ 1 (2)

A word w is called good if it is not bad.

Although it is immediate that a word w is bad if and only if one of the words
w, w̃, E(w) and E(w̃) contains a factor a2b2 or ak+1bakb, with k ≥ 1, it will be
useful to consider the definition as above. Moreover, we observe that, by Lemma
4 a word is good if and only if it is a factor of (ban)ω or (abn)ω for some n ≥ 0.
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Theorem 1. Let w be a word over the alphabet {a, b}. The derivation relation
&∗{w} is a wqo on Lε

�{w} if and only if w is good.

In the rest of the paper, we present the main steps of the proof of this theorem.
For length reason, most of the technical parts are not included.

We assume the reader to be familiar with the basic theory of combinatorics
on words as well as with the theory of well quasi-orders (see also [5, 15]).

2 Bad Words

In order to prove the “only if” part of Theorem 1, we first recall the following
theorem which gives a useful characterization of the concept of well quasi-order.

Theorem 2. Let S be a set quasi-ordered by ≤. The following conditions are
equivalent:

i. ≤ is a well quasi-order;
ii. if s1, s2, . . . , sn, . . . is an infinite sequence of elements of S, then there exist

integers i, j such that i < j and si ≤ sj.

Let σ = (si)i≥1 be an infinite sequence of elements of a set S. Then σ is called
good if it satisfies condition ii of Theorem 2 and it is called bad otherwise, that
is, for all integers i, j such that i < j, si �≤ sj . It is worth noting that, by
condition ii above, a useful technique to prove that ≤ is a wqo on S is to prove
that no bad sequence exists in S. Conversely, in order to prove that ≤ is not a
wqo on S, it is enough to show the existence of a bad sequence of S.

Using this technique, the next two propositions show that for any bad word w
of one of the two forms considered in Definition 1, &∗{w} is not a wqo on Lε

�{w} .

Proposition 1. Let w = ahbk with h, k ≥ 2, and consider the sequence (Sn)n≥1
of words of A∗ defined as: for every n ≥ 1,

Sn = ah(a2hb2k)(abah−1bk−1)n(a2hb2k)bk.

(Sn)n≥1 is a bad sequence of Lε
�{w} with respect to &∗{w}. In particular &∗{w} is

not a wqo on Lε
�{w}.

Proposition 2. Let w = akba�bm with k > � ≥ 1, m ≥ 1, and consider the
sequence (Sn)n≥1 of words of A∗ defined as: for every n ≥ 1,

Sn = akba�akba�bm(akbm+1a�)nakba�bmbm.

(Sn)n≥1 is a bad sequence of Lε
�{w} with respect to &∗{w}. In particular &∗{w} is

not a wqo on Lε
�{w}.

Let us say few words about the proofs of the two previous propositions. First
the reader can easily verify that in each case, for every n ≥ 1, Sn ∈ Lε

�{w} .
The techniques used to proved that the two sequences above are bad, are

based upon some combinatorial properties of the words of the language Lε
�{w} .

More precisely, for Proposition 1, this can be done by using the following char-
acterization of the words of Lε

�{w} given in [3]:



Well Quasi Orders and the Shuffle Closure of Finite Sets 263

Proposition 3. Let u ∈ {a, b}∗ and h, k ≥ 1. Set

qu
a = '|u|a/h(, qu

b = '|u|b/k(, and

ru
a = |u|a mod h, ru

b = |u|b mod k.

Let w = ahbk, h, k ≥ 2. Then u ∈ Lε
�{w} if and only if qu

a = qu
b , and for every

prefix p of u, either qp
a > qp

b or qp
a = qp

b and ru
b = 0.

In the case of Proposition 2, the proof is essentialy based on the following lemma:

Lemma 1. Let u ∈ Lε
�{akba�bm}

, with k > � ≥ 1, m ≥ 1. For every non empty
prefix p of u, we have

|p|a
|p|b

≥ k + �

m+ 1
.

Propositions 1 and 2 allow to prove that if w is of the forms (1) or (2) of
Definition 1, then &∗{w} is not a wqo on Lε

�{w} . This does not suffice to prove the
“only if” part of our main theorem. In order to complete the proof, the following
lemma (and its symmetric version, say Lemma 3) provides a key result: indeed
it shows that the property “&∗{w} is not a wqo on Lε

�{w}” is preserved by the
factor order.

Lemma 2. Let b be a letter of an alphabet A and let u be a word over A not
ending with b. Assume &∗{u} is not a wqo on Lε

�{u} . Then, for every k ≥ 1, &∗{ubk}
is not a wqo on Lε

�{ubk}
.

Proof. Let (wn)n≥0 be a bad sequence of Lε
�{u} with respect to &∗{u} and, for

every n ≥ 1, let us denote �n the positive integer such that

ε &�n

{u} wn. (3)

Since (wn)n≥0 is a bad sequence, by using a standard argument, we may choose
the sequence (wn)n≥0 so that (�n)n≥0 is a strictly increasing sequence of pos-
itive integers. Let k be a positive integer and define the sequence of words
(wn(bk)�n)n≥0. It is easily checked that, for every n ≥ 1,

ε &�n

{ubk} wn(bk)�n ,

so that all the words of the sequence defined above belong to the language
Lε
�{ubk}

. Now we prove that this sequence is bad with respect to &∗{ubk}. By
contradiction, suppose the claim false. Thus there exist positive integers n,m
such that

wn(bk)�n &∗{ubk} wn+m(bk)�n+m . (4)

Since, for every n ≥ 1,

|wn(bk)�n | = �nk + |wn| = �n(k + |u|),
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we have that the length L of the derivation (4) is

L = �n+m − �n. (5)

Now it is useful to do the following remarks. First observe that, since u does
not end with the letter b, for every n ≥ 1, (bk)�n is the longest power of b which
is a suffix of wn(bk)�n . Second: at each step

v &{ubk} v′,

of the derivation (4), the exponent of the longest power of b which is a suffix
of the word v′ increases of k at most (with respect to v). Moreover this upper
bound can be obtained by performing the insertion of ubk in the word v only
if its suffix bk is inserted after the last letter of v which is different from b. By
the previous remark and by (5), all the insertions of the derivation (4) must be
done in this way. This implies that the derivation (4) defines in an obvious way
a new one with respect to the relation &∗{u} such that

wn &∗{u} wn+�.

The latter condition contradicts the fact that the sequence of words (wn)n≥0 is
bad. �

By using a symmetric argument, we can prove the following.

Lemma 3. Let b be a letter of an alphabet A and let u be a word over A not
beginning with b. Assume &∗{u} is not a wqo on Lε

�{u} . Then, for every k ≥ 1,
&∗{bku} is not a wqo on Lε

�{bku}
.

The “only if part” of Theorem 1 is a consequence of the following:

Theorem 3. If w is a bad word then &∗{w} is not a wqo on the language Lε
�{w}.

Proof. If w has a factor of the form akbh with h, k ≥ 2, or akba�bm, with k > � ≥
1, m ≥ 1, then the claim is a straightforward consequence of Lemma 2, Lemma
3, Proposition 1, and Proposition 2.

In the general case, that is whenever w̃ or E(w) or E(w̃) has a factor of the
previous two forms, the proof is similar since the property of wqo is preserved
under taking exchange morphism and mirror image of the word w. �

3 Good Words

We now present the proof of the “if” part of Theorem 1. This is divided into three
steps. In the first we analyze the form of good words and the languages of words
derivable from a good word. Their characterizations are given in Section 3.1. In
the second step we prove that &∗I is a wqo on Lε

�I
for some particular sets of

words I of cardinality 2. This is stated by Theorem 5 whose proof is based on
some intermediary results presented in Section 3.2. The third step, Section 3.3,
is the proof of the “if” part of Theorem 1 as a direct consequence of Theorem 5.
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3.1 Form of Good Words

Lemma 4. A word w is good if and only if w = ε or there exist some integers
n, e, i, f such that w = ai(ban)ebaf or w = bi(abn)eabf , e ≥ 0, 0 ≤ i, f ≤ n, and
if e = 0 then n = max(i, f).

Proof. Clearly if w is a bad word, then w cannot be decomposed as in the
lemma.

Assume now that w is a good word. This means that w has no factor of the
form aabb, bbaa, an+1banb, banban+1, bn+1abna, abnabn+1 for an integer n ≥ 1.

If |w|a = 0, then w = ε or w = ai(ban)ebaf with i = n = f = 0. If |w|a = 1,
w = apbaq with max(p, q) = 1, that is w = ai(ban)ebaf with i = p, f = q,
n = max(p, q), e = 0. Similarly if |w|b ≤ 1, w is a good word.

Assume from now on that |w|a ≥ 2 and |w|b ≥ 2. If both aa and bb are not
factors of w, then w is a factor of (ab)ω and so w = ai(ban)ebaf with n = 1.

Let us prove that aa and bb cannot be simultaneously factors of w. Assume
the contrary. We have w = w1aaw2bbw3 (or w = w1bbw2aaw3 which leads to the
same conclusion) for some words w1, w2, w3. Without loss of generality we can
assume that aa is not a factor of aw2 and bb is not a factor of w2b. This implies
that w2 = (ba)m for an integer m ≥ 0. This is not possible since aabab and aabb
are not factors of w.

Assume from now on that bb is not a factor of w (the case where aa is not
a factor is similar). This implies that w = ai0bai1bai2b . . . baipbaip+1 for some
integers i0, i1, . . . , ip+1 such that ij �= 0 for each j ∈ {1, . . . , p}. Let j be an
integer such that 1 ≤ j < j + 1 ≤ p. Since aij+1+1baij+1b and baijbaij+1 are
not factors of w, we have ij = ij+1. Thus set n = i1 = · · · = ip and write
w = ai0(ban)pbaip+1 . Since an+1banb and banban+1 are not factors of w, we have
i0 ≤ n, ip+1 ≤ n. This ends the proof. �
For X a set of words and n an integer, let X≤n =

⋃n
i=0 X

i. Lemma 4 can be
reformulated: the set of good words w is the set

{ε} ∪
⋃
n≥0

a≤n(ban)∗ba≤n ∪
⋃
n≥0

b≤n(abn)∗ab≤n.

The following proposition gives a characterization of the languages of the
words derivable from a good word. The proof is rather technical and it will be
omitted.

Proposition 4. Let w be a word over {a, b} and nw, ew, iw, fw be integers such
that |w|a ≥ 1, |w|b ≥ 1, w = aiw(banw )ewbafw , 0 ≤ iw, fw ≤ nw, ew ≥ 0 and if
ew = 0 then nw = max(iw, fw).

Let u be a word : u ∈ Lε
�{w} if and only if

1. |u|a
|w|a = |u|b

|w|b ;
2. for all words p, s, if u = ps then

2.1) |p|a ≥ iw|p|b + max(0, |p|b − |u|b
|w|b )(nw − iw);

2.2) |s|a ≥ fw|s|b + max(0, |s|b − |u|b
|w|b )(nw − fw).
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3.2 Some Useful wqo’s

In this section, we present some useful wqo’s. First we recall the following result.

Proposition 5. [3] For any integer n ≥ 0, if w ∈ {anb, abn, ban, bna}, then
&∗{w} is a wqo on Lε

�{w} = Lε
{w}.

This result allows us to state:

Lemma 5. Let n ≥ 0 be an integer. Let I be one of the following sets: {anb, b},
{anb, a}, {bna, a}, {bna, b}, {ban, b}, {ban, a}, {abn, a}, {abn, b}. Then

Lε
�I

= Lε
I .

Proof. Assume I = {anb, a}. It is immediate that Lε
I ⊆ Lε

�I
. Let w be a word

in Lε
�I

. There exists a word w1 such that ε &∗{anb} w1 &∗{a} w. By Proposition 5,
w1 ∈ Lε

{anb}, and so w ∈ Lε
I .

The proof for the other values of I is similar. �

Lemma 6. Let n ≥ 1 be an integer. The three following assertions are equivalent
for a word w:

1. w ∈ Lε
�{anb,an} ;

2. |w|a = 0 mod n, and, for any prefix p of w, |p|a ≥ n|p|b;
3. w ∈ Lε

{anb,an}.

In particular, Lε
�{anb,an} = Lε

{anb,an}.

Proof. 3⇒ 1 is immediate.
For any word w in Lε

�{anb,an} , obviously |w|a = 0 mod n. Moreover there exists
a word u such that ε &∗{anb} u &∗{an} w. Thus 1 ⇒ 2 is a direct consequence of
Proposition 4 (taking w = anb, nw = n = iw, and ew = fw = 0, Condition 2.1 of
Proposition 4 says that for any prefix of a word in Lε

�{ab} , |p|a ≥ iw|p|b = n|p|b).
We now prove 2⇒ 3 by induction on |w|b. Since |w|a = 0 mod n, the result is

immediate if |w|b = 0. Assume |w|b > 1. Assertion 2 on w implies the existence
of an integer k ≥ 0 and a word w′ such that w = akanbw′. Let p be a prefix
of akw′. If |p| ≤ k, then |p|b = 0 ≤ n|p|a. If |p| > k, p = akp′ for a prefix p′

of w′. Assertion 2 on w implies that |akanbp′|a ≥ n|akanbp′|b that is |akp′|a ≥
n|akp′|b. Thus akw′ satisfies Assertion 2 and so by the inductive hypothesis,
anw′ ∈ Lε

{anb,an}. It follows that w ∈ Lε
{anb,an}. �

Similarly to Lemma 6, one can state that Lε
�{ban,an} = Lε

{ban,an} (this needs to
exchange prefixes by suffixes), and, exchanging the roles of a and b, Lε

�{bna,bn} =
Lε
{bna,bn}, Lε

�{abn,bn} = Lε
{abn,bn}.

Let us recall that:

Theorem 4. [1, 2] For any finite set I, &∗I is a wqo on Lε
I .

Hence from this theorem and the previous lemma, we deduce:
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Proposition 6. Let n ≥ 0 be an integer. Suppose that I is one of the following
sets: {anb, b}, {anb, a}, {bna, a}, {bna, b}, {ban, b}, {ban, a}, {abn, a}, {abn, b},
{anb, an}, {ban, an}, {bna, bn}, {abn, bn}. Then the derivation relation &∗I is a
wqo on Lε

�I
.

We end this section by stating the following two important results used in the
proof of Theorem 5.

Proposition 7. Let n,m be two integers such that n,m ≥ 1 and let w be a word
in a≤n(ban)∗b ∪ {ε} such that wanbam is a good word. If &∗{wan,wanb} is a wqo
on Lε

�{wan,wanb} then &∗{wanb,wanbam} is a wqo on Lε
�{wanb,wanbam} .

Observe that the hypothesis “wanbam is a good word” means only 1 ≤ m ≤ n
when w �= ε.

Proposition 8. Let n ≥ 1 be an integer and let w be a word in a≤n(ban)∗. If
&∗{wb,wban} is a wqo on Lε

�{wb,wban} then &∗{wban,wbanb} is a wqo on Lε
�{wban,wbanb} .

3.3 Proof of the “If” Part of Theorem 1

From the results of the previous section we can deduce:

Theorem 5. For any integers n,m ≥ 1, and for any word w in a≤n(ban)∗b∪{ε}
such that wanbam is a good word, one has:

1. &∗{wan,wanb} is a wqo on Lε
�{wan,wanb} ;

2. &∗{wanb,wanbam} is a wqo on Lε
�{wanb,wanbam} .

Proof. We act by induction on |w|b.
When |w|b = 0, w = ε and we know by Proposition 6 that &∗{an,anb} is a

wqo on Lε
�{an,anb} . By Proposition 7, we deduce that &∗{anb,anbam} is a wqo on

Lε
�{anb,anbam} .
Assume now |w|b ≥ 1. Then w = ahb with 0 ≤ h ≤ n or w = w′anb with

w′ ∈ a≤n(ban)∗b. If w = b, then by Proposition 6, &∗{b,ban} is a wqo on Lε
�{b,ban} .

In the other cases, by inductive hypothesis, &∗{w,wan} is a wqo on Lε
�{w,wan} . Hence

by Proposition 7, &∗{wan,wanb} is a wqo on Lε
�{wan,wanb} , and by Proposition 8,

we deduce that &∗{wanb,wanbam} is a wqo on Lε
�{wan,wanbam} . �

Corollary 1. Let n ≥ 1 be an integer. For any word w in a≤n(ban)∗ba≤n, &∗{w}
is a wqo on Lε

�{w} .

Proof. The result is immediate if |w|b = 0. Assume from now on |w|b > 0.
First we consider the case where w ends with b. Two cases are possible:

w = amb with 1 ≤ m ≤ n or w = w′banb with w′ in a≤n(ban)∗. If w = amb, the
result is stated in Proposition 5.
Assume w = w′banb. By Theorem 5, we know that &∗{w′ban,w′banb} is a wqo
on Lε

�{w′ban,w′banb}
. Let (uk)k≥0 be a sequence of words in Lε

�{w′banb}
. Since
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Lε
�{w′banb}

⊆ Lε
�{w′ban,w′banb}

, uk ∈ Lε
�{w′ban,w′banb}

and so we can replace the
sequence (uk)k≥0 by a subsequence such that uk &∗{w′ban,w′banb} uk+1 for each
k ≥ 0. For any k this means that there exists a word vk in Lε

�{w′ban,w′banb}
such that uk+1 is in the shuffle of uk and vk. The word vk is the shuffle of
αk occurrences of w′ban and βk occurrences of w′banb, and the words uk and
uk+1 are the shuffle of γk and γk+1 occurrences of w′banb respectively. From
|vk|a = |uk+1|a − |uk|a and |vk|b = |uk+1|b − |uk|b, we deduce respectively
αk + βk = γk+1 − γk and (γk+1 − γk)|w′banb|b = (αk + βk)|w′banb|b − αk which
imply αk = 0, that is, vk ∈ Lε

�{w′banb}
. Hence uk &∗{w′banb} uk+1, so that &∗{w′banb}

is a wqo on Lε
�{w′banb}

.
Now we consider the case where w ends with a so that w = w′bam with

w′ ∈ a≤n(ban)∗b ∪ {ε} and n ≥ m ≥ 1. By Theorem 5, &∗{w′b,w′bam} is a wqo on
Lε
�{w′b,w′bam}

. The proof ends as the previous case. �

We are now able to prove the “if” part of Theorem 1.
Proof of the “if” part of Theorem 1. Assume w is a word such that w, w̃, E(w)
and E(w̃) have no factor of the two possible forms 1 and 2 of Definition 1. By
Lemma 4, we know that

w ∈ {ε} ∪
⋃
n≥0

a≤n(ban)∗ba≤n ∪
⋃
n≥0

b≤n(abn)∗ab≤n.

The result is trivial if w = ε and stated by Corollary 1 if w ∈ a≤n(ban)∗ba≤n.
The case w ∈ b≤n(abn)∗ab≤n is treated as the previous case by exchanging the
roles of a and b. �
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Abstract. We introduce α-synchronous relations for a rational num-
ber α. We show that if a rational relation is both α- and α′-synchronous
for two different numbers α and α′, then it is recognizable. We give a
synchronization algorithm for α-synchronous transducers. We also prove
the closure under boolean operations and composition of α-synchronous
relations.

1 Introduction

We introduce α-synchronous relations for a rational number α. They extend the
classical notion of synchronous relations, which are rational relations realized by
letter to letter transducers. In these usual synchronous transducers, the ratio
between the output length and the input length is always 1 whereas we allow it
to be any fixed rational number α. These relations have already been mentioned
by Sakarovitch [1, p. 660].

The main result about these α-synchronous relations is a Cobham-like theo-
rem. We show that if a relation is both α- and α′-synchronous for two distinct
rational number α and α′, then it is recognizable. This question was raised by
Sakarovitch [1, p. 660]. Recall that Cobham’s result states that if the base k
representation of a set of integers is regular for two multiplicatively independent
bases k, it is ultimately periodic [2]. If k and k′ are multiplicatively independent,
conversion from base k to base k′ is not rational. Otherwise, this conversion is a
(log k′/ log k)-synchronous relation.

We also study the synchronization of transducers. We show that if a relation
is realized by a transducer in which the ratio between the output length and
the input length is α for any cycle, it can be also realized by another transducer
in which the ratio between the output length and the input length is α for any
transition. This algorithm can be viewed as a normalization of α-synchronous
transducers.

The question of the synchronization of transducers goes back to the paper
of Elgot and Mezei [3] about rational relations realized by finite automata, and
to the result of Eilenberg and Schützenberger [4], which states that a length
preserving rational relation of A∗ × B∗ is a rational subset of (A × B)∗, or,
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equivalently, is realized by a synchronous automaton. The proof of Eilenberg
is effective but is done on regular expressions and not directly on automata.
In [5], Frougny and Sakarovitch give an algorithm for synchronization of rela-
tions with bounded length difference, the relations being between finite words
or between one-sided infinite words. This constitutes another proof of Eilenberg
and Schützenberger’s result. Their algorithm operates directly on the transducer
that realizes the relation. Our synchronization algorithm is an extension to α-
synchronous transducer of the algorithm given in [5].

One main ingredient of the synchronization algorithm is the state splitting
transformation. The notion of state splitting, which appeared early in informa-
tion theory, has been introduced to symbolic dynamics by Williams. Since then,
it has been widely used, for example to solve certain coding problems [6, 7].

Finally, we show that the class of α-synchronous relations is a boolean algebra
as in the case of classical synchronous relations. This result is a crucial property
in the theory of automatic structures [8].

The paper is organized as follows. Sect. 2 introduces the basic definitions of
rational relations and transducers. The α-synchronous transducers and relations
are defined in Sect. 3. The synchronization algorithm is described in Sect. 4.
Some closure properties of these relations are proved in section 5 and the main
theorem is proved in Sect. 6.

2 Preliminaries

When a rational number α is written α = p/q, we always assume that the
integers p and q are relatively prime.

In what follows, A and B denote finite alphabets. The free monoid A∗ is the
set of finite words or sequences of letters from A. The empty word is denoted by ε.
The length of a word u ∈ A∗ is denoted by |u|. In this paper, we study relations,
that is, subsets of the product monoid A∗×B∗. For a relation R ⊆ A∗×B∗, we
denote by R−1 the relation {(v, u) | (u, v) ∈ R}.

A transducer (also known as a two-tape automaton) is a non-deterministic
automaton whose transitions are labeled by pairs of words. A transducer over
the monoid A∗ × B∗ is composed of a finite set Q of states, a finite set E ⊂
Q×A∗×B∗×Q of transitions and two sets I, F ⊆ Q of initial and final states.
A transition τ = (s, u, v, t) from s to t is denoted by s u|v−−→ t.

A path in a transducer T is a sequence

s0
u0|v0−−−→ s1

u1|v1−−−→ · · · un|vn−−−−→ sn

of consecutive transitions. The label of this path is the pair (u, v) where its input
label u is the word u1u2 · · ·un and its output label v is the word v1v2 · · · vn. Such
a path is denoted s0

u|v−−→ sn. This path is accepting if s0 is initial and sn is final.
The set accepted by the transducer is the set of labels of its accepting paths,
which is a relation R ⊆ A∗ × B∗. We say that the relation R is realized by the
transducer T .
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A subset of A∗ ×B∗ is rational if it can be obtained from some finite subsets
using union, concatenation and star iteration. It is a consequence of Kleene’s
theorem that a subset of A∗ × B∗ is a rational relation if and only if it is the
relation realized by a transducer.

We now recall the definition of a class of very simple rational relations. A
relation R ⊆ A∗ × B∗ is recognizable if there are two families K1, . . . ,Kn and
L1, . . . , Ln of rational subsets of A∗ and B∗ such that R =

⋃n
i=1 Ki × Li.

3 α-Synchronous Relations

In this section, we first define the notion of α-synchronous transducer and α-
synchronous relation. Through the section, a positive rational number α = p/q
is fixed.

A transducer T is α-synchronous if for each transition s u|v−−→ t, the lengths of
the input and output labels satisfy |u| = q and |v| = p. If follows immediately
that α is the ratio between the output length and input length of any path. For
any path s u|v−−→ t in T , the equality |v|/|u| = α holds.

Let # be a padding symbol that does not belong to the alphabets A and B.
The padding of a pair (u, v) of words over A and B is the pair (u#m, v#n) where
m and n are the least integers such that |v#n|/|u#m| = α. The integers m and n
are actually given by m = qr−|u| and n = pr−|v| where the integer r is defined
by r = max(*|u|/q+, *|v|/p+). The padding of (u, v) is denoted (u, v)# without
any reference to α although it depends on α. For a relation R ⊆ A∗ × B∗, we
denote by R# the following relation

R# = {(u, v)# | (u, v) ∈ R}.

A relation R ⊆ A∗ ×B∗ is α-synchronous if the relation R# can be realized by
an α-synchronous transducer over the alphabets A ∪ {#} and B ∪ {#}.

0 1

01|1
10|2
11|3

00|0
01|1
10|2
11|3

Fig. 1. Conversion from base 2 to base 4

Example 1. The transducer of Fig. 1 performs conversion of the integers from
base 2 to base 4. Indeed, its accepts the pairs (u, v) where u is the base-2 ex-
pansion of some integer n (padded with a leading 0 to make it of even length)
and v is the base-4 expansion of n. This transducer is 1/2-synchronous.

4 Synchronization

A transducer has the α-cycle property if for any cycle s u|v−−→ s, the equality
|v|/|u| = α holds. Of course, an α-synchronous transducer satisfies the α-cycle
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property. The property of being α-synchronous is a local property whereas the
α-cycle property is a global one. The following proposition states that these two
properties are in fact equivalent.

Proposition 1. A relation realized by a transducer with the α-cycle property is
α-synchronous.

0 1

1|1
10|2
11|3

00|0
01|1
10|2
11|3

Fig. 2. Conversion from base 2 to base 4 (cont.)

Example 2. In the transducer of Fig. 1, a leading 0 has been added in the tran-
sition 0 01|1−−→ 1 to make the transducer 1/2-synchronous. If this 0 is removed,
this yields the transducer of Fig. 2, which is not 1/2-synchronous but has the
1/2-cycle property.

The proof of the proposition is separated into several lemmas.

Lemma 1. Let α = p/q be a rational number. For any transducer T with the
α-cycle property, there is a constant K such that the inequality

∣∣q|v|−p|u|∣∣ ≤ K
holds for any path s u|v−−→ t in T .

We say that a transducer has the α-balance property if for any two paths s u|v−−→ t
and s u′|v′

−−−→ t with the same starting and ending states, the equality q|v|−p|u| =
q|v′|−p|u′| holds. Note that the α-balance property is stronger than the α-cycle
property since we always assume an empty path from s to s labeled by the pair
(ε, ε). The following lemma states that they are in fact equivalent.

Lemma 2. Let α = p/q be a rational number. For any transducer T with the α-
cycle property, there is a transducer T ′ with the α-balance property and a single
initial state that realizes the same relation as T .

Example 3. The transducer of Fig. 2 has the 1/2-cycle property but it does
not have the 1/2-balance property. If the construction given in the proof of the
lemma is applied to this transducer, one gets the transducer of Fig. 3, which has
the 1/2-balance property.

Let α = p/q be a rational number and let T be a transducer with the α-balance
property and a single initial state i. Define the function b from Q to N by
b(s) = q|v| − p|u| where i u|v−−→ s is a path from i to s. The α-balance property
ensures that the value q|v|−p|u| does not depend on the path and the function b
is well-defined. The value b(s) is called the balance of the state s. The function b
has the following properties. The balance of the initial state is 0 and for any
path s u|v−−→ t, q|v| − p|u| is equal to b(t)− b(s).
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01 2 3
1|1

10|2
11|3

00|0 01|1
10|2 11|3

00|0 01|1
10|2 11|3

#|ε

Fig. 3. Conversion from base 2 to base 4 (cont.)

If a transducer T has the property that the balance of any state is 0, the label
of any transition is a pair (u, v) such that q|v| − p|u| equals 0. Since p and q
are relatively prime, there is an integer k such that |u| = kq and |v| = kp. If k
equals 0, the label of the transition is (ε, ε). These transitions can be removed
using standard techniques to remove ε-transitions. If k ≥ 2, the words u and v
can be factorized u = u1 · · ·uk where |ui| = q and v = v1 · · · vk where |vi| =
p. The transition s u|v−−→ t can be replaced by the k transitions si−1

ui|vi−−−→ si

where s0 = s, sk = t and s1, . . . , sk−1 are newly introduced states. Applying
this transformation to each transition yields an α-synchronous transducer that
realizes the same relation.

Once a transducer with the α-balance property has been obtained, it must
be ensured that all final states have a 0-balance. Some final states may have a
balance different from 0 since a pair (u, v) ∈ R may not satisfy |v|/|u| = α. Since
any pair (u, v)# ∈ R# satisfies this equality, the transducer must be slightly
transformed. A new state f , which becomes the unique final state is added.
Furthermore, for any former final s state with balance qa− bp, a new transition
s #m|#n

−−−−−→ f is also added wherem = qr−b, n = pr−a and r = max(*b/q+, *a/p+).
Let α = p/q be a rational number. Since p and q are relatively prime, any

integer n is equal to qa−pb for some integers a and b. Furthermore, both integers
a and b can be chosen positive since n is also equal to q(a+ kp)− p(b+ kq) for
any integer k. For any integer n, let us define ||n|| as follows.

||n|| = min{a+ b | n = qa− pb with a, b ≥ 0}.

We call ||n|| the weight of n. It is true that ||n|| = 0 if and only if n = 0 but the
weight of −n is not necessarily equal to the weight of n. Note that if n = qa−pb
and ||n|| = a + b, then a < p or b < q holds. Otherwise n = qa′ − pb′ where
a′ = a− p and b′ = b− q and a′ + b′ < a+ b.

Example 4. If α = 2/3, the weight of some small integers is the following.

n · · · −5 −4 −3 −2 −1 0 1 2 3 4 5 6 · · ·
||n|| 5 2 4 1 3 0 2 4 1 3 5 2

For a transducer T with the α-balance property, we denote by ||T || the integer
maxs∈Q ||b(s)||. Note that ||T || equals 0 if and only the balance of any state is 0.
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Lemma 3. Let A be transducer with the α-balance property such that the balance
of any final state is 0. If ||T || > 0, there is a transducer T ′ realizing the same
relation and such that ||T ′|| < ||T ||.

The proof of this lemma is based on two transformations of transducers called
state splitting and letter shifting. We first define the operation of out-state
splitting in a transducer T . Let s be a state of T and let O = (O1, . . . , On)
be a partition of all transitions leaving s. The operation of out-state split-
ting relative to the partition O transforms T into the transducer T ′ where
Q′ = (Q \ {s}) ∪ {s1, . . . , sn} is obtained from Q by splitting state s into n
new states s1, . . . , sn.

– all transitions of T that are not incident to s are left unchanged.
– each si has a copy of the transitions entering s.
– the transitions leaving s are distributed among s1, . . . , sn according to the

partition O.

Note that transitions from s to s are considered as both leaving and entering s.
Note also that the balance of the new states s1, . . . , sn is the same as the balance
of s. The operation of in-state splitting is obtained by reversing the roles played
by transitions entering and leaving s.

s

u|u′

v|v′

t|at′

r|br′

w|cw′

Before

s1

s2

s3

u|u′

u|u′

u|u′

v|v′

v|v′

v|v′

r|br′

w|cw′

t|at′

t|at′

t|at′

After

Fig. 4. An out-state splitting

An out-state splitting is shown in Fig. 4. There are three transitions τ1, τ2
and τ3, leaving the state s. The state s is split according to the partition O =
({τ1}, {τ2}, {τ3}) into three states s1, s2 and s3.

We now describe the letter shifting operation. There are actually four variants
whether input or output labels are considered and whether letters are shifted
forwards or backwards. We describe the backwards shifting of the output let-
ters. Let s be state that is neither initial nor final and such that all outgoing
transitions have a non-empty output label and that all these output labels start
with the same letter a. If these conditions are not fulfilled, the operation cannot
be performed. This letter a is removed from the output labels of all outgoing
transitions and it is added as the last letter of the output labels of all ingoing
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s

t|at′

u|u′

v|v′

r|ar′

w|aw′

Before

s

t|t′a
u|u′a

v|v′a

r|r′

w|w′

After

Fig. 5. An output backwards shifting

0

2

3

41

10|2
11|3

10|1

11|11#|1

00|0 01|1
10|2 11|3

00|0
10|1

01|0
11|1

0#|0
1#|1

01|2
11|3

00|2
10|3

0#|2
1#|3

Fig. 6. Conversion from base 2 to base 4 (cont.)

transitions. Note that transitions from s to s are considered as both leaving and
entering s. The balance of the state s is changed by the letter shifting. If its bal-
ance is r before the operation, it becomes r+q after an output backwards shifting
and r − p after an input backwards shifting. An output backwards shifting is
shown in Fig. 5.

Example 5. If the proof of the lemma is applied to the transducer of Fig. 3, one
gets the transducer of Fig. 6. State 2 has been split into states 2, 3 and 4 and
there has been one backwards input shifting.

5 Closure Properties

The class of α-synchronous relations is closed under several operations. Here, we
prove the closure properties that are needed in the proof of the main theorem.
We consider only the boolean operations and composition.
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If R and R′ are two α-synchronous relations (for the same α), it is clear that
the relation R ∪R′ is also α-synchronous. For a relation R, we denote by Ř the
complement relation {(u, v) | (u, v) /∈ R}.
Proposition 2. If the relation R is α-synchronous, the relation Ř is also α-
synchronous.

Proof. Let T be an α-synchronous transducer realizing the relation R#. Since
each transition of T is labeled by a pair (u, v) of words such that |u| = q and
|v| = p, the transducer T can be viewed as an automaton over the alphabet
C = (A∪{#})q× (B∪{#})p. This automaton accepts a rational set of words L
over C. Let T ′ be an automaton over C accepting the complement of L. This
automaton can be modified to accept only words of the form A∗#∗ × B∗#∗.
This modified automaton over C is actually an α-synchronous transducer
realizing Ř#. �

For two relations R ⊆ A∗×B∗ and R′ ⊆ B∗×C∗, we denote by RR′ the relation
obtained by composition of R and R′, that is, the relation {(u,w) | ∃v (u, v) ∈
R and (v, w) ∈ R′}.
Proposition 3. If the relations R ⊆ A∗×B∗ and R′ ⊆ B∗×C∗ are respectively
α- and α′-synchronous, the relation RR′ is αα′-synchronous.

Proof. Let T be an α-synchronous transducer realizing R# and T ′ be an α′-
synchronous transducer realizing R′#. The following operation is performed on
T and T ′ to get S and S′. Each transition s u|v−−→ t where u = u1 · · ·uq and
v = v1 · · · vp is replaced by the following path of length q + p

s0
u1|ε−−−→ s1

u2|ε−−−→ · · · uq|ε−−−→ sq
ε|v1−−→ sq+1

ε|v2−−→ · · · ε|vp−−→ sq+p

where s0 = s, sq+p = t and s1, . . . , sq+p−1 are the newly introduced states.
The transducers S and S′ still realize the relations R# and R′#. They are no
longer α- and α′-synchronous but they have the α- and α′-cycle properties. A
transducer R realizing (RR′)# is defined as follows. Its set of states is Q × Q′

where Q and Q′ are the sets of states of S and S′. Its initial and final states are
I × I ′ and F × F ′ where I, F , I ′ and F ′ are the initial and final set of states
of S and S′. If E and E′ are the sets of transitions of S and S′, the transitions
of R are defined as follows.{

(s, s′)
u|w−−→ (t, t′) | ∃v ∈ B ∪ {#, ε} s

u|v−−→ t ∈ E and s′
v|w−−→ t′ ∈ E′

}
It is straightforward to verify that R realizes the relation (RR′)# and that
it has the αα′-cycle property. By Proposition 1, the relation RR′ is
αα′-synchronous. �

6 Main Theorem

It is clear that a recognizable relation is α-synchronous for any α > 0. The
following theorem gives a converse.
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Theorem 1. If a rational relation R ⊆ A∗ × B∗ is α- and α′-synchronous for
α �= α′, then R is recognizable.

The proof of the theorem is based on the following lemma.

Lemma 4. Let ∼ be an equivalence relation on A∗ that is α-synchronous for
α �= 1. The relation ∼ is of finite index (it has finitely many classes).

Proof. We claim that there is a constantK such that if w ∈ A∗ satisfies |w| > K,
there is w′ ∈ A∗ such that w ∼ w′ and |w′| < |w|. This proves that the relation ∼
is of finite index since the number of classes is bounded by the number of words
of length smaller than K.

Since the relation ∼−1 is equal to the relation ∼, we may assume that α =
p/q > 1. Let T be an α-synchronous transducer realizing the relation ∼. For
each state s of T , we define c(s) by

c(s) = min{|u| | s u|v−−→ f is a path where v ∈ #∗ and f is final}.

By convention, we set c(s) = ∞ if no such word u exists. Let C and K be defined
by C = maxc(s) �=∞ c(s) and K = α(p+ C)/(1 − α).

Let w be a word such that w > K. Since w ∼ w holds, there is an accepting
path labeled by (w,w)# in T . This path can be decomposed

i
u|v−−→ s

u′|v′
−−−→ f

where (uu′, vv′) = (w,w)#, v = w#n with n < p and v′ ∈ #∗. Since |v| ≤ |w|+p
and |v|/|u| = α. One has |u| < p + |w|/α. By definition of C, there is a path
s u′′|v′′
−−−−→ f ′ such that |u′′| ≤ C, v′′ ∈ #∗ and f ′ is a final state. Then there

is an accepting path labeled by (uu′′, uv′′) in T . Furthermore, the word uu′′

satisfies |uv′′| ≤ |u| + C < p + C + |w|/α ≤ |w|. There is a word w′ such that
(uu′′, vv′′) = (w′, w)# and |w′| < |w|. We have found a word w′ such that w ∼ w′

and |w′| < |w|. �

We come now to the proof of the main theorem.

Proof. Let R be a relation that is α- and α′-synchronous for α �= α′. For a word u
in A∗, we denote by R(u) the set {v | (u, v) ∈ R}. We define the equivalence
relation ∼ on A∗ as follows. For any word u and u′, the relation u ∼ u′ holds if
and only if R(u) = R(u′). We claim that the relation ∼ is α/α′-synchronous.

By Proposition 2, it suffices to prove that the relation �∼ is α/α′-synchronous.
By definition of ∼, one has the following equivalence

u �∼ u′ ⇐⇒ ∃v

⎧⎨⎩
(u, v) ∈ R ∧ (u′, v) /∈ R

∨
(u, v) /∈ R ∧ (u′, v) ∈ R

,

which shows that the relation �∼ is equal to RŘ−1 ∪ ŘR−1 where Ř = {(u, v) |
(u, v) /∈ R}. Since R is α-synchronous, the relation Ř is also α-synchronous by
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Proposition 2. Since R is α′-synchronous, both relations Ř−1 and R−1 are also
1/α′-synchronous by Proposition 2. By Proposition 3, both relations RŘ−1 and
ŘR−1 are α/α′-synchronous.

By the previous lemma, the relation ∼ is of finite index. This proves that R
is recognizable. �
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Abstract. Let Σ be an alphabet of size t, let f : Σ∗ → Σ∗ be a non-
erasing morphism, let w be an infinite fixed point of f , and let E(w) be
the critical exponent of w. We prove that if E(w) is finite, then for a
uniform f it is rational, and for a non-uniform f it lies in the field exten-
sion Q[λ1, . . . , λ	], where λ1, . . . , λ	 are the eigenvalues of the incidence
matrix of f . In particular, E(w) is algebraic of degree at most t. Under
certain conditions, our proof implies an algorithm for computing E(w).
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1 Introduction

A non-empty finite word z over a finite alphabet Σ is a fractional power if it
has the form z = x · · ·xy, where x is a non-empty word and y is a prefix of x. If
r = |z|/|x|, we say that z is a power with exponent r, or an r-power. Let α be a
positive real number. A right-infinite word w over Σ is said to be α-power-free if
no subword of it is an r-power for any rational r ≥ α. Otherwise, w contains an
α-power. The critical exponent of w, denoted by E(w), is the supremum of the
set of exponents r ∈ Q≥1, such that w contains an r-power. If w is an arbitrary
infinite word, E(w) can be any real number greater than 1 [13]. In this work, we
are interested in the critical exponents of a more restricted set of words, namely,
words generated by iterating a morphism, also known as pure morphic sequences
or D0L-words.

Examples of infinite words for which the critical exponent has been computed
include the Thue-Morse word t, proved by Thue in 1912 to have E(t) = 2
[18, 3], and the Fibonacci word f , proved by Mignosi and Pirillo in 1992 to have
E(f) = 2 + ϕ, where ϕ = (1 +

√
5)/2 is the golden mean [15]. Both words are

fixed points of morphisms defined over Σ = {0, 1}: t is the fixed point beginning
with 0 of the Thue-Morse morphism, defined by μ(0) = 01, μ(1) = 10; f is the
unique fixed point of the Fibonacci morphism, defined by f(0) = 01, f(1) = 0.
The Fibonacci word gives an example of an irrational critical exponent; however,
E(f) is algebraic of degree |Σ|. As we shall see, this is the general case.
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In a general setting, critical exponents have been studied mainly in relation
to Sturmian words; see [4, 5, 7, 8, 10, 14, 20]. Let s be a Sturmian word. The main
results, proved a few times independently in the papers mentioned above, are
a criterion for E(s) to be bounded, and a formula for computing E(s) when it
is bounded. Both results make use of the continued fraction expansion of the
slope of s. For morphic sequences, most of the research has focused on deciding
whether a given word has bounded critical exponent; see [6, 9, 11, 16, 17].

Our goal is to characterize and compute critical exponents of pure morphic
sequences. In our previous paper [12], we completely characterized E(w) for
fixed points of binary k-uniform morphisms. In this paper we extend our results
to fixed points of non-erasing morphisms over a finite alphabet. Let Σ = Σt =
{0, 1, . . . , t − 1}, let f : Σ∗ → Σ∗ be a non-erasing morphism, and let w be
an infinite fixed point of f . We show that if E(w) < ∞, then it is rational
for a uniform f , and algebraic of degree at most t for a non-uniform f . More
specifically, E(w) ∈ Q[λ1, . . . , λ�], where λ1, . . . , λ� are the distinct eigenvalues
of the incidence matrix of f . Under certain conditions, our proof implies an
algorithm for computing E(w). Based on our results, we give a short proof of
the theorem of Mignosi and Pirillo mentioned above: the critical exponent of the
Fibonacci word is 2 + ϕ, where ϕ is the golden mean.

2 Basic Definitions and Notation

We use Z≥r (and similarly Q≥r,R≥r) to denote the integers (similarly rational
or real numbers) greater than or equal to r. If S is a set of numbers, we denote
by Mn×m(S) the set of n×m matrices with entries in S, and by Mn(S) the set of
square n×n matrices with entries in S. Let A ∈Mn(Z), and let λ1, . . . , λ� be the
distinct eigenvalues of A. We denote by Q[A] the field extension Q[λ1, . . . , λ�].

Let Σ = Σt = {0, . . . , t − 1} be a finite alphabet. We use the notation Σ∗,
Σ+ and Σω to denote the sets of finite words, non-empty finite words, and
right-infinite words over Σ, respectively. We use ε to denote the empty word. A
morphism f : Σ∗t → Σ∗s is called non-erasing if f(a) �= ε for all a ∈ Σt. Infinite
words are usually denoted by bold letters. For a finite word w ∈ Σ∗, |w| is the
length of w, and |w|a is the number of occurrences in w of the letter a ∈ Σ. For
both finite and infinite words, wi is the letter at position i, starting from zero;
e.g., w = w0w1 · · ·wn, w = w0w1w2 · · · , where wi ∈ Σ. The set of subwords of
a word w ∈ Σ∗ ∪Σω is denoted by S(w).

Let z = a0 · · · an−1 ∈ Σ+. A positive integer q ≤ |z| is a period of z if
ai+q = ai for i = 0, 1, · · · , n − 1 − q. An infinite word z = a0a1 · · · ∈ Σω has a
period q ∈ Z≥1 if ai+q = ai for all i ≥ 0; in this case, z is periodic, and we write
z = xω , where x = a0 · · · aq−1. We say that z is ultimately periodic if it has a
periodic suffix.

A fractional power is a word of the form z = xny, where n ∈ Z≥1, x ∈ Σ+,
and y is a proper prefix of x. Equivalently, z has a |x|-period and |y| = |z| mod
|x|. If |z| = p and |x| = q, we say that z is a p/q-power, or z = xp/q . Since q
stands for both the fraction’s denominator and the period, we use non-reduced
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fractions to denote fractional powers: for example, 10101 is a 5
2 -power (as well as

a 5
4 -power), while 1010101010 is a 10

4 -power (as well as a 10
2 -power). The word

x is referred to as the power block.
Let α be a real number. We say that a word w (finite or not) is α-power-free

if no subword of it is an r-power for any rational r ≥ α; otherwise, w contains
an α-power. The critical exponent of an infinite word w is defined by

E(w) = sup{r ∈ Q≥1 : w contains an r-power} . (1)

By this definition, w contains α-powers for all 1 ≤ α < E(w), but no α-powers
for α > E(w); it may or may not contain E(w)-powers.

Let f be a morphism defined overΣ. If f(a) = ax for some a ∈ Σ and x ∈ Σ+,
and furthermore fn(x) �= ε for all n ≥ 0 (f is prolongable on a), then fn(a) is a
proper prefix of fn+1(a) for all n ≥ 0, and by applying f successively we get an
infinite fixed point of f , fω(a) = limn→∞ fn(a) = axf(x)f2(x)f3(x) · · · . Such
fixed points are called pure morphic sequences or D0L words. In this work we
consider powers in fixed points of non-erasing morphisms, and so we assume that
f is prolongable on 0.

3 Preliminary Results

3.1 The Incidence Matrix Associated with a Morphism

Definition 1. Let u ∈ Σ∗t . The Parikh vector of u, denoted by [u], is a vector
[u] ∈Mt×1(Z≥0), defined by [u] = (|u|0, |u|1, . . . , |u|t−1)T .

Definition 2. Let f : Σ∗k → Σ∗n be a morphism. The incidence matrix asso-
ciated with f , denoted by F (f), is a matrix F (f) ∈ Mn×k(Z≥0), defined by

F (f) = (Fi,j)0≤i<n, 0≤j<k ; Fi,j = |f(j)|i . (2)

In other words, column j of F (f) is the Parikh vector of f(j).

The next proposition follows directly from the two definitions above:

Proposition 3. Let f : Σ∗t → Σ∗s be a morphism, and let F = F (f) be the
incidence matrix of f . Then for all u ∈ Σ∗t , we have [f(u)] = F [u]. If t = s, then
for all n ∈ N, we have F (fn) = Fn.

The proof for the following theorem can be found in [1, Theorem 8.3.11].

Theorem 4 (Perron-Frobenius). Let A ∈Mn(R≥0), and let r be the spectral
radius of A, i.e., r = max{|λ| : λ is an eigenvalue of A}. Then

1. r is an eigenvalue of A, with a real non-negative corresponding eigenvector;
2. there exists a positive integer n such that any eigenvalue λ of A with |λ| = r

satisfies λn = rn.
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Definition 5. The number r described in the above theorem is called the
Perron-Frobenius eigenvalue of A. We denote it by r(A). If f : Σ∗t → Σ∗t is
a morphism, we denote by r(f) the Perron-Frobenius eigenvalue of F (f).

The next two propositions follow easily from Proposition 3 and Theorem 4.

Proposition 6. Let f : Σ∗t → Σ∗t be a morphism prolongable on 0, and let
w = fω(0). Then there exists a morphism f ′ : Σ∗t → Σ∗t such that w = f ′ω(0)
and F (f ′) has no eigenvalue λ satisfying |λ| = |r(f ′)| and λ �= r(f ′).

Proposition 7. Let A ∈Mn(Z≥0). Then either r(A) = 0 or r(A) ≥ 1.

In the next theorem, the notation “U/V ”, where U, V are column vectors,
stands for

∑N
i=1 ui/

∑N
i=1 vi, where ui, vi are the components of U, V , respec-

tively.

Theorem 8. Let A ∈ MN (Z≥0) be a matrix with no zero columns, and let
r(A) = r, λ1, . . . , λ� be its distinct eigenvalues. Assume r ≥ 1, and |λi| < r
for i = 1, 2, . . . , �. Let U, V,W ∈ MN×1(Z≥0) be arbitrary vectors with W �= 0,
and let

L = lim
m→∞

AmU + (
∑m−1

i=0 Ai)V
AmW

. (3)

Then either L = ∞, or L exists and is finite. If the second case holds, then
L ∈ Q[A]. In particular, it is algebraic of degree at most N .

The proof of this theorem relies on the Jordan decomposition of A, in partic-
ular the asymptotic behavior of powers of Jordan blocks. Details are omitted.

3.2 Circular D0L Languages

A D0L system is a triple G = (Σ, f, w), where Σ is a finite alphabet, f is a
morphism defined over Σ, and w ∈ Σ+ is a word known as the system’s axiom.
If f is non-erasing then G is called a PD0L system; in this paper, when referring
to a D0L system, we always mean a PD0L system. The system’s language is
the set L(G) = {fn(w) : n ≥ 0}; thus an infinite fixed point of f represents
a D0L language for which f is prolongable on the axiom. A D0L language is
α-power-free if all of its elements are α-power-free.

The definition of circular D0L languages we present here is the one used
by Mignosi and Séébold in [16], where they prove that every non-repetitive D0L
language is circular; their result is the main tool we use in this paper. For injective
morphisms, the definition coincides with Mossé’s recognizable substitutions [17]
and Cassaigne’s circular D0L-systems [6].

Roughly speaking, a D0L language L(G) is circular if every sufficiently long
word v ∈ S(L(G)) can be decomposed unambiguously into images under f ,
except perhaps a prefix and a suffix of bounded length. The bound on the length
of these prefix and suffix is called the synchronization delay. More formally, we
have the following definitions:
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Definition 9. Let G = (Σ, f, w) be a D0L system. We say that a word v admits
an interpretation by G if there exists a word v′ = a0a1 · · · anan+1 ∈ S(L(G)),
ai ∈ Σ, such that v = y0f(a1) · · · f(an)xn+1, where y0 is a suffix of f(a0) and
xn+1 is a prefix of f(an+1). The word v′ is called an ancestor of v.

Definition 10. Let v = y0f(a1) · · · f(an)xn+1 = s0f(b1) · · · f(bm)rm+1, where

– ai, bj ∈ Σ for 0 ≤ i ≤ n+ 1 and 0 ≤ j ≤ m+ 1;
– y0, s0 are suffixes of f(a0), f(b0), respectively;
– xn+1, rm+1 are prefixes of f(an+1), f(bm+1), respectively.

We say that L(G) is circular with synchronization delay D if whenever we have
|y0f(a1) · · · f(ai−1)| > D and |f(ai+1) · · · f(an)xn+1| > D for some 1 ≤ i ≤ n,
then y0f(a1) · · · f(ai−1) = s0f(b1) · · · f(bj−1) for some 0 ≤ j ≤ m, and ai = bj
(see Fig. 1).

Fig. 1. Synchronization of two interpretations

Theorem 11 (Mignosi and Séébold [16]). If a D0L language is K-power-
free for some number K, then it is circular.

As mentioned above, when f is injective, Definition 10 coincides with the defin-
ition of circular D0L-systems in [6]. We now present this alternative definition,
since it will be more convenient to use when computing E(w) for injective mor-
phisms.

Definition 12. Let h : Σ∗ → Σ∗ be a morphism injective over Σ∗, and let w ∈
Σ∗. We say that (w1, w2) is a synchronization point of w (for h), if w = w1w2,
and for all v1, v2, u ∈ Σ∗,

v1wv2 = h(u)⇒ u = u1u2, and v1w1 = h(u1), w2v2 = h(u2).

We denote a synchronization point by w = w1|w2.

Definition 13. Let G = (Σ, h,w) be a D0L system. We say that G is circular
with synchronization delay D if h is injective on S(L(G)), and every word u ∈
S(L(G)) with |u| ≥ D has at least one synchronization point.

Note that if f is injective over S(L(G)) and u ∈ S(L(G)) has at least two syn-
chronization points, then any two distinct interpretations of u must synchronize.
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4 Algebraicity of E(w) for Non-erasing Morphisms

In this section we prove our main result, which is the following theorem:

Theorem 14. Let f : Σ∗t → Σ∗t be a non-erasing morphism, prolongable on 0,
and let w = fω(0). Let F be the incidence matrix associated with f , and let
Q[F ] = Q[r, λ1, · · · , λ�], where r, λ1, · · · , λ� are the eigenvalues of F . Suppose
E(w) < ∞. Then E(w) ∈ Q[F ]. In particular, E(w) is algebraic of degree at
most t.

To prove Theorem 14 we need the following definitions:

Definition 15. An occurrence of a subword within a word w ∈ Σω is a triple
(z, i, j), where z ∈ S(w), 0 ≤ i ≤ j, and wi · · ·wj = z. In other words, z occurs
in w at positions i, · · · , j. For convenience, we usually omit the indices, and refer
to an occurrence (z, i, j) as z = wi · · ·wj . The set of all occurrences of subwords
within w is denoted by OC(w). We say that an occurrence (z, i, j) contains an
occurrence (z′, i′, j′), and denote it by z � z′, if i ≤ i′ and j ≥ j′.

Definition 16. Let z = wi · · ·wj ∈ OC(w) be a p/q-power. We say that (z, q)
is left stretchable (resp. right stretchable) if the q-period of z can be stretched left
(resp. right), i.e., if wi−1 · · ·wj (resp. wi · · ·wj+1) is a (p + 1)/q-power. If (z, q)
can be stretched left by c > 0 letters and no more, then the left stretch of (z, q) is
defined by σ(z, q) = wi−c · · ·wi−1; otherwise, if (z, q) is not left stretchable, then
σ(z, q) = ε. Similarly, the right stretch of (z, q) is given by ρ(z, q) = wj+1 · · ·wj+d

if (z, q) can be stretched right by exactly 0 < d <∞ letters, by ρ(z, q) = ε if (z, q)
is not right stretchable, and by ρ(z, q) = (wm)m>j if (z, q) can be stretched right
infinitely (i.e., (wm)m≥i is periodic with period q). The stretch vector of (z, q),
denoted by Λ(z, q), is the Parikh vector of the left and right stretch combined:

Λ(z, q) = [σ(z, q)ρ(z, q)].

If ρ(z, q) ∈ Σω, then Λ(z, q) is not defined.

Outline of Proof of Theorem 14: Since E(w) is an upper bound, it is enough
to consider unstretchable powers when computing it. The idea of the proof is as
follows:

1. Take an unstretchable power z ∈ OC(w), apply f to it, and stretch the result
to an unstretchable power. Repeat the process to get an infinite sequence of
unstretchable powers in OC(w). For reasons that will be clear shortly, we
refer to such sequences as “π-sequences”.

2. Show that when considered as a sequence of rational numbers, each of the
π-sequences has its lim sup in Q[F ].

3. Show that every sufficiently long unstretchable power in OC(w) belongs to
one of finitely many π-sequences.

Clearly, the three steps above suffice to prove Theorem 14: if E(w) is attained
by some power z ∈ S(w), then it is rational; otherwise, there exists a sequence
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of unstretchable powers A = {zi}i≥0 ⊂ OC(w), such that E(w) = limi→∞(zi).
Since every sufficiently long element of A belongs to one of finitely many π-
sequences, there must be an infinite subsequence of A which belongs to one
π-sequence, hence its limit must belong to Q[F ].

Sketch of Proof of Theorem 14: Let z = xp/q ∈ OC(w) be an unstretchable
p/q-power. Let P = [z] and Q = [x]. In order to keep track of the components
of P and Q, we introduce the notation “z is a P/Q-power”, where

P

Q
:=

∑
0≤i<t |z|i∑
0≤i<t |x|i

=
p

q
.

Recall that by Proposition 3, [f(z)] = FP and [f(x)] = FQ; thus under this
notation, f(z) is an FP/FQ-power. This power can be stretched by σ(f(z), FQ)
on the left and ρ(f(z), FQ) on the right; the result (provided that ρ is finite)
is an unstretchable (FP + Λ(f(z), FQ))/FQ-power. Let us define the following
mapping:

π : OC(w) ×Q → OC(w) ×Q ,

π

(
z,
P

Q

)
=

(
σf(z)ρ,

FP + Λ

FQ

)
. (4)

Here σ = σ(f(z), FQ), ρ = ρ(f(z), FQ), and Λ = Λ(f(z), FQ). In what follows,
we use π(z) and π(P/Q) to denote the first and second component, respectively.

Iterating π on an initial unstretchable P/Q-power z, we get a sequence of
unstretchable powers, {πm(z, P/Q)}m≥0. We refer to such a sequence as a “π-
sequence”. Let {Λm}m≥0 be the sequence of stretch vectors generated by suc-
cessive applications of π. Then

πm

(
P

Q

)
=
FmP +

∑m−1
i=0 Fm−1−iΛi

FmQ
. (5)

Lemma 17. Suppose that E(w) < ∞. Let z ∈ OC(w) be an unstretchable
P/Q- power, let {πm(z, P/Q)}m≥0 be the π-sequence generated by z, and let
S = {Λm}m≥0 be the associated stretch sequence. Then S is ultimately periodic.

Proof (sketch). E(w) < ∞ implies that w is circular (Theorem 11) and not
pushy [9]. We use this two properties, together with the fact that f is non-
erasing, to show the following property: there exists a constant C, such that for
every unstretchable P/Q-power z ∈ OC(w), applying f to the C characters to
the left and right of z results in occurrences that contain both the left and right
stretch of (f(z), FQ), and the C characters to the left and right of π(z, P/Q).
We call these C characters the left and right context of (z, P/Q). Since there are
only finitely many words of length C, and the context of (z, P/Q) determines
the context of π(z, P/Q), the sequence of contexts must be ultimately periodic.
This, in turn, implies that the stretch sequence is ultimately periodic. �

Corollary 18. Suppose that E(w) < ∞. Let z = wi · · ·wj ∈ OC(w) be an
unstretchable P/Q- power. Then lim supm→∞ πm(P/Q) ∈ Q[F ].



On Critical Exponents in Fixed Points of Non-erasing Morphisms 287

Proof (sketch). Let h be the period of the stretch sequence. Then{πm(P/Q)}m≥0
can be partitioned into h subsequences, {πmh+j(z, P/Q)}m≥0, where 0 ≤ j < h.
Each of these subsequences can be reduced to an expression of the form of (3).
We then apply Theorem 8. �

Lemma 19. Suppose E(w) <∞. Let e = *E(w)+, let D be the synchronization
delay, and let M = max{D, {|f(a)| : a ∈ Σ}}. Let K = e(2D +M + 1). Then

1. every unstretchable power z = xp/q ∈ OC(w) satisfying |z| ≥ K is an image
under the π mapping;

2. for |z| < K, OC(w) contains only finitely many different sequences of the
form {πm(z, P/Q)}m≥0.

Proof (sketch). Use the circularity of w to show that if q > 2D + M , then all
power blocks must have the same inverse image under f ; use Lemma 17 to show
that for |z| < K, there are finitely many relevant contexts. �

Lemma 19 completes the proof of Theorem 14 as was outlined in the beginning
of this section.

4.1 The Uniform Case

When f is a k-uniform morphism (i.e., |f(a)| = k for all a ∈ Σ), the π-sequences
have a simpler form: if z is a p/q-power, then f(z) is a kp/kq-power, and the
vector notation we used in the general case is unnecessary. Let σ = σ(f(z), kq),
ρ = ρ(f(z), kq), and let λ = λ(f(z), kq) = |σ| + |ρ| be the stretch size. The π
mapping now has the form π(z, p/q) = (σf(z)ρ, (kp+ λ)/kq), and

πm

(
p

q

)
=
kmp+

∑m−1
i=0 km−1−iλi

kmq
.

As in the general case, when applying π successively we get an ultimately periodic
sequence of stretch sizes. The π sequence can be thus partitioned into a finite
number of subsequences, each of which converges to a rational limit (in fact, all
subsequences converge to the same limit). We have thus proved the following
theorem, which generalizes our result in [12] regarding binary alphabets:

Theorem 20. Let f be a uniform morphism over Σ = Σt, prolongable on 0,
and let w = fω(0). Then either E(w) =∞, or E(w) ∈ Q.

5 Computing Critical Exponents

When trying to apply Theorem 14 for actually computing E(w), the main prob-
lem is that the π-subsequences, while converging to a computable limit, don’t
necessarily increase towards the limit; in other words, limm→∞ πmh+j(z, P/Q)
and sup{πmh+j(z, P/Q)}m≥0 are not necessarily the same, and it is not clear
how to compute the second value. However, if for a given morphism f we can
show that the π-subsequences are increasing, or if we know how to compute their
suprema, then Theorem 14 suggests an algorithm for computing E(w):
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Input: An integer t denoting the alphabet size, and a morphism f prolongable
on 0.

Algorithm:
1. Check whether or not E(w) <∞. If E(w) = ∞, return 0.
2. Compute the number k = 2D + M , where D is the synchronization

delay, M = max{D,m}, and m = {|f(a)| : a ∈ Σ}. Alternately, if f is
injective, k is an integer such that every subword of w with length at
least k has two or more synchronization points (Definition 12).

3. Compute the set of powers

Sk(w) := {z = xp/q ∈ OC(w) : z is unstretchable and q < k}.

4. For every unstretchable power z ∈ Sk(w):
(a) compute the period h of the stretch sequence generated by iterating

π on z;
(b) compute the supremum of each of the subsequences {πmh+j(z, P/Q)},

m ≥ 0, j = 0, 1, · · · , h− 1.
Output: The maximum of the values computed in 4(b).

Notes:

1. It is decidable whether or not E(w) <∞; see [9, 16, 11].
2. If E(w) <∞, the synchronization delay D is effectively computable [16].
3. Given a fixed integer n, it is decidable whether w is n-power-free [16].

Therefore, given that E(w) < ∞, the number e := *E(w)+ is computable.
The set Sk(w) can thus be computed by computing the set {z ∈ S(w) :
|z| < ek + 2C}. The 2C factor is added to cover all possible contexts (see
Lemma 17).

The complexity of this algorithm is not clear. In particular, we don’t have a
bound on D, nor on the prefix of w which contains Sk(w) (however, if f is a
uniform binary morphism, we know by [12] that it is enough to consider f4(0)).
Also, the complexity of computing Sk(w) is not clear. In some cases, however,
computing E(w) becomes very simple. In particular, if it is easy to show that
w is circular with delay D, and the set Sk(w) is easy to compute and is shown
to be finite, step 1 of the algorithm becomes unnecessary. In the next section we
give a specific example.

5.1 Computing the Critical Exponent of the Fibonacci Word

Let f be the Fibonacci morphism, f(0) = 01, f(1) = 0, and let f = fω(0). In
[15], Mignosi and Pirillo showed that E(f) = 2+ϕ, where ϕ = (1+

√
5)/2 is the

golden mean. We give an alternative proof.
Let z = wi · · ·wj ∈ OC(f) be an unstretchable P/Q-power, z = xp/q . First,

observe that if q ≥ 3, then x has at least 2 synchronization points. If q = 2, then
the only possible power block is x = 01, since it is easy to see that 11 and (00)2

are not subwords of f , and a power of the form (10)r will be left stretchable.
The word 01 has two synchronization points, 01 = ε|01|ε. Since f is injective,
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this means that in order to compute E(f) it is enough to start from powers with
q = 1. The only such power in f is the square 00. We conclude that k = 2 and
Sk(f) = {02}. Note that we do not need to check separately that E(f) <∞.

Next, let us compute the stretch sequence of πm(z). Assume w.l.o.g that
wi−1 = wj+1 = 1, and wi+q−1 = wj−q+1 = 0. Since f(0) and f(1) don’t have
a common suffix, f(z) cannot be stretched left, and σ(f(z), FQ) = ε. To the
right, we can always stretch by the letter 0, which is the common prefix of f(0)
and f(1); however, we cannot stretch by more, since we must have wj+2 = 0,
or else we would get 11 ∈ f . Thus f(wj−q+1) = 01, f(wj+1wj+2) = 001, and
ρ(f(z), FQ) = 0. We get that the stretch vector is always

[1
0

]
, and the π mapping

is given by

πm(P/Q) =
FmP + (

∑m−1
i=0 F i)

[1
0

]
FmQ

.

The incidence matrix of the Fibonacci morphism is given by F =
(1 1
1 0

)
. To

compute limm→∞ πm(P/Q) we can use the Jordan decomposition of F ; however,
because of the special properties of the Fibonacci sequence, we can also compute
it directly. Let {fn}n≥0 be the Fibonacci sequence, defined by f0 = 0, f1 = 1,
and fn = fn−1 + fn−2 for all n ≥ 2. It is an easy induction to show that for all
m ≥ 1,

Fm =
(
fm+1 fm

fm fm−1

)
.

Using the identity
∑n

i=1 fi = fn+2 − 1 (see e.g. [19]), we get that

m−1∑
i=0

F i =
(∑m

i=1 fi

∑m−1
i=1 fi∑m−1

i=1 fi

∑m−2
i=1 fi + 1

)
=

(
fm+2 − 1 fm+1 − 1
fm+1 − 1 fm

)
.

In the case of z = 02, we have P =
[2
0

]
and Q =

[1
0

]
, and so

πm(P/Q) =
2(fm+1 + fm) + fm+1 + fm+2 − 2

fm+1 + fm
=

3fm+2 + fm+1 − 2
fm+2

=

3 +
fm+1 − 2
fm+2

−−−−−→m→∞ 2 + ϕ .

Also, using the identity fn−1fn+1 − f2
n = (−1)n [19], we get that

πm(P/Q)− πm−1(P/Q) =
f2

m+1 − fmfm+2 + 2fm

fm+2fm+1
=

(−1)m + 2fm

fm+2fm+1
> 0 ,

i.e., {πm(
[2
0

]
/
[1
0

]
)}m≥0 is an increasing sequence, and

E(f) = lim
m→∞πm

(
02,

[2
0

][1
0

]) = 2 + ϕ .
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6 Some Open Problems

1. We have shown that given an infinite fixed point w of a non-erasing morphism
defined over an alphabet of size t, E(w) is either infinite or algebraic of degree
at most t. It yet remains to prove the result for erasing morphisms.

Another generalization which seems plausible is morphic sequences, that is,
images of pure morphic sequences under codings. A coding is a 1-uniform mor-
phism τ : Σt → Σs, where typically s < t. If w = fω(0) and v = τ(w), then
obviously E(v) ≥ E(w). Computer tests suggest that when the inequality is
strict then E(v) is attained, i.e., E(v) ∈ Q. Proving Theorem 14 for morphic
sequences will cover the erasing case as well, since every word generated by iter-
ating a morphism is the image under a coding of a word generated by iterating
a non-erasing morphism [1, Theorem 7.5.1].

2. Given an algebraic number α of degree d, can we construct a morphism
f : Σt → Σt for some t ≥ d such that E(fω(0)) = α?
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Abstract. In this paper we present a method for solving the NP-
complete SAT problem using the type of P systems that is defined in
[9]. The SAT problem is solved in O(nm) time, where n is the number of
boolean variables and m is the number of clauses for a instance written
in conjunctive normal form. Thus we can say that the solution for each
given instance is obtained in linear time. We succeeded in solving SAT
by a uniform construction of a deterministic P system which uses rules
involving objects in regions, proteins on membranes, and membrane di-
vision. We also investigate the computational power of the systems with
proteins on membranes and show that the universality can be reached
even in the case of systems that do not even use the membrane division
and have only one membrane.

1 Introduction

In the recent years we have witnessed an explosion in the data accumulated
and describing the biological processes that happen in cells. Many new research
projects in the direction of studying and understanding the wonderful and ex-
tremely complex system that we call a cell have been started recently. They
form the core of the new area of research named Systems Biology. A complete
understanding of the inner-workings of the cells could yield immense benefits in
all the areas related to disease prevention, cure, health care etc. Even a few years
ago the research in the Human Genome Project has benefitted from the success-
ful manipulation of the replication machinery of procaryotic cells. We believe
that our understanding of the replication mechanisms in (at least some of) the
eucaryotic cells is imminent. In such a case, one can envision that soon we will
be able to re-wire the replication pathway in such a cell, leading to interesting
possibilities for the computing field. We propose in this paper a way to solve
NP complete problems by using such a cell replication machinery. Since the cell
replication is usually linked to a protein receptor on the plasma membrane, we
are modeling this process with a sequence of steps: a rule simulating the binding
of the signalling molecule to its corresponding receptor will be simulated, and
then, the bound receptor is viewed as a new protein that starts the division
process for the cell. More details will be given in section 2 about all the rules
that can be used in the proposed systems.
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This work is a continuation of the investigations aiming to bridge membrane
computing (where in a compartmental cell-like structure the chemicals to evolve
are placed in the compartments defined by the membranes) and brane calculi
recently introduced in [4] (where one considers again a compartmental cell-like
structure with the chemicals/proteins placed on the membranes themselves).

Using the membrane division rules we are able to solve hard problems (NP-
complete) such as SAT in polynomial time. Several such results have been ob-
tained recently (see for example [1], [6]), all using the trade-off between space
and time made possible by the membrane division rules. Our approach is novel
as it refers to the systems in which the parallelism is restricted by the number
of proteins embedded in membranes. Even in this case we were able to obtain
fast solutions for SAT. Once the biology research gives way to manipulation of
cell division, we believe that such an approach could be both feasible and energy
efficient thus being the best approach in solving computationally hard problems.

Satisfiability (SAT) is the problem of deciding whether a boolean formula in
propositional logic has an assignment that evaluates to true. SAT occurs as a
problem and as a tool in applications, and it is considered a fundamental problem
in theory, since many problems can be reduced to it. Traditional methods treat
SAT as a discrete decision problem.

2 Definition of the New Type of P Systems

In what follows we assume that the reader is familiar with membrane computing
basic notions and terminology, e.g., from [10] and [12], as well as with basic
elements of computability, so that we only mention here a few notations we use
(for a more detailed discussion we refer the interested reader to [11]).

In the P systems which we consider below, we use two types of objects, pro-
teins and usual objects; the former are placed on the membranes, the latter are
placed in the regions delimited by membranes. The fact that a protein p is on
a membrane (with label) i is written in the form [ ip| ] i. Both the regions of a
membrane structure and the membranes can contain multisets of objects and of
proteins, respectively.

We consider the types of rules introduced in [9]. In all of these rules, a, b, c, d
are objects, p is a protein, and i is a label (“res” stands for “restricted”):

Type Rule Effect
1res [ ip|a] i → [ ip|b] i

a[ ip| ] i → b[ ip| ] i modify an object, but not move
2res [ ip|a] i → a[ ip| ] i

a[ ip| ] i → [ ip|a] i move an object, but not modify
3res [

i
p|a]

i
→ b[

i
p| ]

i
a[ ip| ] i → [ ip|b] i modify and move one object

4res a[ ip|b] i → b[ ip|a] i interchange two objects
5res a[ ip|b] i → c[ ip|d] i interchange and modify two objects
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In all cases above, the protein is not changed, it plays the role of a catalyst,
just assisting the evolution of objects. A generalization is to allow rules of the
forms below (now, “cp” means “change protein”):

Type Rule Effect (besides changing also the protein)
1cp [

i
p|a]

i
→ [

i
p′|b]

i
a[ ip| ] i → b[ ip

′| ] i modify an object, but not move
2cp [ ip|a] i → a[ ip

′| ] i
a[ ip| ] i → [ ip

′|a] i move an object, but not modify
3cp [ ip|a] i → b[ ip

′| ] i
a[ ip| ] i → [ ip

′|b] i modify and move one object
4cp a[ ip|b] i → b[ ip

′|a] i interchange two objects
5cp a[ ip|b] i → c[ ip

′|d] i interchange and modify two objects

where p, p′ are two proteins (possibly equal, and then we have rules of type res).
An intermediate case can be that of changing proteins, but in a restricted

manner, by allowing at most two states for each protein, p, p̄, and the rules
either as in the first table (without changing the protein), or changing from p
to p̄ and back (like in the case of bistable catalysts). Rules with such flip-flop
proteins are denoted by nff, n = 1, 2, 3, 4, 5 (note that in this case we allow both
rules which do not change the protein and rules which switch from p to p̄ and
back).

Both in the case of rules of type ff and of type cp we can ask that the proteins
are always moved in their complementary state (from p into p̄ and vice versa).
Such rules are said to be of pure ff or cp type, and we indicate the use of pure
ff or cp rules by writing ffp and cpp, respectively.

To divide a membrane, we use the following type of rule, where p, p′, p′′ are
proteins (possible equal): [ ip| ] i → [ ip

′| ] i[ ip
′′| ] i

The membrane i is assumed not to have any polarization and it can be non-
elementary. The rule doesn’t change the membrane label i and instead of one
membrane, at next step, will have two membranes with the same label i and
the same contents, objects and/or other membranes (although the rule specifies
only the proteins involved).

A P system with proteins on membranes and membrane division is a system
of the form Π = (O,P, μ, w1/z1, . . . , wm/zm, E,R1, . . . , Rm, io), where m is the
degree of the system (the number of membranes), O is the set of objects, P is
the set of proteins (with O ∩ P = ∅), μ is the membrane structure, w1, . . . , wm

are the (strings representing the) multisets of objects present in the m regions
of the membrane structure μ, z1, . . . , zm are the multisets of proteins present on
the m membranes of μ, E ⊆ O is the set of objects present in the environment
(in an arbitrarily large number of copies each), R1, . . . , Rm are finite sets of
rules associated with the m membranes of μ, and io is the label of the output
membrane.

The rules are used in the non-deterministic maximally parallel way: in each
step, a maximal multiset of rules is used, that is, no rule can be applied to the
objects and the proteins which remain unused by the chosen multiset. At each
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step we have the condition that each object and each protein can be involved
in the application of at most one rule, but the membranes are not considered
as involved in the rule applications, hence the same membrane can appear in
any number of rules at the same time. By halting computation we understand
a sequence of configurations that ends with a halting configuration (there is no
rule that can be applied considering the objects and proteins present at that
moment in the system). With a halting computation we associate a result, in
the form of the multiplicity of objects present in region io at the moment when
the system halts. We denote by N(Π) the set of numbers computed in this way
by a given system Π . We denote, in the usual way, by NOPm(pror ;list-of-types-
of-rules) the family of sets of numbers N(Π) generated by systems Π with at
most m membranes, using rules as specified in the list-of-types-of-rules, and with
at most r proteins present on a membrane. When parameters m or r are not
bounded, we use ∗ as a subscript.

3 Preliminary Observations

We assume that all SAT instances are in conjunctive normal form, i.e., the
conjunction of clauses, where each clause is a disjunction of variables or of their
negation. We may write an instance γ, with n variables, in conjunctive normal
form using m clauses, as follows: γ = c1∧c2∧ . . .∧cm, ci = yi,1∨yi,2∨ . . .∨yi,ki ,
where yi,j ∈ {xl,¬xl | 1 ≤ l ≤ n}, 1 ≤ j ≤ ki, 1 ≤ i ≤ m.

Example 1. For n = 3 variables, we may have the instance γ = c1 ∧ c2 with
m = 2 clauses, where c1 = y1,1 ∨ y1,2 ∨ y1,3, c2 = y2,1 and y1,1 = x1, y1,2 =
x2, y1,3 = ¬x3, y2,1 = ¬x2. If (x1, x2, x3) = (0, 0, 0), we have c1 = 1 and c2 = 1,
thus γ = 1.

We now proceed to solving SAT using P systems with proteins on membranes,
we will need to encode the instance to be solved by the system using multisets of
objects (since in the P system one cannot have a order imposed on the objects
such that they become strings). A solution to the encoding issue is given in the
following and will be used in the construction given in the next section:

To encode an instance γ, we use the following notations.
code(γ) = code(c1)code(c2) . . . code(cm), code(ci) = αi1αi2 . . . αin, with

αij =

⎧⎨⎩
bi,j , if xj appears in ci;
b′i,j , if ¬xj appears in ci;
di,j , if xj and ¬xj do not appear in ci, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Example 2. For instance, if we have γ as in example 1, we obtain the following
when using the encoding idea given above: code(c1) = b1,1b1,2b

′
1,3 code(c2) =

d2,1b
′
2,2d2,3 code(γ) = b1,1b1,2b

′
1,3d2,1b

′
2,2d2,3.

We can now pass to the construction for solving SAT using membrane division,
before doing so, we state some basic observations.

A clause is satisfied if at least one of the positive variables contained in the
clause is assigned the value true or a negated variable is assigned the value false.
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If a clause is not satisfied by one variable (i.e. a positive variable with the
assignment false or a negated variable assigned the value true), then we will
move to the next variable in order and check that one whether it satisfies the
clause. If we reach the nth variable and it still does not satisfy the clause, then the
particular truth assignment does not satisfy the whole instance γ. On the other
hand, as soon as we satisfy a clause i by the variable j, we move immediately
to the clause i + 1 and variable 1 to continue this process. When reaching and
satisfying the last clause (the clause m), then we know that the instance γ is
satisfied by the current truth assignment.

We give the construction and explain in detail the idea in the next section.

4 Solving SAT

We start with an instance γ with n variables andm clauses, encoded as above into
code(γ). We construct the P system with protein on membranes and membrane
division Π = (O,P, μ, w1/z1, . . . , w5/z5, E,R1, . . . , R5), where

O = {d, e, f, g, g′, yes, no} ∪ {ai, fi, ti | 1 ≤ i ≤ n}
∪ {bi,j , b′i,j, di,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

P = {p, p′, p′n, r0} ∪ {qi | 1 ≤ i ≤ n+ 2} ∪ {pi | −(3n+ 2) ≤ i ≤ n}
∪ {pt

i, p
f
i | 1 ≤ i ≤ n}

∪ {ci |0 ≤ i ≤ 2nm+ 5n+ 8} ∪ {ri,j , r
′
i,j , r

′′
i,j |1 ≤ i ≤ m+1, 1 ≤ j ≤ n+s1},

E = ∅, μ = [1[2[3 ]3]2[4 ]4[5 ]5]1,
w1 = dg, w2 =a1a2 . . . and, w3 =code(γ)f, w4 = et1t2 . . . tnf1f2 . . . fn, w5 = g,

z1 = p, z2 = p−(3n+2), z3 = r0, z4 = q1, z5 = c0,

R1 = {[1p|yes]1 → yes[1p
′| ]1, [1p|g

′]1 → no[1p| ]1},
R2 = {d[2pi|d]2 → d[2pi+1|d]2 | −(3n+ 2) ≤ i ≤ −1}
∪ {[2pi| ]2 → [2p

t
i+1| ]2[2p

f
i+1| ]2 | 0 ≤ i ≤ n− 1}

∪ {ti[2p
t
i|ai]2 → ai[2pi|ti]2, fi[2p

f
i |ai]2 → ai[2pi|fi]2 | 1 ≤ i ≤ n}

∪ {e[2pn| ]2 → [2pn|e]2, [2pn|yes]2 → yes[2p
′
n| ]2},

R3 = {e[3r0| ]3 → [3r1,1|e]3, [3rm+1,1|f ]3 → yes[3rm+1,1| ]3}
∪ {[3ri,j |di,j ]3 → di,j [3r

′
i,j+1| ]3, di,j [3r

′
i,j+1| ]3 → [3ri,j+1|di,j ]3,

tj [3ri,j |bi,j ]3 → bi,j [3r
′
i+1,j |tj ]3, [3r

′
i+1,j |tj ]3 → tj [3ri+1,1| ]3,

fj [3ri,j |b′i,j ]3 → b′i,j [3r
′
i+1,j |fj ]3, [3r

′
i+1,j |fj ]3 → fj [3ri+1,1| ]3,

fj [3ri,j |bi,j ]3 → bi,j [3r
′′
i,j |fj]3, [3r

′′
i,j |fj ]3 → fj [3ri,j+1| ]3,

tj [3ri,j |b′i,j ]3 → b′i,j [3r
′′
i,j |tj ]3, [3r

′′
i,j |tj ]3 → tj [3ri,j+1| ]3,

[3ri,j |tj ]3 → tj [3ri,j+1| ]3, [3ri,j |fj]3 → fj [3ri,j+1| ]3
| for 1 ≤ i ≤ m, 1 ≤ j ≤ n},

R4 = {[4qi| ]4 → [4qi+1| ]4[4qi+1| ]4 |1 ≤ i ≤ n+ 1} ∪ {[4qn+2|e]4→e[4qn+2| ]4}
∪ {[4qn+2|ti]4 → ti[4qn+2| ]4, [4qn+2|fi]4 → fi[4qn+2| ]4 | 1 ≤ i ≤ n},
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R5 = {g[5ci|g]5 → g[5ci+1|g]5 | 0 ≤ i ≤ 2nm+ 5n+ 5}
∪ {g[5c2nm+5n+7|g]5 → g′[5c2nm+5n+8|g′]5}.

The rules that are used by the system Π are of one of the forms 3res, 2cp, 5cp,
or membrane division. Note that on each membrane in the system we have only
one protein. Initially the environment is empty and will be used to receive the
output, the answer yes or no (no other objects are sent out in the environment
during the computation).

We start with the preliminary phase, by generating 2n+1 copies of ti and fi,
1 ≤ i ≤ n, in region 4. In the first n+ 1 steps we apply the following membrane
division rules. [4qi| ]4 → [4qi+1| ]4[4qi+1| ]4, 1 ≤ i ≤ n+ 1.

In the initial configuration we have protein q1 on membrane 4 and after apply-
ing the membrane division rules, in the first n+ 1 steps, we get protein qn+2 on
all 2n+1 membranes labeled 4 . Now, we can send out, to membrane 1, all objects
from the elementary membranes 4, in 2n+1 steps, by applying the following 3res
rules. [4qn+2|ti]4 → ti[4qn+2| ]4, [4qn+2|fi]4 → fi[4qn+2| ]4, and [4qn+2|e]4 →
e[4qn+2| ]4, 1 ≤ i ≤ n.

In parallel with these rules, in the first 3n + 2 steps, we apply the following
5cp rule in membrane 2. d[2pi|d]2 → d[2pi+1|d]2,−(3n+ 2) ≤ i ≤ −1.

When protein p0 is present on membrane 2, we start the generating truth-
assignments phase. The following sequence of rules is applied, and after 2n
steps, we get 2n membranes labeled 2, all having a similar contents: the ini-
tial membrane 3 and the multiset of objects x1x2 . . . xnd, where xi ∈ {ti, fi} for
1 ≤ i ≤ n:

[2pi| ]2 → [2p
t
i+1| ]2[2p

f
i+1| ]2, 0 ≤ i ≤ n− 1,

ti[2p
t
i|ai]2 → ai[2pi|ti]2, fi[2p

f
i |ai]2 → ai[2pi|fi]2, 1 ≤ i ≤ n.

So we are now 5n + 2 steps from the start of the simulation. We can we
now check the clauses, starting with the first one. The computation will take
place in region 3, where we have the input, code(γ). At this moment we have
in the membranes labeled 2 all the possible truth-assignments for the n boolean
variables appearing in γ. On the membrane 3 we currently have the protein
r0. We start checking each clause by changing the protein (which will be some
variant of r) on membrane 3. We change the protein ri,j according with the ith

clause and the jth variable that we check. In order to have clause ci satisfied, we
need at least one variable yi,j present in ci to be true; for γ to be satisfied, we
need all clauses to be true.

When we finish generating truth-assignments in region 2, we have protein pn

on membrane 2, and in 2 steps we start the checking phase moving the object e
from region 1 to region 2 and then into region 3: e[2pn| ]2 → [2pn|e]2, and then
e[3r0| ]3 → [3r1,1|e]3.

Now we start a sequence of pairs of steps, an even step followed by an odd
one and so on. At each moment, there is one protein on membrane 3 that gets
primed (or double primed) in the even steps and then lose the prime in the odd
steps.
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If xj and ¬xj are not present in ci, in the even steps we apply the rules
[3ri,j |di,j ]3 → di,j [3r

′
i,j+1| ]3, 1 ≤ i ≤ m, 1 ≤ j ≤ n. and in the odd

steps the following rules are used and we move to the next variable to check.
di,j [3r

′
i,j+1| ]3 → [3ri,j+1|di,j ]3, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

If xj is present and it is true, then clause ci is satisfied and we move to
the next clause. In the even steps the following rules are used. tj [3ri,j |bi,j ]3 →
bi,j [3r

′
i+1,j |tj ]3, 1 ≤ i ≤ m, 1 ≤ j ≤ n. In the odd steps, tj is sent back to

region 2 and we move to check the next clause by applying the following rules.
[3r

′
i+1,j |tj ]3 → tj [3ri+1,1| ]3, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
If ¬xj is present and xj is false, then clause ci is satisfied and, in the even

steps, the following rules are applied. fj [3ri,j |b′i,j ]3 → b′i,j [3r
′
i+1,j |fj ]3, 1 ≤ i ≤

m, 1 ≤ j ≤ n. We move to the next clause and fj is sent back to membrane 2
by using the following rules in the odd steps. [3r

′
i+1,j |fj ]3 → fj [3ri+1,1| ]3, 1 ≤

i ≤ m, 1 ≤ j ≤ n.
For the cases when the current variable j does not make the clause true we

use the following rules at the even steps (the move to the next variable happens
at the next step): fj [3ri,j |bi,j ]3 → bi,j[3r

′′
i,j |fj]3, 1 ≤ i ≤ m, 1 ≤ j ≤ n, or

tj [3ri,j |b′i,j ]3 → b′i,j [3r
′′
i,j |tj ]3, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

At the next step the protein r′′i,j will be changed into ri,j+1 so that the checking
can continue with the next variable: [3r

′′
i,j |fj ]3 → fj [3ri,j+1| ]3, 1 ≤ i ≤ m, 1 ≤

j ≤ n, or [3r
′′
i,j |tj ]3 → tj [3ri,j+1| ]3, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

If the protein ri,n+1 is reached on membrane 3, then the clause ci is not
satisfied and there is no further move (γ is false). If the protein rm+1,1 is reached,
then all clauses c1, c2, . . . , cm are satisfied and we stop (γ is true). The checking
phase takes 2nm steps.

At the end of the computation, in the answering phase, we have to send out the
answer, yes or no. In three steps the object yes is sent out in the environment,
and the total number of steps needed to get the yes answer is 2nm+ 5n+ 7.

First we apply [3rm+1,1|f ]3 → yes[3rm+1,1| ]3, then [2pn|yes]2 → yes[2p
′
n| ]2

and finally [1p|yes]1 → yes[1p
′| ]1.

In parallel, in the membrane 5 (which is used as a counter), the following rules
are applied. g[5ci|g]5 → g[5ci+1|g]5, 0 ≤ i ≤ 2nm+ 5n+ 5

Simultaneously with sending out the object yes from region 1, the following
rule is applied. g[5c2nm+5n+7|g]5 → g′[5c2nm+5n+8|g′]5

If the object yes is not sent out at the time step 2nm+ 5n+ 7, (thus we still
have the protein p, not p′, on membrane 1), then, in the step 2nm+ 5n+ 8, we
apply the rule [1p|g′]1 → no[1p| ]1 and the computation is completed.

It is now clear that the solution to the satisfiability problem of the instance γ
is given by the system in linear time, observation that completes the proof. �
It is also interesting to investigate the computational power of such devices, the
following section is a step in this direction. A more detailed discussion about the
Turing equivalence of such P systems using proteins on membranes is reported
in [9].
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5 Universality Results

We investigate in this section the classes of P systems with rules considering the
proteins on membranes (as above) which are computationally complete, able to
characterize NRE, and we begin by considering systems in which only one type
of rules is used.

Theorem 1. NOP1(pro2; 2cpp) = NRE.

Proof. The construction simulates a register machine (see for example [7] for
their definition and properties)M = (m,B, l0, lh, R) without direct loops (we can
assume without losing generality that the register machine to be simulated does
not have any instructions that have a jump the themselves, if that is not the case,
one can modify the program of the register machine by adding new instructions
to remove all the “direct loops”) in the ADD instructions and we construct the
system Π = (O,P, [1 ]1, λ/l0p,E,R1, 1) with the following components

O = {ar | 1 ≤ r ≤ m} ∪ {cl | l ∈ B} ∪ {c, d},
P = {l, l′, l′′ | l ∈ B} ∪ {p, p′, p′′} ∪ {pl | l ∈ B},
E = {ar | 1 ≤ r ≤ m} ∪ {cl | l ∈ B} ∪ {c, d}, and the following rules.

1. For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules
ar[1l1| → [1l2|ar, and ar[1l1| → [1l3|ar.

When protein l1 is in membrane 1, one of these two rules is applied non-
deterministically. This leads to a copy of object ar being brought in region
1 and protein l1 being changed into l2 or l3.

2. For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R we consider the following rules
(we also specify the proteins present on the membrane):

Step Proteins Rules
1 l1 and p cl1 [1l1| → [1l

′
1|cl1

2 l′1 and p [1p|cl1 → cl1 [1pl1 | and
d[1l

′
1| → [1p

′|d
3 p′ and pl1 [1pl1 |ar → ar[1l

′′
2 |, if ar exists, and

c[1p
′| → [1p

′′|c
4 (l′′2 or pl1) and p′′ [1l

′′
2 |c→ c[1l2| or

[1pl1 |c→ c[1l3|, and
[1p

′′|d→ d[1p|

When protein l1 is present on the membrane, we apply the rule cl1 [1l1| →
[1l
′
1|cl1 , which changes the protein l1 into l′1, and moves one copy of cl1 inside.

In the second step, we apply both rules at the same time. By applying the
first rule, object cl1 is sent out and protein p is changed into pl1 , while by
applying the second rule, object d is brought inside and protein l′1 is changed
into p′.

At step 3, we send inside the object c and we change protein p′ into p′′. If
we have at least one copy of object ar inside the region, we can also apply the
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rule [1pl1 |ar → ar[1l
′′
2 |, which sends out object ar and changes the protein

pl1 into l′′2 .
At the last step, we send out object d while changing the protein p′′ into

its original form, p. If at step 3 we have sent out a copy of object ar, then we
can apply rule [1l

′′
2 |c→ c[1l2|, which sends out object c and changes protein

l′′2 into l2. If at step 3 we have not applied rule [1pl1 |ar → ar[1l
′′
2 |, then we

still have protein pl1 on the membrane, and we apply rule [1pl1 |c → c[1l3|,
which sends out object c and changes protein pl1 into l3.

After applying all these rules we change the protein l1 into l2 or l3 depend-
ing whether we can send out an object ar or not, and this way we simulate
the SUB instruction.

3. When the halt label lh is present on the membrane, no further instruction
can be simulated, and the number of copies of a1 in membrane 1 is equal to
the value of register 1 of M . �

A similar result can be obtained for rules of type 3ff even in the pure form (but
without a bound on the number of proteins).

Theorem 2. NOP1(pro∗; 3ffp) = NRE.

Proof. We consider a register machine M = (m,B, l0, lh, R). For each label l ∈ B
we consider a “clone” g; in the proof, we indicate the fact that l, g form such a pair
label-clone by using the same subscripts for l and g. The set of all clones of labels
from B is denoted by C. Let w(B) be the multiset which contains each l ∈ B
exactly once. We construct the system Π = (O,P, [1 ]1, g0/w(B)p,E,R1, 1) with
the following components

O = {g, g′, g′′, g′′′, giv | g ∈ C} ∪ {ar | 1 ≤ r ≤ m},
P = {l, l′ | l ∈ B} ∪ {p, p′}, E = {ar | 1 ≤ r ≤ m},

and the following rules. (We start with one copy of each l ∈ B present on the
membrane, together with the protein p, and with the clone of the initial label
l0, that is g0, in the region.)

1. For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules (when
specifying the proteins, we mention only those of interest for the use of the
rules in that step):

Step Proteins Obj. inside Rules
1 l1 and (p or p′) g1 [1l1|g1 → g′1[1l

′
1|

2 l′1 and (p or p′) ar[1l
′
1| → [1l1|ar and

g′1[1p| → [1p
′|g2, or

g′1[1p
′| → [1p|g2,

g′1[1p| → [1p
′|g3,

g′1[1p
′| → [1p|g3

We start with g1 inside and all labels from B on the membrane, and we
end with one of the symbols g2, or g3 inside plus one extra copy of ar and
again with all labels on the membrane.
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2. For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R, we consider the rules from the
next table:

Step Proteins Obj. inside Rules
1 l1 and (p or p′) g1 [1l1|g1 → g′1[1l

′
1|

2 l′1 and (p or p′) [1l
′
1|ar → ar[1l1|, if ar exists, and

g′1[1p| → [1p
′|g′′1

g′1[1p
′| → [1p|g′′1

3 (l1 or l′1) and (p or p′) g′′1 [1l1|g′′1 → g′′′2 [1l
′
1|, or

[1l
′
1|g′′1 → giv

3 [1l1|
4 (l1 or l′1) and (p or p′) g′′′2 [1l

′
1| → [1l1|g2 or

giv
3 [1p| → [1p

′|g3
giv
3 [1p

′| → [1p|g3

We start with object g1 inside and at step 1 we send it out modified into
g′1. The rule [1l1|g1 → g′1[1l

′
1| also changes the protein l1 into l′1.

At step 2, object g′1 is moved inside and changed into g′′1 , and the protein
p is changed between its non-primed version and its primed version. If there
is at least one copy of ar inside, we can also apply the rule [1l

′
1|ar → ar[1l1|,

which sends out ar and changes protein l′1 into l1.
We now have two possibilities: one when, at previous step, we have sent

out ar, and one when we have not. In the first case, at step 3 we have protein
l1 on the membrane, we change it into l′1, and we also send out object g′′1 ,
modified into g′′′2 . At step 4, we change back protein l′1 into l1, and we bring
in object g′′′2 , modified into g2. In the second case, at step 3 we have protein
l′1 on the membrane, we change it into l1, and we also send out object g′′1 ,
modified into giv

3 . At step 4, we bring in giv
3 , modified into g3, but we do not

bring it through the l1 protein as we need it unchanged, so we bring it using
the protein p/p′.

3. We also consider the following final rules:[1p|gh → gh[1p
′|, [1p

′|gh → gh[1p|,
which remove the clone of the halt label leaving in the system only objects
from the output register.

When the computation in M stops, that is, the clone of lh is introduced in the
system, the final rule is used and the computation in Π also stops. The number
of copies of a1 in membrane 1 is equal to the value of register 1 of M . �

Several other results have been also discussed in this direction in [9], we mention
here the results without providing the proofs as the constructions are similar
with the constructions from theorems 1 and 2.

We pass now to the case when rules of two types are used to reach universality.
The rules of type 2res correspond to uniport rules, while rules of type 4res

correspond to minimal antiport rules (for basic definitions of symport, uniport, or
antiport rules see [8]). Is is important however to note that in our case the number
of proteins never changes, hence at a given step the number of rules which can
be used is bounded by the number of proteins (hence the parallelism is restricted
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in this way). Fortunately enough, in the proof of the universality of P systems
with minimal symport and antiport rules from [2], NOP3(sym1, anti1) = NRE,
the parallelism is also bounded. Consequently, we have the following result:

Theorem 3. NOP3(pro∗;αβ, γδ) = NRE, where we have that α ∈ {2, 3}, and
β, δ ∈ {res, ff, cp}, γ ∈ {4, 5}.

As expected, when we use rules where also proteins can be used, controlling
the operations of passing objects through membranes in the symport/antiport
manner, improvements of this result can be obtained (while the proof is much
simplified).

Theorem 4. NOP1(pro2;αβ, γ) = NRE for all α ∈ {2, 3}, β ∈ {res, ff, cp},
γ ∈ {4cpp, 4cp, 5cpp, 5cp}.

The problem of obtaining a similar result remains open for α, β as in the previous
theorem and γ ∈ {4res, 5res, 4ff, 5ff}.

The next result shows that universality can be obtained even when using only
1cpp rules (objects are changed but are not transported at the same time when
the protein is changed) and rules of type 2res (uniport rules) for transporting
objects between environment and the membrane.

Theorem 5. NOP1(pro2; 2res, 1cpp) = NRE.

The last result obtained in this area is dealing with only uniports that are only
flip-flopping the protein 2ffp and catalytic rules of type 1res that do not move
objects between regions.

Theorem 6. NOP1(pro∗; 1res, 2ffp) = NRE.

In this way, many pairs of types of rules lead to characterizations of NRE, but
the problem remains open (even for the case of several membranes being used)
for the following pairs of types of rules (1res, 3res), (1ff, 2res), (1ff, 3res),
(2ff, 3res), as well as for pairs involving rules of types 4β, 5β, β ∈ {res, cp, ff}.

6 Final Remarks

We have introduced and investigated a class of P systems where the multisets
of objects from the compartments of the membrane structure evolve under the
control of multisets of proteins placed on the membranes. We showed that the
membrane division is an important feature that could hold the power to solving
computationally hard problems in polynomial time using the cell’s replication
mechanisms. Several universality results have been also obtained, even for sys-
tems with the minimal number of membranes, one; in many cases, also the num-
ber of proteins present at any moment on the membrane is rather small (this
can be considered as a descriptive complexity measure of the systems). For the
universality results, we did not even use the membrane division rules. It remains
as an open problem to bound the number of proteins also in Theorems 2 and 6.
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Another question is whether rules of pure forms are strictly weaker than rules
of the general form of types cp and ff .

Besides the open problems mentioned above, several other research topics
remain to be considered, such as other types of rules, other strategies to use
them (sequentially, in the minimally parallel way, etc.), other ways of using the
systems (in the accepting mode, then looking for proofs based on deterministic
systems, for solving decision problems, and so on), or of defining the result of
a computation (e.g., taking as the result the length of the computation, in the
sense of [5]). We will consider such topics in our forthcoming work.
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A. Păun gratefully acknowledges the support in part by LA BoR RSC grant
LEQSF (2004-07)-RD-A-23 and NSF Grants IMR-0414903 and CCF-0523572.

References

1. A. Alhazov: Solving SAT by symport/antiport P systems with memebrane division.
In Cellular Computing. Complexity Aspects (M.A. Gutierrez-Naranjo, Gh. Păun,
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Abstract. The paradigm of evolution/observation is based on the idea
that a computing device can be obtained by combining a basic system
and an observer that transforms the evolution of the basic system into
a readable output. In this framework we investigate what can be com-
puted by changing the observer but not the basic observed system. We
consider grammars as basic systems combined with finite state automata
as observers, watching either the sequence of sentential forms or the pro-
ductions used by the grammar. It is possible to obtain computational
completeness only varying the observer, without modifying the basic sys-
tem, which is a fixed context-free grammar.

1 Introduction

In [4] a new way to look at computation named evolution/observation has been
introduced. This approach stresses the role of an observer in computation. The
basic idea being that a computing device can be constructed using two systems:
the basic system and the observer. Following a set of rules the observer translates
the behaviour of the underlying basic system into a readable output.

The evolution/observation framework was originally [4] applied to a mem-
brane system. There, the evolution of a membrane system was observed by using
a multiset finite automaton. Following the same idea, new bio-inspired models
of computation have been obtained in [1] (sticker systems) and in [2] (splicing
systems). The generalisation of the framework to formal language theory has
been proposed in [3, 5, 6, 12], where derivations of grammars are observed by
finite state automata. Generally speaking, in all the mentioned works, already
rather simple basic systems observed by simple observers were proved to be
computationally universal.

However, in most of the results one needs to design both a specific basic
system and a specific observer to produce a specific result. This strategy causes
problems if one plans to implement the framework, for instance, in laboratory by
using bio-systems as basic systems. The main problem comes from the fact that
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most bio-systems cannot be (easily) programmed or modified. These bio-systems
evolve following their fixed rules and it is possible, however, that their evolution
can be monitored by using different observers.

Therefore it is natural to ask how much one can compute by fixing a basic
system and choosing different observers. This paper tries to answer this question
in the framework of formal language theory, extending, in this way, the work done
in [3, 5, 6, 12].

time

basic system config. 2 config. 3 config. 4config. 1

observer

aabc...output

Fig. 1. Sketch of the evolution/observation framework

2 Basic Definitions

A generative grammar is a quadruple G = (N,T, S, P ), where N is the alphabet
of non-terminals, T is the terminal alphabet disjoint from N , S ∈ N is the start
symbol, and P is the set of productions. By REG, CF and RE we denote the
classes of languages generated by regular, context-free, and type-0 grammars,
respectively.

Given the set of productions P in a grammar G, we can assign a unique
label to each production. We write x ⇒π y if x can be rewritten into y using
production with label π. The Szilard language [8, 13] of a grammar G contains
only words over the alphabet of labels of productions in G, each word being the
sequence of the labels of the productions used to derive the words w ∈ L(G)
from S. Formally, it is defined as Sz(G) = {π1 . . . πh | S = w0 ⇒π1 w1 ⇒π2

w2 . . .⇒πh
wh and wh ∈ T ∗}.

A finite state transducer (fst) is a system T = (Z, V1, V2, z0, F, δ), where Z is
a finite set of states, z0 ∈ Z is the initial state, F ⊆ Z the set of final states, and
V1, V2 are the input and output alphabet, respectively. The transition relation
δ is a finite subset of Z × (V1 ∪ {λ}) × V ∗2 × Z, λ denotes the empty string;
(z, a, w, z′) ∈ δ meaning that T in state z ∈ Z, reading a ∈ V1∪{λ}, goes to state
z′ and outputs w ∈ V ∗2 . The step relation is defined by by (ax, z, y) �−→ (x, z′, yw)
for (z, a, w, z′) ∈ δ and x ∈ V ∗1 , y ∈ V ∗2 . This extends to a relation in V ∗1 × V ∗2
by setting T (x) = {y ∈ V ∗2 | (x, z0, λ) �−→∗ (λ, z, y), z ∈ F}.
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3 Observing Sentential Forms

Following [6], an observer is a finite automaton whose set of states is labelled
with the symbols of an output alphabet Σ, with λ, or with the symbol ⊥ /∈ Σ.
Any computation of the automaton produces as output the label of the state
it halts in. We consider only deterministic and complete automata. We do not
specify final states but ⊥ is present in rejected computations.

Formally, an observer is a tuple O = (Z, V,Σ, z0, δ, σ) with state set Z, input
alphabet V , initial state z0 ∈ Z, and a complete transition function δ : Z×V →
Z; further there is the output alphabet Σ and a labelling function σ : Z �→
Σ∪{λ,⊥}. Given a string w ∈ V ∗ and an observer O we indicate with ΘO(w) ∈
Σ ∪ {λ,⊥} the output of O, that is the label σ(z) of the state z = δ(z0, w) in
which O with w as input halts. For a sequence w1, . . . , wn of n ≥ 1 strings over
V ∗ we write ΘO(w1, . . . , wn) for the string ΘO(w1) · · ·ΘO(wn).

In what follows, observers are specified by the partition into regular subsets
of V ∗ they induce (rather then by giving their transition function).

A G/O system is a pair Ω = (G,O) composed by a grammar G = (N,T, S, P )
and an observer O = (Z, V,Σ, z0, δ, σ); the input alphabet of the observer is
V = N ∪ T . The output alphabet Σ of the observer is also the output alphabet
of the G/O system.

In [6] three models of G/O systems (always writing, initial, and free) have
been defined and investigated. In this paper we only consider free G/O systems:
the symbol λ can be associated (by σ) to any state of the observer. Formally, a
free G/O system defines a language in the following manner:

L⊥,f(Ω)={ΘO(w0, w1, . . . , wn)∈Σ∗ | S = w0 ⇒G w1 ⇒G . . .⇒G wn, wn ∈ T ∗}

Thus L⊥,f(Ω) contains all and only the words over Σ that the observer pro-
duces during the possible derivations of the underlying grammar ending in a
terminal word. Derivations during which O produces the symbol ⊥ are then
filtered out.

With LG⊥,f (FA) we denote the families of languages defined by G/O systems
working in the free mode, using the grammar G and a finite state observer.
Similarly LG

f (FA) denotes the families where only observers are considered that
do not use ⊥ as label: intuitively they cannot ‘reject’ their input.

Given a class of grammars G we are interested in those grammars in G that are
equivalent, under suitable observation, to any other grammar in G: we call these
grammars universal modulo observation. Thus a single grammar is universal
(modulo observation) for a family of languages if it can generate every language
in the family when observed in an appropriate way.

Definition 1. A grammar G is universal modulo observation (m.o.) for a fam-
ily of languages L if L = LG⊥,f (FA).

We show by means of an example that a G/O system can generate different
classes of languages if the observer is changed while the grammar remains fixed.
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Let us consider the following context-free grammar:

G = ({S,A,B,C}, {t, p}, S, {S → pS, S → p,

S → A,A→ AB,A→ C,B → C,C → t}).

If G is coupled with the observer O′ such that ΘO′(w) = a if w ∈ {S,A,B,C, t,
p}+, then Ω = (G,O′) defines the language L⊥,f(Ω) = {ai | i ≥ 2}, a regular
language. In fact, the derivation S → pS

n−2⇒ pn−1S → pn produces (when
observed) the string an+1.

Keeping the same grammar G we change the observer into O′′ such that:

ΘO′′(w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ if w = S,
a if w ∈ AB∗,
b if w ∈ C+B∗,
c if w ∈ t+C∗,
⊥ else

In this case Ω = (G,O′′) generates the language L⊥,f (Ω) = {anbncn | n > 0}, a
context-sensitive language. In fact, the derivations that result in the output of
words anbncn are the ones of the form

S → A
n−1⇒ ABn−1 ⇒ CBn−1 n−1⇒ Cn ⇒ tCn−1 n−1⇒ tn.

The observer outputs the labels according to the described mapping and in this
way it rules out all other derivations (including the ones that derive sentential
forms containing the terminal p).

This example suffices to underline that part of the computation can be done
by choosing the right observer, keeping unchanged the underlying basic system.
In the following we try to find out how crucial this ‘part’ can be.

4 Observing Context-Free Grammars

G/O systems cannot directly restrict the sequence of productions that is applied,
but they can ‘test’ each of the separate sentential forms that are generated by the
grammar. As the observer can only ‘see’ sentential forms, (in general) it cannot
distinguish the productions applied by the grammar. This can be achieved by
changing the single production π : A→ α into the pair A→ π, π → α, where π
is used as a nonterminal symbol to reflect the use of the production of the same
name.

If the observer outputs π when observed, ⊥ when the string contains more
than one production name, and λ otherwise, we observe the Szilard language of
the original grammar.

Extending this idea we can put regular control on the derivations, and observe
the original Szilard language under a finite state transduction. Note that the
result follows the ‘only observing’ paradigm already faithfully. We introduce a
single context-free grammar that works for all finite state transductions, which
are taken care of by a suitable observer for each fst.
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Lemma 2. For each context-free grammar G there exists a context-free gram-
mar G′ such that, for each fst T there exists an observer OT with L⊥,f(G′, OT ) =
T (Sz(G)).

Proof. We assume a normal form of the transducer, and allow only transitions
of the form (p, a, b, q) where both a and b are either a single letter or the empty
string. Without loss of generality we may assume that the states p, q are non-
negative integers. We add a new nonterminal N to the sentential forms, and the
‘superfluous’ transition 0 : N → N . We replace transitions of the form (p, λ, b, q)
in the transducer by transitions (p, 0, b, q) to avoid the case of λ-transitions.

As already discussed, we should make productions inG ‘visible’ to the observer
by splitting a production π : A → α into the pair A → π, π → α, where π is
introduced into the grammar G′ as a ‘name’ for the production. In fact we need
more ‘intermediate states’ of π in order to synchronise with a new component
we add to the grammar.

As the observer only inspects single sentential forms, it cannot verify by itself
what is the state of the fst T in reading the sequence of productions in Sz(G). In-
stead the context-free grammar G′ generates a representation of the consecutive
states, and the observer verifies that these match the possible state-transitions
of T .

We sketch the construction of the grammar G′ and of the observer OT .
First, introduce new symbols I and X to the alphabet of the context-free

grammar G′. We encode the state p of the fst by appending XIpX to the sen-
tential form produced by G′. The observed derivation of G′ should go through
the following phases, when simulating a transition (p, π, b, q) of the fst T , where
π : A→ α is a production of the grammar G:

. . . A . . . . . .XIpX the fst is in state p;

. . . A . . . . . .XIpXIqX guess next state q with X → XX , X → IX ;
. . . π . . . . . .XIpXIqX now the observer checks transition, outputs b;
. . . π . . . . . .XIqX delete old state p with X → λ, I → λ;
. . . α . . . . . .XIqX back to normal.

The observer OT can guarantee that the derivations of the grammar G′ go
through the successive phases (in fact, only a regular checking is needed).

For more details the reader can refer to [6, Theorem 3] where it is shown
how the rewriting of two nonterminals can be synchronised by using a regular
observer. �

In the construction of the above proof, the observer checks whether each produc-
tion is used in a sentential form belonging to a certain regular language (which
depends on the production used). This is a regulating feature similar to that
of conditional grammars, see e.g., [7]. In fact, it is easy to see that this feature
can be incorporated into the proof, in the simulation of a transition of the fst.
Thus, the lemma is equally valid for context-free conditional grammars. Szilard
languages of these grammars where introduced in [7], but their properties where
left open.
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We have shown that regular control of a given context-free grammar is possible
by adapting that grammar, but the context-free grammar we obtain in that way
does not depend on the control itself.

Theorem 3. There exists a context-free grammar that is universal m.o. for RE.

Proof. The G/O system will simulate a one-way two-counter automaton [14] by
observing a fixed context-free grammar. The grammar will essentially act as the
storage of the two-counter automaton, while the transitions of the two-counter
automaton are simulated by a form of regular control.

To model the contents (p, q) of two counters the sentential form of the con-
structed grammar equals ApSBq, adding one to the first counter can be per-
formed by the production +A : S → AS, subtracting one by −A : A → λ.
Similar productions apply to B for the second counter.

Now each transition of the two-counter automaton that increases or decreases
one of the counters corresponds to a transition of a fst checking the derivation
process of the grammar.

This shows that as consequence of Lemma 2, a G/O system can simulate a
partially blind counter automaton [11], a finite state automaton extended with a
finite number of counters holding a non-negative integer that can be incremented
and decremented, but not tested for zero. For the full power of the recursively
enumerable language the zero-test has to be simulated. This is rather straightfor-
ward. To test the first counter A for zero, the observer forces the two consecutive
productions S → SA, SA → S, and additionally, when the sentential form con-
tains SA checks whether it does not contain any A’s. Obviously that is a regular
test, so the observer can implement it. �

The universal m.o. grammar constructed here does not have terminal symbols
(e.g., to store information on the past of the derivation).

This result is intuitively very close to the AFA and AFL theory, see [9], where
a family of languages is called a full principal trio if there exists a single language
L such that the family equals the languages that can be obtained as finite state
transductions of that language. Most famous in that area is the result that
the context-free languages are the full principal trio generated by D2 the Dyck
language on two pairs of brackets, i.e., the context-free language generated by
S → aSāS, S → bSb̄S, S → λ. Intuitively that is due to the fact that D2 models
the behaviour of a push-down stack. Here, the instructions of increasing and
decreasing the counters are taken care of by a basic grammar with sentential
forms in A∗SB∗. The power of regular control is added by the construction of
Lemma 2, with an extra provision for the zero test.

In the previous proof the ability of the observer to emit ⊥ in order to reject
some computations seems to be crucial. Actually this feature is not necessary if
one wants to obtain non-recursive languages by changing the observer of a fixed
context-free grammar.

Corollary 4. There is a context-free grammar G such that LG
f (FA) contains

non-recursive languages.
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Proof. Any observer O (with output alphabet Σ) using ⊥ can be changed into
an observer O′ that does not use it, by replacing ⊥ by a symbol ı /∈ Σ. The new
observer cannot reject its input, and has output alphabet Σ ∪ {ı}. The results
now comes from Theorem 3 and from the fact that recursive languages are closed
under intersection with regular languages: L⊥,f(G,O) = L⊥,f(G,O′) ∩Σ∗. �

5 Restrictions on Context-Free Grammars

We consider two restrictions on context-free grammars: bounding the number of
nonterminals and considering leftmost derivations only. In these cases we observe
REG and CF, respectively.

Note that the context-free grammar used as a universal grammar for the
type-0 grammars has no bound on the number of nonterminals in its sentential
forms. The next result shows that indeed this is a necessary property of context-
free grammars that are observationally complete for type-0 grammars. In fact,
when a bound is imposed, our observations constitute regular languages only.
Recall that a context-free grammar is nonterminal bounded if there exists a
constant k such that all sentential forms generated by the grammar have at
most k nonterminals. Incidentally, a context-free grammar has a regular Szilard
language iff it is nonterminal bounded [8].

The following result solves a conjecture from [12].

Theorem 5. For every G/O system Ω = (G,O) with G nonterminal bounded
context-free, L⊥,f(Ω) is regular.

Proof. Given Ω = (G,O) with G nonterminal bounded we will directly construct
a finite state automaton accepting L⊥,f(Ω). Let k be a constant such that every
sentential form of G has at most k nonterminals.

The states of the observer (finite state automaton) are of the form ν =
[ν0, A1, ν1, . . . , A�, ν�], � ≤ k such that Ai ∈ N for 1 ≤ i ≤ �, and νi is a
mapping from Z into Z, for 0 ≤ i ≤ �. The interpretation of such a state is
that it keeps, for a sentential form α = α0A1α1A2 . . . A�α�, the state of the new
automaton records the sequence of nonterminals, and for each of the segments
of terminals αi the mapping z �→ δ(z, αi) maps each state z of the observer to
the state the observer after reading αi when starting in z.

Two observations can be made. First, ν as given above, representing sentential
form α, the state reached by the observer after reading α can be deduced. The
state reached after reading α0 equals z′0 = ν0(z0), then A1 via O reaches z1 =
δ(z′0, A1), and so on. Consequently, ν fixes the observation of O on α.

Second, if a production of the kindB → β is applied to any of the nonterminals
Ai = B of a sentential form α, obtaining α′, then the state ν′ representing α′ can
be obtained from state ν representing α, by computing the mappings z �→ δ(z, γ)
for any segment of terminals in β, and composing the mappings of the outer
segments with νi−1 and νi. In case, β = λ, we compose νi−1 and νi.

In this way the G/O system is able to simulate the nonterminal bounded gram-
mar by a finite state automaton. The transitions of the grammar are sketched
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above, we step from ν to ν′ simulating a production, while reading from the
tape the observation determined by ν′. The initial state equals [ι, S, ι] with ι the
identity on Z, representing the initial S, and final states are of the form [ν0]
representing terminal strings. �

A leftmost generative grammar is a quadrupleG = (N,T, S, P ), as before, except
that G has only leftmost derivations: we assume that P ⊆ N+ × (N ∪ T )∗, and
α→ β ∈ P implies wαx⇒ wβx for w ∈ T ∗ and x ∈ (N ∪ T )∗.

A pushdown automaton corresponds to leftmost derivations in a type 0 gram-
mar with productions of the form pA → aqα for the instruction from state p
to q, reading a, popping A and pushing α back to the stack. The following re-
sult implies that pushdown automata are less computationally powerful than
context-free grammars when observed.

Lemma 6. For every G/O system Ω = (G,O) with G a leftmost type-0 gram-
mar, L⊥,f (Ω) is context-free.

Proof. Any leftmost type 0 grammar can be simulated by a pushdown automa-
ton. In case of the sentential formwAα, with w ∈ T ∗, A ∈ N , and α ∈ N(N∪T )∗,
the automaton has read w from the tape and the ‘tail’ of symbols Aα on the
stack. The result now is based on the fact that, for a pushdown automaton,
regular information on the stack can be stored on the topmost symbol [10], and
can be kept up-to-date while popping and pushing.

Let M be the pushdown automaton simulating a leftmost grammarG. From it
we construct a pushdown automaton MO that accepts the output of the observer
O on the sentential forms of G (rather than the string generated by G).

For a sentential form wAα as above MO ‘knows’ w that has been derived,
so the state of the observer O on reading w can be deduced from it. Moreover,
the behaviour of O on Aα is ‘regular’, and it can be stored with the topmost
symbol of the stack A, known to MO. Consequently, MO can deduce the output
of observer O on wAα, and read that symbol (instead of its usual symbol). �

All ‘leftmost observations’ are context-free, and there is a single leftmost context-
free grammar that captures them all. This result is similar to the fact that every
context-free language is a finite state transduction of the Dyck set D2, which is
used to obtain the universality result for CF.

Theorem 7. There is a leftmost context-free grammar universal m.o. for CF.

Proof. Consider a (leftmost) context-free grammar in Greibach normal form for
the Dyck language D2 interleaved with {c, d}∗. For a fst on D2 we create an
observer that simulates the transducer and produces its output. Due to the
Greibach normal form the last symbol from {a, ā, b, b̄} is the last one generated,
so the observer ‘knows’ which step of the fst is observing. The additional symbols
c, d make it possible to produce more than one symbol output on a single letter
of the Dyck language, like the fst may do. If not enough symbols are derived for
the observer, it aborts the computation by outputting ⊥. Finally, the observer
is deterministic, whereas the finite state transducer it simulates is not. Instead
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we put the nondeterminism in the observed grammar: the occurrences of c and d
are (also) used as coin tosses to decide which path to take in the transducer. �
In a similar way, any regular language can be obtained by observing derivations
for the language {a, b}∗.
Corollary 8. There exists a rightlinear grammar that is universal m.o. for REG.

The last results show universality m.o. for CF and REG. Due to Theorem 5
linear grammars always yield regular observations. Hence a linear grammar can-
not be universal m.o. for the linear languages. A context-free grammar on the
other hand, is likely too powerful, as the example in Section 3 shows.

6 Observing Productions

In this section we briefly (and somewhat informally) consider the case in which
the observer does not ‘see’ the sequence of sentential forms obtained by the
basic system, instead it can only ‘see’ the sequence of productions implemented
by the grammar. Such an observer is less powerful than the ones considered until
now, as it cannot distinguish the specific position to which the production was
applied.

Let us consider, for instance, the G/O system Ω = (G,O′′) defined in Section
3 and the following two derivations of G:

1 : S ⇒ A⇒ AB ⇒ ABB ⇒ CBB ⇒ CCB ⇒ CCC ⇒ tCC ⇒ ttC ⇒ ttt

2 : S ⇒ A⇒ AB ⇒ ABB ⇒ CBB ⇒ CBC ⇒ CCC ⇒ CCt⇒ tCt⇒ ttt

Both derivations are obtained with the application of the same sequence of pro-
ductions but in Ω derivation 1 renders a result while derivation 2 does not (the
derivation is rejected on the word CBC).

To avoid new definitions, let us consider here as observations of the sequences
of productions of grammarG any finite state transduction of the Szilard language
Sz(G), cf. Lemma 2.

The observation of the productions of context-free grammars is indeed less
powerful than observing the sentential forms generated by them. For the Szilard
language only the number of nonterminals in the sentential form is important,
not their ordering. This implies that the Szilard language of a context-free gram-
mar can be recognised by a partially blind multi-counter automaton, as was ob-
served in the proof of Theorem 3. Recall that these language are all semilinear
and contained in the context-sensitive languages.

For each context-free grammar G it is possible to bound the number of coun-
ters needed to recognise any of its observations by the number of nonterminals
of the grammar. Thus we have the following result, which (together with the
previous paragraph) should be contrasted to Theorem 3.

Proposition 9. For each k, there exists a context-free grammar that is univer-
sal modulo observations of productions for the family of languages accepted by
partially blind k-counter automata.
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In order to obtain all languages in RE as observations of productions, we can
use context-sensitive grammars. The proof of the following result is based on the
fact that every recursively enumerable language can be obtained from a context-
sensitive language by erasing all occurrences of a fixed symbol, used as ‘padding’
in the strings.

Proposition 10. There exists a context-sensitive grammar that is universal
m.o. of productions for RE.

7 Final Remarks

The approach proposed in this paper can be applied to get a more general theory
about computing by observation. If we have a fixed system, that evolves accord-
ing to certain rules, how much differs the (observed) evolution of the system,
when watched by ‘different’ observers? In other words, what is the importance
of the observer? Theorem 3 proves that the observer can be crucial: it is possible
to ‘observe’ every recursively enumerable language from a context-free grammar.

It would be then extremely interesting to find grammars that can characterise
(by changing the observer) families with certain specified properties. These gram-
mars should have the property that their observed evolution, independently from
the observer, always respects certain properties. For instance,is there a grammar
universal m.o. for linear languages?

Other directions of investigations are possible: for instance, what classes can
be obtained without making use of the symbol ⊥ (largely used in most of the
proofs presented here), or with G/O systems using weaker observers (considering
interesting restrictions on finite state automata).
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Abstract. A structural characterization of reflexive splicing languages
has been recently given in [1] and [5] showing surprising connections
between long standing notions in formal language theory, the syntactic
monoid and Schützenberger constant and the splicing operation.

In this paper, we provide a procedure to decide whether a regular
language is a reflexive splicing language, based on the above mentioned
characterization that is given in terms of a finite set of constants for
the language. The procedure relies on a basic result showing how to
determine, given a regular language L, a finite set of representatives for
constant classes of the syntactic monoid of L. This finite set provides the
splice sites of splicing rules generating language L. Indeed, we recall that
in [1] it is shown that a regular splicing language is reflexive iff splice
sites of the rules are constants for the language.

1 Introduction

Splicing systems theory is a formal framework to model and investigate the fun-
damental biochemical process involved in molecular cut and paste phenomenon
occurring in nature and known as splicing operation. Starting from the original
formal definition of a finite splicing system introduced by T. Head in [7] and later
reformulated by G. Paun in [10], the investigation of the splicing operation has
been carried out by using tools from formal language theory thus establishing
a link between biomolecular sciences and language theory [11]. Since a splicing
system is a formal device to generate languages, called splicing languages, a lot
of research has been devoted to characterization of classes of formal languages in
terms of the splicing operation, even showing that recursively enumerable lan-
guages can be generated by a special type of splicing systems [11]. In spite of the
vast literature on the topic, the real computational power of finite splicing sys-
tems is still partially unknown as the characterization of languages generated by
these systems is an open problem. The original concept of finite splicing system
is close to the real biological process: the splicing operation is meant to act by a
finite set of rules (modelling enzymes) on a finite set of initial strings (modelling
DNA sequences). Under this formal model, a splicing system is a generative
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mechanism of languages which have been proved to be regular languages (see [6]
and [13]).

On the other hand, recently progress have been made towards the solution of
the problem of determining the computational power of finite splicing systems in
[1] and in [9] by giving a characterization of the class of reflexive regular splicing
languages.

Formally, a splicing system is a triple S = (A, I,R), where A is a finite
alphabet, I ⊆ A∗ is the finite initial set of words and R is the finite set of rules. A
rule consists of an ordered pair of factored words, denoted as ((u1, u2)$(u3, u4)),
where u1u2, u3u4 are called splicing sites. The set R specifies a binary relation
between factored sites that can be reflexive or symmetric [3]. More precisely, a set
R of rules is reflexive iff ((u1, u2)$(u3, u4)) ∈ R implies that ((u1, u2)$(u1, u2)) ∈
R andR is symmetric iff ((u1, u2)$(u3, u4)) ∈ R implies that ((u3, u4)$(u1, u2)) ∈
R. Given x, y ∈ A+, then rule r = ((u1, u2)$(u3, u4)) applies to x, y if the
splice site u1u2 is a factor of x and the splice site u3u4 is a factor of y, that is
x = x1u1u2x2 and y = y1u3u4y2. Then the application of a splicing rule r to
x, y produces the word w = x1u1u4y2 which is said to be generated by splicing
of x, y by r.

The splicing language generated by a system S, denoted L(S) is then defined
by first giving the following notion of closure of a language L by R, cl(L,R),
which is the set of all words that result from the application of a splicing rule
r ∈ R to a pair of words in L.

Then the splicing language generated by iterated splicing is L(S) = σ∗(I),
where σ0(I) = I and for i ≥ 0, σi+1(I) = σi(I) ∪ cl(σi(I), R) while σ∗(I) =
∪i≥0σ

i(I).
In the case R is reflexive or symmetric, the splicing language L(S) is said to

be reflexive or symmetric, respectively.
In [9] an example of regular splicing language that is neither reflexive nor

symmetric is provided, and it has been proved that we can decide whether a
regular language is a reflexive splicing language. A quite different characteri-
zation of reflexive symmetric splicing languages is given in [1] and it has been
extended to the general class of reflexive regular languages in [5]. Surprisingly,
this characterization has been given by using the concept of constant introduced
by Schützenberger [14]. Indeed, the class of reflexive splicing language is shown
to be equivalent to a class of regular languages, the PA-con-split languages. Each
language L in this class is constructed from a finite set of constants for L, as L
is expressed by a finite union of constant languages and split languages, where a
split language is a language obtained by a single iteration of a splicing operation
over constant languages. Such constants will be called generating constants for
the splicing language.

In this paper, we provide a decision procedure for reflexive splicing languages
that is based on the definition of such languages as PA-con-split languages.
Thus, such procedure differs from the one proposed in [9] which is based on a
different characterization of reflexive splicing languages. We achieve this result
by investigating the set of constants of a regular language in terms of the well
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known concept of syntactic congruence. More precisely, we are able to exhibit
a notion of equivalence relation among words that leads to a refinement of con-
stant classes of the syntactic monoid into classes whose smallest representatives
directly provide the finite set of generating constants for the splicing language.
Indeed, our decision procedure is based on the idea of finding the finite set of
rules used to build the splice systems generating the reflexive language. We be-
lieve that the results achieved in the paper to compute the finite set of constants
generating a reflexive splicing language can help to give a deeper insight into the
question of characterizing all regular splicing languages.

The paper is organized as follows. In section 2 preliminaries are given: the
notion of reflexive regular splicing language and properties of reflexive rules are
introduced. Then section 3 states the basic Theorem leading to the decision
procedure detailed in the section.

2 Preliminaries

Let A be a finite alphabet. We denote the empty word over A by 1. In the
paper, when dealing with a finite state automaton A = (A,Q, δ, q0, F ) recog-
nizing a regular language L, where δ is the transition function, q0 is the ini-
tial state, F the set of final states, we assume that A is deterministic, trim,
that is each state is accessible and coaccessible, and is the minimal automa-
ton for L (see [12] for basic notions). A path π in the automaton A is a fi-
nite sequence π = (q, a1, q1)(q1, a2, q2) . . . (qn−1, an, qn) where δ(q, a1) = q1 and
δ(qi, ai+1) = qi+1 for each i = 1, . . . , n − 1. An abbreviated notation for a path
is π = (q, a1a2 · · · an, qn) and x = a1a2 . . . an is called the label of π. A path
π = (q, x, qn) with x ∈ A+, is a closed path iff q = qn. Moreover, we say that
q, q1, . . . , qn are the states crossed by the path (q, a1 · · · an, qn) and, for each
i ∈ {1, . . . , n− 1}, qi is an internal state crossed by the same path.

Given w ∈ A+, then Qw denotes the set {q ∈ Q : δ(q, w) = q′, q′ ∈ Q}.

Definition 1
(q-label) Let q ∈ Q. The word c ∈ A+ is a q-label in A (or simply a q-label,

if A is understood) if c is the label of a closed path π = (q, c, q) in A.
(Q′-label) Let Q′ ⊆ Q. The word c ∈ A+ is a label w.r.t. the set Q′ of states,

or simply Q′-label, if c is a q′-label for each state q′ ∈ Q′.
(g-label) Let y ∈ A+ be a word such that y = xcz. The word c ∈ A+ is a

general label, in short g-label w.r.t. x and z, if c is a Q′-label for Q′ = {q′ :
δ(q, x) = q′, q ∈ ∪0≤i≤|Q|Qxciz, }.

The investigation of a regular language L ⊆ A∗ has been thoroughly developed
by using the algebraic theory of finite monoids via the so-called syntactic monoid
associated with L [12]. This is the quotient monoid M(L) with respect to the
syntactic congruence ≡L, defined as follows: two words w,w′ are equivalent with
respect to the syntactic congruence if they have the same set of contexts, i.e.,

w ≡L w′ ⇔ [∀x, y ∈ A∗, xwy ∈ L ⇔ xw′y ∈ L] ⇔ C(L,w) = C(L,w′).
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Here, C(L,w) = {(x, y) ∈ A∗ × A∗ | xwy ∈ L} denotes the set of contexts
C(L,w) of w ∈ A∗ for L ⊆ A∗ and [w] = {w′ ∈ A∗ | w′ ≡L w} the class of
w modulo ≡L. Analogously, CL(L,w) = {x ∈ A∗ | xwy ∈ L} and CR(L,w) =
{y ∈ A∗ | xwy ∈ L} denote the left and right contexts of w ∈ A∗ for L ⊆ A∗.

A known result in theory of formal languages is that L is a regular language
iff the index (i.e., the number of congruence classes) of the syntactic congruence
is finite and so M(L) is a finite monoid.

Finally, we recall that a word w ∈ A∗ is a constant for a regular language L if
A∗wA∗ ∩ L �= ∅ and C(L,w) = CL(L,w) × CR(L,w) [14]. Given m a constant
for language L, then [m] is called constant class.

2.1 Reflexive Splicing Languages and Constant Languages

In this section, we recall the characterization of reflexive splicing languages (also
called Paun reflexive splicing or PA-reflexive languages in [1]) stated in [1] in
terms of constant languages that have been introduced by T. Head in [8].

Definition 2 (constant languages). Given a regular language L and a con-
stant m for L with m ∈ A+, the constant language associated with m and
L is the set L(L,m) = L ∩ A∗mA∗. Then L is called a constant language if
L = L(L,m), for some constant m.

A constant language L(L,m) associated with a constant m and L is also simply
denoted by L(m), whenever L is known from the context. Given a constant lan-
guage L(m) associated with a constant m and L, by a well known result on con-
stants, there exists a unique state qm ∈ Q such that, for each q ∈ Qm, δ(q,m) =
qm (see [1]). Then we have L(m) = CL(m,L)mCR(m,L), i.e., L(m) = L1mL2,
where L1 = CL(m,L) = L(m)(mL2)−1 and L2 = CR(m,L) = (L1m)−1L(m)
are regular languages.

As a consequence of properties of constant languages, given two constant
languages L(m), L(m′) (associated with m and m′ and a regular language L),
we can define a regular language obtained “by splicing” languages L(m), L(m′):
this is formalized in the notion of PA-split language given in [1].

Given a constant m, we pose F (m) = {(α1, α2) | α1α2 = m}.

Definition 3 (PA-split language). Let L be a regular language and let m
and m′ be two constants for L. Given α = (α1, α2) ∈ F (m) and β = (β1, β2) ∈
F (m′), the PA-split language generated by (α, β), with respect to L, is the lan-
guage:

L(α,β) = CL(L,m) α1β2 CR(L,m′).

Then s = (α, β) is called split-rule generating language L, or we say that L
is generated by rule r.

Remark 1. Observe that constant languages are special PA-split languages.
Indeed, when we choose m = m′ and α = β in Definition 3, we obtain L(α,β) =
L(m).
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Generalizing the notion of PA-split language, we can define a regular language
obtained by ”splicing” a finite set of constant languages using a finite set of
different split-rules.

Definition 4 (PA-con-split language). Let L be a regular language and let
M be a finite set of constants for L. Let Y be a finite subset of L such that, for
each m ∈M , m is not a factor of a word in Y . Let J ⊆ {(α, β) | α ∈ F (m), β ∈
F (m′),m,m′ ∈ M}. L is a PA-con-split language (associated with Y,M, J) if
and only if

L = Y ∪
⋃

m∈M

L(m) ∪
⋃

(α,β)∈J

L(α,β).

Then J is the set of split-rules generating language L, denoted as R(L).

Theorem 1 proved in [1] for symmetric reflexive splicing languages and gener-
alized in [5] to reflexive splicing languages states that the class of PA-con-split
languages is equivalent to the class of reflexive splicing languages.

Theorem 1. A regular language L ⊆ A∗ is a reflexive splicing language if and
only if L is a PA-con-split language.

Thus Theorem 1 defines a reflexive regular splicing language L in terms of a
finite union of constant languages for L and a finite union of languages obtained
by one iteration of split-rules applied to constant languages.

2.2 Properties of Split-Rules

In this subsection, we state some basic properties of split-rules, i.e. rules gener-
ating PA-split languages, that will be used in proving the main Theorem 2 of
the next section.

Actually, the notion of split-rule (see definitions 3 and 4) derives by extending
the splicing operation on words to the case of constant languages and thus some
properties of splicing rules naturally generalize to split-rules. A basic property
of a splicing rule is preserving the closure of a language L under the splicing
operation. More precisely, a language L is closed under rule r iff cl(L, r) ⊆ L.

Similarly, we say that a regular language L is closed under a split-rule s iff
each PA-split language generated from two constants languages by rule s is
contained in L.

Lemma 1. Let wi = zcix, wj = zcjx, with 0 ≤ j < i and c a g-label w.r.t. z
and x. Then wj ∈ [wi].

Proof. In the following we show that for each state q ∈ Qwi ∪Qwj it holds that
δ(q, wi) = δ(q, wj), which implies that C(L,wi) = C(L,wj), that is wj ∈ [wi],
as required. Let q ∈ Qwi ∪Qwj and q′ = δ(q, z). Now, since c is a g-label w.r.t.
z and x, it holds that c is a Q′-label, for Q′ = {q′ : δ(q, z) = q′, q ∈ Qwi ∪Qwj}.
Consequently, it holds that δ(q′, cj) = q′ = δ(q′, ci), thus proving what required.
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Lemma 2. Let s = ((α, β), (γ, δ)) be a split-rule of a PA-con-split language
L, where αβ = xcly (or γδ = xcly), c g-label w.r.t. x and y. Let β = c2c

iy,
i ≥ 1, c1c2 = c, c2 ∈ A∗, (γ = xcic1, respect.). Then s′ = ((α, β′), (γ, δ)) (or
s′ = ((α, β), (γ′, δ))) , where β′ = c2c

i−1y (γ′ = xci−1c1) is a split-rule that
generates the same language of s.

Proof. By Lemma 1, it holds that αβ′ ∈ [αβ] (γ′δ ∈ [γδ]) and thus s′ is a split-
rule since splice sites of s′ are constants. Moreover, CL(L, αβ′) = CL(L, αβ)
(CR(L, γ′δ) = CR(L, γδ), respectively). Thus it is immediate to show that L is
closed under rule s′ that generates the same language of s.

The proof of Lemma 3 follows from the fact that given a constant m for a
language, then the word zmx, for z, x ∈ A+ is also a constant for the language.

Lemma 3. Let L be a regular language closed under the split-rule s = ((α, β),
(γ, δ)). Then L is also closed under the split-rule s∗ = ((zα, βx), (uγ, δy)), for
z, u, x, y ∈ A∗.

3 A Decision Algorithm for Reflexive Splicing Languages

In this section we describe an effective procedure to decide whether a regular
language is a reflexive splicing language. This procedure is based on the definition
of reflexive splicing languages in terms of constant languages obtained by means
of the equivalence of such languages with the class of PA-con-split languages.
Indeed, we provide a decision procedure for the class of PA-con-split languages:
it relies on an algorithm to compute the set M of constants that are used to
define a PA-con-split-language L. Such constants are called generating constants
of language L.

The approach we use to compute generating constants is based on the fol-
lowing idea. We introduce an equivalence relation among words of a regular
language that is a refinement of the syntactic congruence. This relation allows
us to compute a finite set of representatives of the constant congruence classes of
the syntactic monoid: this set defines the generating constants of a PA-con-split
language, i.e. of a reflexive splicing language.

We start the section by providing some preliminary notions used to compute
generating constants of a reflexive regular splicing language.

Definition 5. Let L be a regular language. A word y ∈ A+ is called special in
A (or simply special, if A is understood) iff for some i > 0, y = y1c

iy2 where c
is a g-label w.r.t. y1 and y2.

The following Lemmas are used to show that an infinite congruence class of a
regular language contains an infinite number of special words and a finite number
of non special ones.

Lemma 4. Let L be a regular language. Let y ∈ A+ such that y = xctz, with
t > |Q||Q|+1 and z �= cw, w ∈ A∗. Then y = x′(c1)jz, where c1 = ck is a
g-label w.r.t. x′ and 1 (and w.r.t. x′ and z), where x′ = xx1, k ≤ |Q||Q| and
|x1| < |Q|+ k.
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Similarly, as for Lemma 4, we can show that the following stronger property
holds:

Lemma 5. Let L be a regular language. Let y ∈ A+ such that y = xctz, with
t > |Q||Q|+1 and z �= cw, w ∈ A∗. Then y = x′(c1)jz, where c1 = ck is a
g-label w.r.t. x′ and 1 and w.r.t. 1 and y, where x′ = xx1, k ≤ |Q||Q| and
|x1| < |Q||Q|+1.

Lemma 6. Let L be a regular language and [w] a congruence class of L. Let [w]
be an infinite class, then there exists a word c1 ∈ A+ such that y = x1c1

ix2 ∈ [w],
i > 0 and c1 is a g-label w.r.t. x1 and x2, that is y is a special word of [w].

Proof. Since [w] infinite class, then there exists a word y = x′1c
tz, with t arbi-

trarily large integer. By Lemma 4, it follows that y = x1c1
ix2, where c1 a g-label

w.r.t. x1 and x2, thus proving what required.

Lemma 7. Let [w] be a congruence class of L. Then the set of non special
elements in [w] is finite.

Moreover, we can introduce a stronger notion of equivalence, label-equivalence;
Lemma 8 states that an important property holds for label-equivalence classes
of special words in [w].

Definition 6 (label-equivalent). Let L be a regular language and A the au-
tomaton for L. Let y, x ∈ A∗ be words in L. Then y, x are label-equivalent iff
the following conditions hold:

1. y = x and y, x are not special in A, or
2. for each word c that is g-label of x w.r.t x1, x2 (or of y w.r.t. y1, y2), then

x = x1c
jx2 and y = y1c

iy2, where y1, x1 are label-equivalent, y2, x2 are label-
equivalent and c is a g-label w.r.t. y1 and y2 (or w.r.t. x1, x2, respectively).

It is easy to verify that label-equivalence is an equivalence relation on a regular
language L and that the quotient of L under label-equivalence is a refinement of
the quotient monoid M(L) with respect to the syntactic congruence (the proof
based on Lemma 6 is omitted).

Lemma 8. The number of label-equivalence classes of special words in [w] ∈
M(L) is finite.

We use representatives of the equivalence classes of this refinement to determine
constants generating a PA-con-split language reflexive, as detailed below.

Definition 7 (representative of a finite class). Let w be a word in A+ and
[w] is the finite congruence class of w. Then every word y ∈ [w] is a representa-
tive of [w].

Definition 8 (representative of an infinite class). Let w be a word in A+

and [w] the infinite congruence class of w. A word y ∈ [w] is a representative of
[w] iff
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1. y is not special in [w] or
2. y is a shortest word in a label-equivalence class in [w].

A consequence of the above Lemmas 8 and 7 is the following result.

Lemma 9. The set R[w] of representative elements in the class [w] is finite.

Lemma 10. Let L be a PA-con-split language. Then L is generated by a set
R(L) of split-rules such that for each split-rule s = ((α, β), (γ, δ)) ∈ R(L), given
the paste site αδ, then if αδ = xcy, with c a g-label w.r.t. x and 1 and c a g-label
w.r.t. 1 and y, then y = 1 or x = 1.

Proof. (sketch of the proof) Let R(L) be a set of split-rules generating language
L that minimizes the number of rules that are not of the required form. Let
s = ((α, β), (γ, δ)) be a split-rule in R(L) that is not of the form required by the
Lemma. Assume that αδ = xcy, c is a g-label w.r.t. x and 1 and c is a g-label
w.r.t. 1 and y, but y �= 1 and x �= 1. Observe that c is also a g-label w.r.t. x
and y. Clearly, being s a split-rule of L, given Z1 = CL(L, αβ), Z2 = CR(L, γδ),
it holds that language Ls = Z1xcyZ2 ⊆ L, as Ls is a PA-split language of L.
Assume that L1 = Z ′1xcyZ ′2 is a regular language contained in Ls such that
no words in L1 is contained in any other PA-split language of L generated by
means of rules in R(L) distinct from rule s. Clearly, L1 is not empty, otherwise
we contradict the minimality of set R(L) of rules. Moreover, no word in L1 is
contained in a PA-split language generated by a split rule s′ of the required form
such that L is closed under rule s′, otherwise again we contradict the assumption
on set R(L) of rules for language L. Observe that L∗1 = Z ′1xc

∗yZ ′2 ⊆ L, being c
a g-label w.r.t. x and y.

Since L is a PA-con-split language, that is by definition 4 L is a finite union of
PA-split languages (indeed, by Remark 1, even constant languages are PA-split
languages), clearly there exists a PA-split language L2 such that L2 ∩L∗1 = W ,
where we can assume that W = ∪l∈IY xc

lyX , for I an infinite set, Y ⊆ Z ′1
and X ⊆ Z ′2. Then, there exists a split-rule s2 ∈ R(L) generating L2, that is
s2 = ((α′, β′), (γ′, δ′)) with paste site α′δ′. Since W ⊆ L2, it holds that α′δ′ is a
substring or factor of all words in W .

Thus, the following cases must be considered: (1) α′δ′ is a factor of some
words in Y , or (2) α′δ′ is a factor of some words in X or (3) α′δ′ is a factor of
words in Y xcl, but not in Y , and finally (4) α′δ′ is a factor of words in clyX ,
but not in X .

Case 1. Assume that α′δ′ is a factor of some words in Y , that is Y1α
′δ′Y2 ⊆

Y . Since s2 generates language L2 including W , it follows that Y2xc
lyX ⊆

CR(L, γ′δ′), for some l > 0. But, being c a g-label w.r.t. x and y, clearly it
follows that Y2xc

∗yX ⊆ CR(L, γ′δ′). By the above fact, it follows that language
W ′ = Y1α

′δ′Y2xcyX is included in L2, whereW ′∩L1 �= ∅, that is W ′ is generated
by the split rule s2, thus contradicting the fact that L1 is only included in Ls.

Case 2. Assume that α′δ′ is a factor of some word in X , that is X = X1α
′δ′X2.

This case is similar to case 1.
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Case 3. Assume that α′δ′ is a factor of words in Y xcl, but not in Y . By using
Lemma 3, we can assume that α′δ′ = x′ct, where x′ct is a factor of Y xcl, x′ =
x′′x, where eventually x′′ = 1.

Let us first show that yX ⊆ CR(L, γ′δ′). This fact follows from the observation
that Y xclyX ⊆ L2 for l ∈ I, I an infinite set of indices and thus c∗yX ⊆
CR(L, γ′δ′), as c is a g-label w.r.t. 1 and y and hence yX ⊆ CR(L, γ′δ′).

Assume first that α′ = x′cic′, with i > 0. Then, we can build the rule s∗ =
((x′c, ci−1c′β′), (γ′δ′, 1). Clearly, rule s∗ is a split-rule since splice sites of such
rules are constants, being α′β′ and γ′δ′ constants. Let us now show that L is
closed under rule s∗. Indeed, assume A = CL(L, α′β′) and B = CR(L, γ′δ′).
Since c is a g-label w.r.t. x and 1 and by construction x′ = x′′x, it is immediate
to verify that c is also a g-label for x′ and 1. Since Ax′ctB = L2 ⊆ L, as c is a
g-label w.r.t. x′ and 1, it holds that Ax′c∗B ⊆ L. It follows that the language
Ax′cB generated by s∗ is included in L. Observe that since yX ⊆ B and Y1 ⊆ A,
language Y1x

′cyX ⊆ L(s∗), where Y1x
′cyX ⊆ Y xcyX ⊆ L1 and L(s∗) generated

by the split-rule s∗ which is of the required form. Consequently, we obtain a
contradiction with the previous assumptions on L1 (indeed we assumed that L1
is not generated by split-rules of the required form and for which L is closed).

Now, assume that α′ is a prefix of x′c′. Along the same lines of the above
proof, we obtain a contradiction.

Case 4. Assume that α′δ′ is a factor of words in clyX , but not in X . This case
is proved similarly as case 3 (the proof is omitted because of space constraints).

Finally, since all cases 1-4 lead to a contradiction, it must be that αδ is of the
required form.

The set of constants generating a PA-con-split language is defined by the notion
of set RQ[m] of Q-representatives of a constant class [m]:

RQ[m] = {xcly : xcy ∈ R[m], c is a g-label w.r.t. x and y where, l ≤ 2|Q||Q|+1}.

Notice that R[m] ⊆ RQ[m] and RQ[m] is finite.

Lemma 11. Let L be a PA-con-split language. Then there exists a set R(L) of
split-rules generating L such for each split-rule s = ((α, β), (γ, δ)) ∈ R(L)) it
holds that αβ ∈ RQ[αβ] and γδ ∈ RQ[γδ].

Proof. Assume that M is a set of constants generating language L such that the
sum of lengths of words in M is minimum. Let s = ((α, β), (γ, δ)) be a split-rule
of language L. Then, given m = αβ and m′ = γδ, it holds that m,m′ ∈M .

Clearly, by definition 7, if [m] is finite then m ∈ R[m] and thus the Lemma
holds. Hence, let [m] be an infinite class. Assume to the contrary that αβ �∈
RQ[m]. By Lemma 6, it must be that αβ is special i.e. there exists a g-label
c1 w.r.t. x and y such that xc1y ∈ R[m], but m = xc1

ly, where l > 2|Q||Q|+1

as m �∈ RQ[m]. Assume first that α = x′, where x′ is a prefix of x. Given rule
s′ = ((α, β′), (γ, δ)), where β′ = x′′c1l−1y, if β = x′′c1ly, then it holds that
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language L is closed under the split-rule s′ that generates the same language as
s. Indeed, αβ′ ∈ [m], by Lemma 1.

Now, assume that α = x(c1)ic′, with c′c′′ = c1, c′c′′ ∈ A∗. Then we must
consider two cases:

(1) β = c′′(c1)jy, with j ≥ 1, or
(2) β = c′′(c1)jy, with j < 1.

Assume first that condition (1) holds. In this case, since c1 is a g-label w.r.t.
x and y, Lemma 2 applies and thus language L is closed under the split-rule rule
s′ = ((α, β′), (γ, δ)), where β′ = c′′(c1)j−1y and s′ generates the same PA-split
language of s. But |αβ| > |αβ′|, thus we contradict the minimality of set M .

Assume now that condition (2) holds. In this case, since β = c′′y, with c′c′′ =
c1, c′′ ∈ A∗, it holds that α = x(c1)l′c′, where l′ ≥ 2|Q||Q|+1.

Then, by applying Lemma 5 to αδ, then αδ = x′′((c1)k)iz, where (c1)k g-label
w.r.t. x′′ and 1 and w.r.t. 1 and z, x′′ = xx′ and |x′| < k + |Q|, k < |Q||Q|.

Now, αδ verifies the hypothesis of Lemma 10. Thus, αδ = (c1)kz or αδ =
x′′(c1)k. Thus it follows that β = c′′(c1)jy, with j ≥ 1, c′′, c′ ∈ A∗, y ∈ A∗, a
contradiction with condition (2).

Since both cases (1) and (2) lead to a contradiction, it must be that m ∈
RQ[m], as required.

Now, let m′ = γδ and assume to the contrary that m′ �∈ RQ[m]. Assume to
the contrary that γδ �∈ RQ[m′]. By Lemma 6, it must be that γδ is special i.e.
there exists a g-label c w.r.t. x and y such that xcy ∈ R[m′], but m′ = xcly,
where l > 2|Q||Q|+1 as m′ �∈ RQ[m′].

Assume that δ is a suffix y′′ of y, with y = y′y′′. Given rule s′ = ((α, β), (γ′, δ)),
where γ′ = xcl−1y′, if γ = xcly′, then it holds that language L is closed under
the split-rule s′ that generates the same language as s. Indeed, γ′δ ∈ [m], by
Lemma 1.

Now, assume that δ = c′′(c)iy, with c′c′′ = c and c′, c′′ ∈ A∗. Thus, we must
consider two cases:

(1) γ = x(c)jc′, with j ≥ 1, or
(2) γ = x(c)jc′, with j < 1.

Assume first that condition (1) holds. In this case, since c is a g-label w.r.t. x
and y, Lemma 2 applies and thus language L is closed under the split-rule rule
s′ = ((α, β), (γ′, δ)), where γ′ = x(c)j−1c′′ and s′ generates the same PA-split
language of s. But |γδ| > |γδ′|, thus we contradict the minimality of set M .

Assume now that condition (2) holds. In this case, since γ = xc′, with c′c′′ = c,
c′′ ∈ A∗, it holds that δ = c′′(c)l′y, where l′ ≥ 2|Q||Q|+1.

Then, by applying Lemma 5 to αδ, then αδ = x′′((c)k)iy, where (c)k g-label
w.r.t. x′′ and 1 and w.r.t. 1 and y, x′′ = xx′ and |x′| < k + |Q|, k < |Q||Q|.
Now, αδ verifies the hypothesis of Lemma 10. Thus, αδ = (c)ky. It follows that
γ = x(c)jc′, with j ≥ 1, c′ ∈ A∗, x ∈ A∗, a contradiction with condition (2).

Since both cases (1) and (2) lead to a contradiction, it must be that m′ ∈
RQ[m′], as required.
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The main Theorem of the section follows.

Theorem 2. Let L be a reflexive regular splicing language. Then language L is
generated by a splicing system with constants M that are Q-representatives of
each class [m],m ∈M .

Proof. Assume that M is a set of constants generating language L such that
the sum of the lengths of constants in M is minimum. Since L is a reflexive
language, by Theorem 1, and remark 1 then L is PA-con-split-language, that is
L is the union of languages Y and L′, where Y is finite, L′ is the finite union of
of PA-split languages. Thus by applying Lemma 11 the Theorem follows.

3.1 The Algorithm

In this subsection, we describe the main steps of the decision algorithm for
reflexive splicing languages based on Theorem 2 proved in the previous section.

The decision algorithm is based on a fundamental decision result proved in [1]:
we can decide whether a language L is closed under a set R of rules, that is

cl(L,R) ⊆ L.
Given a regular language L, the procedure to test whether L is a reflexive

splicing language consists of the following basic steps:

1. Given the syntactic monoid, then let CM = {[m] : [m] ∈ M(L),m is a
constant for L} and let M = ∪[m]∈CM

RQ[m] be the finite set of all Q-
representatives of constant classes in CM as defined in Definitions 7 and 8.

2. Let R(M) = {((α, β), (γ, δ)) ∈ F (m) × F (m′),m,m′ ∈ M} be the set of
candidate split-rules built from the set M of constants.
Then, find the subset J of R(M) consisting of the split-rules under which
the language L is closed (using the result stated in [1]).

3. Finally, verify whether L is a PA-con-split language (associated with Y,
M, J), that is

L = Y ∪
⋃

m∈M
L(m) ∪

⋃
(α,β)∈J

L(α,β),

where Y is a finite set of words such that each word m ∈ M is not a factor
of Y .

Theorem 2 can be applied to prove the correctness of the above steps to
verify that a regular language L is a PA-con-split language, i.e. a reflexive
splicing language by Theorem 1.

Acknowledgements. The authors are grateful to C. De Felice and R. Zizza for
their helpful suggestions on the problem faced in the paper.
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adjoining contexts using a selection procedure, contextual grammars were dis-
covered to have some limitations. Yet, as the term contextual seems to be very
appropriate to model linguistic aspects, soon a large variety of such grammars
appeared. We mention here only several types, like the internal case, total con-
textual, grammars with choices respectively, etc. For more details, the reader is
referred to [1]. In the basic case of a contextual grammar, a context is a pair (u, v)
of strings that are to be inserted into axioms or derived strings. More explicitly,
a string x directly derives a string y using the context (u, v) if y = x1ux2vx3 for
some decomposition x = x1x2x3.

Despite the large variety of contextual grammars, it is difficult to put together
strings and structures, a very important intrinsic quality of natural languages.
There were several proposals to introduce bracketed contextual grammars [2, 3, 4]
in order to enhance the words in the generated languages with a tree structure,
or to add a dependency relation to contexts, axioms and to generated words.
However, we believe that hypergraphs provide a more general structure that
could enhance a textual string representation, and therefore we propose a new
approach to the generation of hypergraph languages.

In this paper (Section 3), we introduce the concept of contextual hypergraph
grammars as a generalization of contextual grammars by considering hyper-
graphs instead of strings as underlying data structures. The insertion operation
is taken over by a merging operation. Two hypergraphs, each with a sequence
of external vertices of the same length, are merged by identifying corresponding
external vertices whereas all other items are kept disjoint. We can see the exter-
nal vertices as gluing points, each external node “waiting for” another external
node from another hypergraph in order to become an internal node.

A contextual hypergraph grammar is given by finite sets of axioms and con-
texts both being hypergraphs. Starting with an axiom, derivations are composed
of iterated merging with contexts. While the contexts are equipped with exter-
nal vertices by definition, axioms and intermediately derived hypergraphs do
not have external vertices of their own. Therefore, before they can be merged
with some context, some preparation is necessary that equips them with external
vertices in a suitable way. For this purpose, a contextual hypergraph grammar
provides an operator Θ that depends on the contexts and associates each hyper-
graph without external vertices with a set of hypergraphs each with a proper
sequence of external vertices. The idea is that ΘC(H) for some context C and
some hypergraphH yields variants ofH that can be merged with C in particular.
Such a merging defines a derivation step if H is an axiom or some already de-
rived hypergraph. In this way, the Θ-operator plays on the level of hypergraphs
the role of decomposition on the level of strings.

As shown in Section 4, hyperedge replacement grammars in the sense of [5, 6]
can be simulated as contextual hypergraph grammars using a suitable kind of
variants which are constructed by the removal of single hyperedges. By means
of a more sophisticated kind of variants that are constructed by the removal
of homomorphic images of hypergraphs up to a certain set of vertices, one can
also translate arbitrary hypergraph grammars in the double-pushout approach
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(see, e.g., [7]) into contextual hypergraph grammars. This proves in particular
that all recursively enumerable sets of hypergraphs can be generated by contex-
tual hypergraph grammars. In this sense, our new approach is computationally
complete.

2 Preliminaries

In this section, we recall all the notions and notations of hypergraphs as needed
in this paper.

We denote by N the set of natural numbers. For n ∈ N, [n] represents the
finite set {1, . . . , n}, with [0] = ∅.

For a given finite set A, |A| denotes the number of elements in A. We use
the notation P(A) for the powerset of A, i.e. the set of all subsets of A. A
function w : [n] → A is called a string over A, also denoted by w = a1 . . . an

with w(i) = ai for i ∈ [n]. The set A is also called an alphabet and strings over
A are words. For a given string w = a1 . . . an, |w| = n is the length of the string
and w(i) = ai denotes the i-th symbol of the string. We denote by λ the empty
string with |λ| = 0. The set of all strings over A is denoted by A∗.

For a given function f : A → B, we may define the canonical extension to
strings as the function f∗ : A∗ → B∗ defined as f∗(λ) = λ, and f∗(aw) =
f(a)f∗(w) for a ∈ A and w ∈ A∗. By convention if A = ∅, then ∅∗ = {λ} and
the canonical extension to strings is also defined.

A relation R ⊆ A ×A is called an equivalence relation if R is reflexive, sym-
metric and transitive. For x ∈ A, the set 〈x〉 = {z ∈ A | xRz} of all elements
related to x by R is called the equivalence class of x. The set of all equivalence
classes A/R = {〈x〉 | x ∈ A} is the quotient set of A by R.

Let Σ be an alphabet. A hypergraph over Σ is a system H = (V,E, att,
lab, ext) where V is a set of vertices, E is a set of hyperedges, att : E → V ∗,
called the attachment function, is a mapping that assigns a sequence of vertices
to every hyperedge, lab : E → Σ is a mapping that assigns a label to every
hyperedge, and ext ∈ V ∗ is a sequence of external vertices of H . For notational
convenience, the components of a hypergraph H will often be written with index
H , i.e. H = (VH , EH , attH , labH , extH).

The length |extH | is called the type of H , denoted also by type(H). The class
of all hypergraphs of type n ∈ N over Σ is denoted by HΣ,n. The class of type-0
hypergraphs HΣ,0 is also denoted by HΣ .

Analogously, for e ∈ EH , the length |attH(e)| is called the type of e. A hy-
pergraph with all hyperedges of type 2 is an ordinary directed graph. To denote
this special case, we use GΣ and GΣ,n instead of HΣ and HΣ,n respectively. If
the alphabet is not important we use simply the notations H or G. Sometimes,
to represent unlabelled hypergraphs we use the alphabet Σ = {∗}.

A hypergraph H ∈ HΣ,n is a subhypergraph of a hypergraph H ∈ HΣ,n,
denoted by H ⊆ H, if VH ⊆ VH , EH ⊆ EH , attH(e) = attH(e) and labH(e) =
labH(e) for all e ∈ EH , and extH = extH .

Given two hypergraphs H,H ′ ∈ HΣ,n, a hypergraph morphism f : H → H ′ is
a pair f = (fV , fE) of functions fV : VH → VH′ and fE : EH → EH′ such that
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we have labH(e) = labH′(fE(e)) and f∗V (attH(e)) = attH′(fE(e)) for all e ∈ EH ,
and f∗V (extH) = extH′ . The morphism is injective if the functions fV , fE are
injective.

The following two operations on hypergraphs, namely disjoint union and
merge, are similar to the hypergraph operations studied by Courcelle [8].

For two hypergraphs H,H we define the disjoint union denoted as H + H
that yields a hypergraph (VH 2 VH , EH 2 EH , att, lab, ext), where 2 denotes
the disjoint union of sets,

att(e) =
{
attH(e) if e ∈ EH ,
attH(e) otherwise, lab(e) =

{
labH(e) if e ∈ EH ,
labH(e) otherwise, and

ext(i) =
{
extH(i) if i ≤ |extH |,
extH(i− |extH |) otherwise for i ∈ [|extH |+ |extH |].

The disjoint union of hypergraphs is associative. It is commutative only if one
component is of type 0, since the external sequence is the concatenation of the
external sequences of the component hypergraphs.

For two hypergraphsH,H ∈ HΣ,n we denote by EXT the equivalence relation
on (VH 2 VH) × (VH 2 VH) induced by extH(i) = extH(i) for all i ∈ [n]. Then
the merge operation H ◦H of H and H is defined by

H ◦H = ((VH 2 VH)/EXT,EH 2 EH , att, lab, λ) ∈ HΣ

where att(e) =
{
attH(e) if e ∈ EH ,
attH(e) otherwise, and lab(e) =

{
labH(e) if e ∈ EH ,
labH(e) otherwise.

1
2

…

n

merge H H H

1
2

…

n

H

Fig. 1. The merging of H and H

Figure 1 illustrates the merge operation. It should be noted that the merging
is commutative, but not associative.

3 Contextual Hypergraph Grammars

In this section we introduce the new concept of contextual hypergraph gram-
mars and their generated hypergraph languages. Besides a label alphabet and
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a subalphabet of terminal labels, a contextual hypergraph grammar consists of
two finite sets of hypergraphs: a set of axioms and a set of contexts, as well as an
operator that specifies how each context can be used to derive hypergraphs from
hypergraphs. Moreover, various examples are given to illustrate the derivation
mechanism of contextual hypergraph grammars.

Definition 1 (Contextual Hypergraph Grammar). A contextual hyper-
graph grammar is a system CHG = (Σ, T,A, C, Θ) where Σ is a finite set of
labels, T ⊆ Σ is a set of terminal labels, A ⊂ HΣ is a finite set of axioms, C
is a finite set of hypergraphs of various types called hypergraph contexts, and
Θ = (ΘC)C∈C is a family of mappings where every ΘC : HΣ → P(HΣ,type(C)) is
a selection function for every hypergraph context C ∈ C. The elements of ΘC(H)
are called variants of the hypergraph H.

A derivation relation is defined on HΣ×HΣ and the hypergraph G directly de-
rives the hypergraph H, denoted by G⇒ H, if there are C ∈ C and G′ ∈ ΘC(G)
such that H = C ◦ G′, i.e. H is a merging of a variant of G with some hy-
pergraph context. We denote by ⇒∗ the reflexive and transitive closure of the
derivation relation ⇒. The language generated by a contextual hypergraph gram-
mar CHG = (Σ, T , A, C, Θ) consists of all terminal hypergraphs derived from
some axiom, i.e. L(CHG) = {H ∈ HT | Z ⇒∗ H for Z ∈ A}.
In this paper, we assume that the function Θ is computable, so that the gener-
ated languages are recursively enumerable. It should be noted that we assume
terminal labels in contrast to the usual definition of centextual grammars in the
string case. But this allows us more flexibility from the very beginning. The
task of the Θ function is to provide variants of a type-0 hypergraph that can be
merged with a chosen context. While in all following examples the originals and
their variants are closely related, the very general definition of Θ admits also
much more sophisticated constructions.

Example 1 (All Graphs). As a first example, we define a contextual hypergraph
grammar that generates the set of all directed (unlabeled) graphs:

CHGall = ({∗}, {∗}, {empty}, {V ertex,Edge}, Θall)

where empty denotes the empty graph and V ertex, Edge and Θall are given as
follows.

1. V ertex is the type-0 graph with a single vertex without edges.
2. Edge is the graph with two vertices and a connecting edge whose attachment

defines also the sequence of external vertices.
3. The only V ertex-variant of a hypergraph is the hypergraph itself, that is

Θall,V ertex(H) = {H}.
4. The Edge-variants of a type-0 hypergraph are given by all choices of a se-

quence of two distinct vertices, i.e. Θall,Edge(H) = {(H, v1v2) | v1, v2 ∈
VH , v1 �= v2} where (H, v1v2) = (VH , EH , attH , labH , v1v2).

Given a hypergraphH (of type 0), V ertex◦H adds a single vertex disjointly toH ,
and Edge ◦ (H, v1v2) adds a new edge to H connecting v1 and v2 for each choice
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of v1v2. If a graph G has n vertices, VG can be generated by V ertexn ◦ empty
up to the naming of vertices. Then every edge of G can be added successively,
connecting the proper vertices by means of the context Edge. In other words,
CHGall generates the set of all graphs.

Example 2 (Eulerian Graphs). Our second example is a contextual hypergraph
grammar that generates the sets of all Eulerian graphs (where a graph is Eulerian
if it has a cycle passing each edge exactly once):

CHGEuler = ({∗}, {∗}, {2Cycle0}, {V ertex, 2Cycle, 2Path}, ΘEuler)

where V ertex is the same graph as in the previous example, 2Cycle0 is the type-
0 graph consisting of a cycle of length 2, 2Cycle is the same graph with its two
vertices as external vertices, and 2Path is a graph with three vertices, say v1,
v2, and v3, two edges, one from v1 to v2 and the other from v2 to v3, and v1v2v3
as sequence of external vertices. ΘEuler is defined as follows.

1. ΘEuler,V ertex = Θall,V ertex,
2. ΘEuler,2Cycle(H) = {(H, v1v2) ∈ Θall,Edge | v1 or v2 not isolated},
3. ΘEuler,2Path(H) = {(H − e, v1v2v3) | e ∈ EH , v1, v2, v3 pairwise distinct}

where H−e is the subhypergraph of H obtained by removing the hyperedge
e, and (H−e, v1v2v3) is H−e with v1v2v3 instead of λ as sequence of external
vertices.

It is not difficult to see that the merging of V ertex, 2Cycle or 2Path with
an admitted variant of the axiom or a derived graph preserves connectivity up
to isolated vertices as well as the property that indegree equals outdegree for
each vertex. Conversely, every graph with these properties can be obtained from
2Cycle0 by a sequence of such mergings. Altogether, the grammar generates
the language of Eulerian graphs according to the well-known characterization of
Eulerian graphs by these two properties.

In a similar manner, we can generate the sets of all Hamiltonian graphs or all
non-Hamiltonian graphs.

Example 3 (Square Grids Graphs).

CHGSG = ({a, c,N}, {a, c}, {E,F}, {Stop, Cont, Corner, T ile}, ΘSG)

In Figure 2 we see the grammar’s hypergraphs. ΘSG is defined as follows.

1. ΘSG,Stop(H) = {(VH , EH \ {e1}, attH |EH\{e1}, labH |EH\{e1}, v1v2v4) | (v1,
v2, v3, v4 ∈ VH , pairwise distinct nodes), e1 ∈ EH , condStop(H, v1, v2, v3,
v4, e1)}; condStop(H, v1, v2, v3, v4, e1) is a boolean function that is true when
the following conditions hold:
– attH(e1) = v2v1, labH(e1) = N ,
– ∃ edges e2, e3 ∈ EH , attH(e2) = v2v3, labH(e2) = a, attH(e3) = v3v4,
labH(e3) = a,
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Fig. 3. ΘSG,Stop returns nonempty sets for these hypergraphs

– |{e ∈ H | attH(e) ∈ V ∗Hv3V ∗H , labH(e) = a}| = 4,
– |{e ∈ H | attH(e) ∈ V ∗Hv4V ∗H}| = 2.

In order to understand the conditions checked by ΘSG,Stop we present in
Figure 3 two hypergraphs containing vertices and edges such that condStop
is true.

2. ΘSG,Cont = ΘSG,Stop.
3. ΘSG,Corner(H) = {(VH , EH \ {e1, e2}, attH |EH\{e1,e2}, labH |EH\{e1,e2},

v1v2v3) | (v1, v2, v3 ∈ VH pairwise distinct vertices), (e1, e2 ∈ EH , distinct
edges), attH(e1) = v2v1, labH(e1) = N , attH(e2) = v2v3, labH(e2) = c}.

4. ΘSG,Tile(H) = {(VH , EH \{e1}, attH |EH\{e1}, labH |EH\{e1}, v1v2v4) | (v1, v2,
v3, v4 ∈ VH pairwise distinct nodes), e1 ∈ EH ,
NOT condStop(H, v1, v2, v3, v4, e1), attH(e1) = v2v1, labH(e1) = N , ∃ an
edge e2 ∈ EH , attH(e2) = v2v3, labH(e2) = a}.

It is not difficult to see the existence of only one edge labelled by N to all
derived hypergraphs except the ones from the language as an invariant for all
the derivations. Also all nonempty Θ sets contain hypergraphs with the external
nodes in the neighborhood of the edge labelled by N .
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Our example actually generates only odd sizes square grids; to get all even
square grids we should add the corresponding axioms.

The graph languages generated by Eulerian, Hamiltonian, Square Grid Gram-
mars are particularly interesting because they cannot be generated by any con-
text-free (hyper)graph grammar (c.f., e.g., [5, 6] where the generative power of
hyperedge replacement grammars is discussed).

4 Simulation Results

In this section, we show that contextual hypergraph grammars generalize total
contextual grammars on strings. Moreover, contextual hypergraph grammars can
simulate in a natural way two well-known types of graph grammars: hyperedge
replacement grammars [5, 6], which provide a context-free generation mechanism
for (hyper)graph sets, and hypergraph grammars in the double-pushout approach
[7], which is one of the most frequently used graph transformation frameworks.

4.1 Contextual String-Hypergraph Grammars

The notion of contextual grammars evolved starting from the initial paper pro-
posed by Solomon Marcus up to the current definition [1].

Definition 2 (Total Contextual Grammars). A (string) total contextual
grammar is a construct TCG = (Σ,A,C, ϕ), where Σ is an alphabet, A is a
finite subset of Σ∗, C is a finite subset of Σ∗×Σ∗ and ϕ : Σ∗×Σ∗×Σ∗ → P(C).
The elements of A are called axioms, the elements of C are called contexts, and
ϕ is a choice function.

A derivation relation ⇒
TC

is defined as x ⇒
TC

y if and only if x = x1x2x3,

y = x1ux2vx3, for x1, x2, x3 ∈ Σ∗, and (u, v) ∈ C, s.t. (u, v) ∈ ϕ(x1, x2, x3).
The transitive closure of the relation ⇒

TC
is denoted by ∗⇒

TC
.

The generated language is L(TCG) = {w ∈ Σ∗ | a ∗⇒
TC

w, for a ∈ A}.

In order to relate string contextual grammars with contextual hypergraph gram-
mars, we need the notion of a string hypergraph −→s for a string s so that a string
language L can be considered as a hypergraph language

−→
L .

We will use the “·” operator to denote the concatenation of numeric symbols.

Definition 3 (string-hypergraph). Let us consider an alphabet Σ and a finite
nonempty string s = a1 . . . an over Σ.

A string-hypergraph context denoted by s ∈ HΣ,n is the hypergraph ([n], {eci |
i ∈ [n]}, (att(eci) = i, for all i ∈ [n]), (lab(eci) = ai, for all i ∈ [n]), 1 · . . . · n)
with all its vertices as external nodes; and let λ = empty.

A string-hypergraph denoted by −→s ∈ HΣ is the hypergraph ([n+ 1], {eci | i ∈
[n]}∪{esi | i ∈ [n]}, (att(eci) = i, att(esi) = i ·(i+1), for all i ∈ [n]), (lab(eci) =
ai, lab(esi) = ∗, for all i ∈ [n])) having no external nodes but some sequential
edges in order to reconstruct a string form a string-hypergraph.

−→
λ = V ertex.

For a given string language L we denote by
−→
L = {−→s | s ∈ L}.
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Fig. 4. A string-hypergraph context and a string-hypergraph

We can see a representation of a string-hypergraph context and a string-hypergraph
in Figure 4, the rectangles are the hyperedges with their names and labels, while
the numbers next to them represent the attachments to nodes.

A total contextual (string) grammar TCG = (Σ,Ax,Ctx, ϕ) can be trans-
formed into a contextual hypergraph grammar CHG(TCG) = (Σ, Σ, A, C,
ΘTCG) in the following way. A = {−→a | a ∈ Ax} that is the axioms are trans-
formed into string-hypergraphs, C = {u+w | (u,w) ∈ Ctx}, that is each context
is transformed into the disjoint union of the left and right string-hypergraph
contexts. The function ΘTCG,u+w(−−→xyz) takes a string-hypergraph and prepares
it for the merging operation with a string-hypergraph context. Figure 5 shows
the Θ-preparation, where the ec hyperedges took labels from the original string.
ΘTCG,u+w(−−→xyz) = {([|xuywz| + 1], EC ∪ ES, att, lab, (|x| + 1) · . . . · |xu| ·

(|xuy|+1) · . . . · |xuyw|) | for (u,w) ∈ Ctx, x, y, z ∈ Σ∗, s.t.(u,w) ∈ ϕ(x, y, z)},
where

– ES = {esi | i ∈ [|xuywz|]},
– EC = {eci | i ∈ [|xyz|]},
– att(esi) = i · (i+ 1), lab(esi) = ∗, for i in [|xuywz|],
– att(eci) = i for 1 ≤ i ≤ |x|, att(eci) = i + |u| for |x| + 1 ≤ i ≤ |xy|,
att(eci) = i+ |uw| for |xy|+ 1 ≤ i ≤ |xyz|, lab(eci) = xyz(i) for i in [|xyz|].

Using this construction, it is easy to prove the following theorem.

Theorem 1. Let TCG be a total contextual (string) grammar and CHG(TCG)
the corresponding contextual hypergraph grammar. Then they generate the same
string-hypergraph language, i.e.

−−−−−→
L(TCG) = L(CHG(TCG)).

4.2 Hyperedge Replacement Grammars

A hyperedge replacement grammar is a systemHRG = (N,T, P, S) whereN ⊆ Σ
is a set of nonterminal labels, T ⊆ Σ is a set of terminal labels, P is a set of

…
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Fig. 5. An object returned by the function ΘTCG
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rules having the form (A ::= R) with A ∈ N and R ∈ HΣ,n for some n ∈ N, and
S ∈ N is a start symbol.

For technical simplicity, we assume that the nonterminals are typed, meaning
that there is a mapping type : N → N subject to the following conditions:

i) type(A) = type(R) for each (A ::= R) ∈ P ,
ii) type(e) = type(labR(e)) for each e ∈ ER with R being the right-hand side

of some rule (A ::= R) ∈ P .

Let H ∈ HΣ and e ∈ EH with type(e) = type(labH(e)). Then H derives
directly H through (labH(e) ::= R) ∈ P if H = (H − e) ◦ R. Note that the
merging of (H − e) and R is always defined because the types of e and R are
equal and e transfers its type to (H − e). Here H − e denotes the removal of e
from H yielding the hypergraph H − e = (VH , EH \ {e}, att, lab, attH(e)) where
att and lab are the restrictions of attH and labH , respectively, to the set EH \{e}.

A direct derivation of H from H is denoted by H → H and the reflexive and
transitive closure of this relation by →∗.

The language generated by a hyperedge replacement grammar HGR = (N ,
T , P , S) consists of all terminal hypergraphs derivable from the start han-
dle, i.e. L(HRG) = {H ∈ HT | S◦ →∗ H}. Here, a handle of a nonterminal
A ∈ N denotes the hypergraph A◦ = ([type(A)], {e0}, att, lab, 1 . . . type(A)) with
att(e0) = 1 . . . type(A) and lab(e0) = A.

A hyperedge replacement grammarHRG = (N,T, P, S) can be translated into
a contextual hypergraph grammar CHG(HRG) = (N ∪ T, T, {S◦}, {R | (A ::=
R) ∈ P}, ΘHRG) with ΘHRG,R(H) = {H − e | e ∈ EH , (labH(e) ::= R) ∈ P}
such that CHG(HRG) generates the same language as HRG.

Theorem 2. Let HRG be a hyperedge replacement grammar and CHG(HRG)
the corresponding contextual hypergraph grammar. Then HRG and CHG(HRG)
generate the same language, i.e. L(HRG) = L(CHG(HRG)).

4.3 Hypergraph Grammars

In this subsection, we introduce hypergraph grammars in the so-called double-
pushout approach. They generalize hyperedge replacement grammars in that
a direct derivation does not replace a hyperedge only, but a subgraph (up to
external nodes) which is a matching of a left-hand side of a rule.

A hypergraph grammar is a system HG = (T, P, Z) where T ⊆ Σ is a set
of terminal labels, P is a finite set of rules of the form L ⊇ K ⊆ R with
L,K,R ∈ HΣ , and Z ∈ HΣ is an axiom.

Without loss of generality, we may assume that the gluing hypergraph K of
each rule L ⊇ K ⊆ R is totally disconnected, i.e. EK = ∅, and VK = [n] for
some n ∈ N. Therefore, the rule can be represented by the pair (L, 1 . . . n) ::=
(R, 1 . . . n).

A hypergraphH ∈ HΣ directly derives a hypergraphH ∈ HΣ through the ap-
plication of the rule (L, 1 . . . n) ::= (R, 1 . . . n) if there is a hypergraph morphism
g : L→ H such that
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(1) attH(e) ∈ (VH \ (gV (VL) \ gV ([n])))∗ for all e ∈ EH \ gE(EL),
(2) gE is injective, and gV (v) = gV (v′) for v �= v′ implies v, v′ ∈ [n],
(3) X = (VH \(gV (VL)\gV ([n]))), EH \gE(EL), attX , labX, gV (1) . . . gV (n)) with

attX(e) = attH(e) and labX(e) = labH(e) for all e ∈ EH \ gE(EL), and
(4) H = X ◦ (R, 1 . . . n).

A direct derivation from H to H through the rule r is denoted by H →
P
H if

r ∈ P . The reflexive and transitive closure of the relation →
P

is denoted by ∗→
P

.

Let HG = (T, P, Z) be a hypergraph grammar. Then the generated language
L(HG) contains all terminal hypergraphs derivable from the axiom through
given rules i.e. L(HG) = {H ∈ HT | Z ∗→

P
H}.

It should be noted that the hypergraphs H and H are pushouts of the in-
termediate hypergraph X and the left-hand side L respectively the right-hand
side R using the gluing hypergraph K. H and H remain invariant whether K
is totally disconnect or has got hyperedges. In the double − pushout approach,
the hypergraphs X and H are usually constructed as pushout complement and
pushout respectively. We prefer the given version because it is easier related to
contextual hypergraph grammars.

A hypergraph grammar HG = (T, P, Z) can be transformed into a contex-
tual hypergraph grammar CHG(HG) = (Σ, T, {Z}, CHG, ΘHG) where CHG =
{(R, 1 . . . n) | ((L, 1 . . . n) ::= (R, 1 . . . n)) ∈ P} and ΘHG,(R,1...n)(H) contains all
hypergraphs X that are constructed as in Point 3 above for all rules
((L, 1 . . . n) ::= (R, 1 . . . n)) ∈ P and hypergraph morphisms g : L → H that
fulfil Points 1 and 2.

We get H ⇒ H with H = (R, 1 . . . n) ◦ X for some (R, 1 . . . n) ∈ CHG and
X ∈ ΘHG,(R,1...n)(H) if and only if H →

P
H. This proves the following theorem.

Theorem 3. Let HG be a hypergraph grammar and CHG(HG) the correspond-
ing contextual hypergraph grammar. Then HG and CHG(HG) generate the
same language, i.e. L(HG) = L(CHG(HG)).

It is known that hypergraph grammars in the double-pushout approach generate
all recursively enumerable hypergraph languages. Using the theorem, this holds
for our new concept of contextual hypergraph grammars, too.

5 Conclusion

We have introduced a new type of hypergraph grammars, namely contextual
hypergraph grammars, that generalize in a natural way the contextual string
grammars. Using the power of our formalism, we are able to simulate already
existing devices for the generation of hypergraph languages, like hyperedge re-
placement grammars and hypergraph grammars in the double-pushout approach.
Our approach is useful to model operations with annotated documents even with
multiple structures including syntactic-semantic structures, dependencies, mul-
tilingual information, etc. Further investigations are needed to study possible
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hierarchies within the generated languages. Also, the type and complexity of the
Θ function deserve special attention. Possible classes to be studied are arbitrary
functions, NP , or P . Furthermore, types of specifying a matching condition may
be distinguished, such as global checking, local checking, without labels, without
edges limitation, with a maximum number of connections, etc.
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Abstract. In this paper, we present a few results which are of interest
for the potential application of contextual grammars to natural lan-
guages. We introduce two new classes of internal contextual grammars,
called end-marked maximal depth-first and inner end-marked maximal
depth-first contextual grammars. We analyze the new variants with
respect to the basic properties of the mildly context sensitive languages.
With this aim, we show that (i) the three basic non-context-free con-
structions in natural languages can be realized upon using these variants,
(ii) the membership problem for these family of languages is decidable
in polynomial time algorithm, (iii) the family of languages generated
by end-marked maximal depth-first grammars contains non-semilinear
languages. We also solve the following open problem addressed in
[3] and [1]: whether the families of languages generated by maximal
depth-first and maximal local contextual grammars are semilinear or not?

Keywords: Internal contextual grammars, non-context-free languages,
membership problem, semilinearity, mildly context sensitiveness.

1 Introduction

Contextual grammars produce languages starting from a finite set of axioms and
adjoining contexts, iteratively, according to the selector present in the current
sentential form. As introduced in [4], adjoining the contexts are done at the ends
of the strings and is called external contextual grammars. Internal contextual
grammars were introduced by Păun and Nguyen in 1980 [8], where the contexts
are adjoined to the selector strings appeared as substrings of the derived string.
Later on, many variants of contextual grammars were introduced consequently
by imposing restriction in choosing the selectors, viz., maximal [5], depth-first
[6] contextual grammars. The basic idea in restricting the selectors and the
derivation was to obtain classes of contextual languages more appropriate from
natural languages point of view. In fact, the class of languages searched for
should have the following properties, which define the so-called mildly context
sensitive (MCS) languages and mildly context sensitive formalisms:
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1. The class should contain languages corresponding to the following three basic
non-context-free constructions: (i) multiple agreements: L = {anbncn|n ≥
1}, (ii) crossed dependencies: L = {anbmcndm|n,m ≥ 1}, and (iii) marked
duplication: L = {wcw|w ∈ {a, b}∗}.

2. All the languages in the class are parsable in polynomial time. In other words,
the membership problem can be solved in polynomial time algorithm.

3. The class contains semilinear languages only.

Sometimes the third property is considered to be too strong and this is replaced
by the following property.

3′. All the languages in the class have the bounded growth property. That is, for
any infinite languages L, there is a constant kL depending only on L such
that, for any n ≥ 1, if L contains words of length n, then it contains also
words of some length between n+1 and n+kL. In other words, there should
not be arbitrarily large gap between two consecutive words present in the
language.

As MCS formalisms are considered to be an appropriate model for description
of natural languages, it is important in formal language theory and natural
language processing to obtain certain classes of languages which satisfy the above
said MCS property.

The main variants of internal contextual languages (for instance, depth-first
contextual grammars, where at each derivation, the selector for the next deriva-
tion must contain one of the contexts u or v which are adjoined in the previous
derivation) failed to contain the non-context-free constructions itself. So, new
classes of grammars were introduced to tackle this problem, for instance, max-
imal contextual grammars [5], where at each derivation, the selector of max-
imal length is chosen for the next derivation. Though they generate the basic
non-context-free languages, they contain non-semilinear languages and also their
membership problem either remains open or is solvable with exponential time
complexity.

But, during this last decade, some attempts have been made to introduce
some variants of contextual grammars by restricting the selectors to obtain cer-
tain specific classes of contextual languages which satisfy the MCS property [1, 3].
In [1], Ilie considered a new variant called local contextual grammars, in which,
at each derivation, the contexts for the further derivations are adjoined inside or
nearer to the contexts adjoined in the previous derivation. When the maximal
restriction is included with this variant, the grammar is said to be maximal local.
Ilie showed that the languages generated by maximal local grammars with reg-
ular selectors contain the basic non-context-free languages and the membership
problem for the family of these languages was solvable in polynomial time, but
the question of semilinearity was left open to these languages.

In [3], a variant motivated by local contextual grammars, called absorbing right
context grammars (denoted by arc) was considered in order to resolve the semilin-
ear problem for maximal local languages. The class of languages generated by arc
grammars with regular selectors was shown to satisfy all the properties needed
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for MCS formalism. Also, in [3], another variant of internal contextual gram-
mars, namely maximal depth-first grammars (denoted by mdf) were introduced,
by combining the maximal and depth-first conditions. Like maximal grammars,
the family of languages generated by this variant contains non-context-free lan-
guages, but the membership and semilinear problems were left open for these
languages.

In this paper, we introduce two new variants of maximal depth-first contex-
tual grammars, called end-marked maximal depth-first and inner end-marked
maximal depth-first contextual grammars and analyze their relevances with nat-
ural languages in view of mildly context sensitive formalisms. We impose the
following end-marked restriction in maximal depth-first grammars. Whenever,
some contexts u and v are introduced in a derivation, the selector for the next
derivation should either begin or end with one of the contexts u or v (which were
introduced in the previous derivation), and the context (u or v) which should
begin or end with the selector for the next derivation is specified while defin-
ing the grammar itself. The main motivation for imposing this restriction is to
tackle the membership problem for these languages since handling the member-
ship problem for maximal depth-first languages is difficult and remains open.
We also show that maximal local languages contain semilinear languages only
which solves an important open problem addressed by Ilie in [1].

2 Basic Definitions

We assume the readers are familiar with the basic formal language theory no-
tions. However, we recall the following notions and definitions which are used
in the proceeding sections. For more details on formal language theory, we refer
to [9].

For a word x ∈ V ∗, we denote by Sub(x), Pref(x), Suf(x), the set of
subwords, prefixes, and suffixes of x, respectively. Also, |x| denote the length
of x. |x|a is the number of occurrences of the symbol a in the word x. As-
sume that V = {a1, . . . , ak}. The Parikh mapping of V denoted by Ψ is
Ψ : V ∗ −→ Nk, Ψ(w) = (|w|a1 , . . . , |w|ak

), w ∈ V ∗. If L is a language, then
its Parikh set is defined by Ψ(L) = {Ψ(w) | w ∈ L}. Two languages L1 and L2
are said to be letter equivalent iff Ψ(L1) = Ψ(L2). A linear set is a set M ⊆ Nk

such that

M = {v0 +
m∑

i=1

vixi | xi ∈ N},

for some v0, v1, . . . , vm in Nk. A semilinear set is a finite union of linear sets and
a semilinear language is a language L such that Ψ(L) is a semilinear set. The
families of finite and regular languages are denoted by FIN,REG respectively.

We now present some basic classes of contextual grammars. An internal con-
textual grammar is a construct

G = (V,A, (S1, C1), ...(Sm, Cm)), m ≥ 1, where
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– V is an alphabet,
– A ⊆ V ∗ is a finite set, called the set of axioms,
– Sj ⊆ V ∗, 1 ≤ j ≤ m, are the sets of selectors or selection or choice,
– Cj ⊆ V ∗ × V ∗, Cj finite, 1 ≤ j ≤ m, are the sets of contexts.

The usual derivation in the internal mode is defined as x =⇒in y iff
x = x1x2x3, y = x1ux2vx3, for x1, x2, x3 ∈ V ∗, x2 ∈ Sj , (u, v) ∈ Cj , 1 ≤ j ≤ m.

For, maximal and depth-first contextual grammars, we refer to the infor-
mal definition presented in the earlier section. Now, we define maximal depth-
first grammars. Given a contextual grammar G as above, a maximal depth-first
derivation (denoted by mdf) in G is a derivation

w1 =⇒mdf w2 =⇒mdf . . . =⇒mdf wn, n ≥ 1, where

(i) w1 ∈ A, w1 =⇒ w2 in the maximal way,
(ii) For each i = 2, 3, . . . , n − 1, if wi−1 = z1z2z3, wi = z1uz2vz3 ((u, v) is the

context adjoined to wi−1 in order to get wi), then wi = x1x2x3, wi+1 =
x1sx2tx3, such that x2 ∈ Sj , (s, t) ∈ Cj , for some j, 1 ≤ j ≤ m, and
x2 contains one of the contexts u or v as a substring (satisfying depth-first
condition). That is, at every derivation, the selector x2 ∈ Sj contains one of
the contexts u or v which was adjoined in the previous derivation

(iii) For each i = 2, 3, . . . , n − 1, if wi =⇒df wi+1 then there will be no other
derivation in G with wi =⇒df w′i+1 such that wi = x′1x′2x′3, x′2 ∈ Sj and
|x′2| > |x2| where x2 ∈ Sj (satisfying maximal condition). That is, at every
derivation, wi should have no other subword x′2 with x′2 ∈ Sj of greater
length than x2 ∈ Sj.

Lengthwise depth-first grammars, are the restricted versions of depth-first
grammars, introduced in [2], where at each derivation, the selector for the next
derivation must contain the context u or v (introduced in the previous deriva-
tion) whichever is of maximal length. When the lengths of u and v are equal, the
selector is chosen non-deterministically (which contains u or v). In a similar way
like maximal depth-first grammars, we can define maximal lengthwise depth-first
grammars (denoted by mldf), where, at each derivation, the selector contains
one of the contexts u or v whichever is of maximum length and the selector is
of maximal.

The next variant we define is local contextual grammars. Given a contextual
grammar G, we define the local mode in the following way. For z ∈ A, z =⇒in x
such that z = z1z2z3, x = z1uz2vz3, z2 ∈ Sk, (u, v) ∈ Ck, for z1, z2, z3 ∈
V ∗, 1 ≤ k ≤ m, then x =⇒loc y is called local with respect to z =⇒ x, iff
we have u = u′u′′, v = v′v′′, u′, u′′, v′, v′′ ∈ V ∗, y = z1u

′su′′z2v′tv′′z3 for
u′′z2v′ ∈ Sj , (s, t) ∈ Cj , 1 ≤ j ≤ m. When the maximal restriction is included
with this local variant, the grammar is said to be maximal local (denoted by
mloc). For more technical details and for formal definition of basic classes of
contextual grammars, we refer to the monograph on contextual grammars by
Păun [7].

The following assumption is made throughout this paper. As we do not discuss
external contextual grammars or any other grammars in this paper, we simply
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refer internal contextual grammars as grammars in many occurrences. We also
call maximal length as maximal in many places for the sake of brevity.

3 End-Marked Maximal Depth-First Contextual
Grammars

In this section, we introduce two new classes of contextual grammars and inves-
tigate whether they are good formalisms for natural languages by analyzing the
properties that define mildly context sensitive languages.

We shall now introduce the first variant. An end-marked maximal depth-first
contextual grammars is a construct G = (V,A, (S1, C1), . . . , (Sm, Cm)),m ≥ 1,
where V,A, S1, . . . Sm, are as mentioned in the definition of internal contextual
grammar and Cj ⊆ (V +

{L,R} × V ∗) ∪ (V ∗ × V +
{L,R}), Cj finite, 1 ≤ j ≤ m, are

the set of contexts. The elements of Cj ’s are of the form (uL, v), (uR, v), (u, vL),
and (u, vR). The suffix L and R represent end marker (left and right) for the
selector of the next derivation. uL (or vL) indicates the selector for the next
derivation should start with u (or v). In other words, u (or v) is the left end of
the selector for the next derivation. Similarly, uR (or vR) indicates the selector
for the next derivation should end with the context u (or v). In other words,
u (or v) is the right end of the selector for the next derivation. Given such a
grammar G, an end-marked maximal depth-first derivation (denoted by emdf)
in G is a derivation w1 =⇒emdf w2 =⇒emdf . . . =⇒emdf wn, n ≥ 1, where

– w1 ∈ A, w1 =⇒ w2 in the maximal way,
– For each i = 2, 3, . . . , n − 1, if wi−1 = z1z2z3, wi = z1uz2vz3, such that
z2 ∈ Sk, 1 ≤ k ≤ m, then wi = x1x2x3, wi+1 = x1sx2tx3, such that
x2 ∈ Sj , 1 ≤ j ≤ m, and x2 will be of one of the following four cases:
(i) x2 = uz′2, if (uL, v) ∈ Ck, with z′2 ∈ V ∗ is of maximal (i.e., there exists

no z′′2 ∈ V ∗, such that uz′′2 ∈ Sj , with |z′′2 | > |z′2|).
(ii) x2 = z′1u, if (uR, v) ∈ Ck, with z′1 ∈ V ∗ is of maximal (i.e., there exists

no z′′1 ∈ V ∗, such that z′′1u ∈ Sj , with |z′′1 | > |z′1|).
(iii) x2 = z′2v, if (u, vR) ∈ Ck, with z′2 ∈ V ∗ is of maximal (i.e., there exists

no z′′2 ∈ V ∗, such that z′′2v ∈ Sj , with |z′′2 | > |z′2|).
(iv) x2 = vz′3, if (u, vL) ∈ Ck, with z′3 ∈ V ∗ is of maximal (i.e., there exists

no z′′3 ∈ V ∗, such that vz′′3 ∈ Sj , with |z′′2 | > |z′2|).

Now, we introduce the second variant which is a restricted version of the
above introduced grammar. Given a emdf grammar G, we can define the inner
end-marked maximal depth-first grammar (denoted by iemdf) by imposing the
following changes in the grammar and derivations:

– Cj ⊆ (V ∗L × C∗) ∪ (V ∗ × V ∗R).
– As the elements of Cj ’s are of the form (uL, v) and (u, vR), the cases (ii) and

(iv) discussed above will become void and only the cases (i) and (iii) will be
valid.
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– The selector for the next derivation should be inside the contexts u and v
which were adjoined in the previous derivation. More precisely, if u and v
are the contexts adjoined to the selector, say z2, then the next selector, say
x2, will be a strict subword of uz2v and x2 should either begin with u or
end with v (in order to satisfy the end-marked condition) but not both hold
true.

The language generated by a grammar G in the mode β, β ∈
{in,mdf,mldf,mloc, emdf, iemdf} is given by

Lβ(G) = {w ∈ V ∗ | x =⇒∗
β w, x ∈ A},

where =⇒∗
β is the reflexive transitive closure of the relation =⇒β .

If all the sets of selectors S1, . . . , Sm are in a family F of languages, then we
say that the grammar G is with F selection. As usual, the family of languages
Lβ(G), for G working in β ∈ {in,mdf,mldf,mloc, emdf, iemdf}mode with F se-
lection is given as ICC(F ), ICCmdf (F ), ICCmldf (F ), ICCmloc(F ), ICCemdf (F ),
and ICCiemdf (F ), respectively.

3.1 Non Context-Free Constructions in Natural Languages

This section deals all the three basic non-context-free constructions in natural
languages, that is, multiple agreements, crossed dependencies and duplication can
be realized using emdf, iemdf grammars with regular selection.

Lemma 1. (multiple agreements)
L1 = {anbncn|n ≥ 1} ∈ ICCα(REG), α ∈ {emdf, iemdf}.

Proof. Consider the following grammar

G1 = ({a, b, c}, abc, {(ab+, (a, bcR)), (b+c, (abL, c))}).

Any derivation in α ∈ {emdf, iemdf} mode of G1 is as follows:

↓ab↓c =⇒α aa↓bbc↓c =⇒α aa↓abbb↓ccc =⇒α aaaa↓bbbbc↓ccc =⇒∗
α anbncn, n ≥ 1.

The underlined symbols are the newly inserted contexts in the derivation. The
word between the two down arrows indicates the selector for the next derivation.
Starting from the axiom abc, ab is considered as the selector for the first deriva-
tion and (a, bc) is adjoined. As bc is the right end-marker, the selector for the
next derivation should end with bc and of maximal. Therefore, b2c is the selec-
tor. Now (ab, c) is adjoined and ab is the left end marker. Therefore, the selector
for the next derivation is ab3 and (a, bc) is adjoined to aabbcc. Continuing the
derivation in this fashion, we can see that Lα(G1) = L1, α ∈ {emdf, iemdf}. �

Lemma 2. (crossed agreements)
L2 = {anbmcndm|n,m ≥ 1} ∈ ICCα(REG), α ∈ {emdf, iemdf}.
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Proof. Consider the grammar

G2 = ({a, b, c, d}, abcd, (b+c+, {(bL, d), (a, cR)})).

Any derivation in the mode α ∈ {emdf, iemdf} in G2 is as follows:

a↓bc↓d =⇒α aa↓bcc↓d =⇒α aa↓bbcc↓dd =⇒α aa↓bbbcc↓ddd =⇒∗
α anbmcndm.

Starting from the axiom abcd, bc is considered as the selector for the first deriva-
tion and (a, c) is adjoined (one can also adjoin (b, d) instead of (a, c) and con-
tinue the derivation accordingly). As c is the right end marker, the selector for
the next derivation should end with c and of maximal. Therefore, bc2 is the se-
lector. Now, (b, d) is adjoined and b is the left end marker, the selector for the
next derivation should begin with b. Therefore, b2c2 is the selector and (b, d)
is adjoined to the word aabbccdd. Continuing the derivation, we can see that
Lα(G2) = L2, α ∈ {emdf, iemdf}. �
Lemma 3. (marked duplication)
L3 = {wcw | w ∈ {a, b}∗} ∈ ICCα(REG), α ∈ {emdf, iemdf}.
Proof. Consider the following grammar

G3 = ({a, b, c}, c, ({cx | x ∈ {a, b}∗}, {(a, aR), (b, bR)})).

Any derivation in α ∈ {emdf, iemdf} mode in G3 is as follows:
↓c↓ =⇒α w1

↓cw1
↓ =⇒α w1w2

↓cw1w2
↓ =⇒α w1w2w3

↓cw1w2w3
↓ =⇒∗

α wcw,

where wi ∈ {a, b}, 1 ≤ i ≤ |w|, w ∈ {a, b}∗. The reader can easily verify that,
Lα(G3) = L3, α ∈ {emdf, iemdf}. �

Remark. Take c = λ in the above grammarG3, then the derivation in the iemdf
mode will be given as λ =⇒iemdf w1

↓w1
↓ =⇒iemdf w1w2

↓w1w2
↓ =⇒∗

iemdf ww.
Note that in iemdf mode, every time, the selector for the next derivation is
chosen inside the contexts adjoined in the previous derivation and of maximal.
It is easy to see that Liemdf (G3) = {ww | w ∈ {a, b}∗}. This language is known
as non-marked duplication. This result is important from contextual grammars
point of view since no other existing contextual grammar is capable of generating
this language except absorbing right context (arc) grammars [3].

3.2 Computational Complexity

In this section, we show that the family of all languages ICCα(F ), for α ∈
{emdf, iemdf}, F ∈ {FIN,REG} are parsable in polynomial time. That is,
given a emdf or iemdf grammar G and a string w ∈ V ∗ of length n, there is a
Turing Machine M which accepts or rejects w in polynomial time.

Theorem 1. For any end-marked maximal depth-first and inner end-marked
maximal depth-first contextual grammar G with F selection, F ∈ {FIN,REG},
there is a polynomial time algorithm which accepts Lα(G), α ∈ {emdf, iemdf}
on any input w of length n. In other words, ICCα(F ) ⊆ P for α ∈
{emdf, iemdf}, F ∈ {FIN,REG}



346 K. Lakshmanan

Proof. We will prove the result for the case α = emdf and F = REG. The other
case α = iemdf follows automatically.

Consider a emdf grammar G = (V,A, (S1, C1), . . . , (Sm, Cm)), where Sj ∈
REG, 1 ≤ j ≤ m. Given a input w of length n, n ≥ 1, we denote the ith letter
of w by wi, 1 ≤ i ≤ n. When w = λ (i.e., |w| = 0), it can be easily verified by
checking the axiom of G. For x ∈ A, any derivation in emdf mode can be given
as x = y0 =⇒ y1 =⇒ . . . yk−1 =⇒ yk = w, k ≥ 0.

Construct a two tape non-deterministic Turing machine M which accepts the
language Lemdf (F ) as follows:

– On the first tape, w is written as input and is never changed.
– On the second tape,M copies the input w from tape 1. During a computation

on w, M works on tape 2 as follows:
1. Check whether w ∈ A. If w ∈ A, then M accepts w; else, go to next step.
2. M non-deterministically identifies four indices p, q, r, s ∈ {1, . . . , n}, p ≤

q ≤ r ≤ s with the following property: uk = wp . . . wq−1, xk = wq . . . wr,
vk = wr+1 . . . ws, where xk ∈ Sjk

, (uk, vk) ∈ Cjk
, 1 ≤ jk ≤ m.

Also, whenever, M tries new combination of values to identify the indices
p, q, r, s (with the above said property), M rewrites the input w on tape
2 and continues the computation.

3. If there is no such four indices with the above property, then M rejects
w. Otherwise, M goes to next step.

4. At each time, M tries to back track the derivation by deleting the con-
texts uh and vh from yh, k ≥ h ≥ 1 (initially, h = k). Let the modified
resultant string be yh−1. By definition of the grammar, the selector at
any derivation (except the first derivation) should begin or end with the
contexts which were adjoined in the previous derivation. Therefore, once
the selector (say xh which is wq . . . wr) is identified, according to the
definition of the grammar, one of the following cases is possible.

case i: xh = uh−1z2, z2 ∈ V ∗, ∃ three indices q1, r1, s1 ≥ 0, where q ≤ q1 ≤
r1 ≤ s1, such that uh−1 = wp . . . wq1−1, xh−1 = wq1 . . . wr1 , vh−1 =
wr1+1 . . . ws1 , xh−1 ∈ Sjh−1 , (uh−1, vh−1) ∈ Cjh−1 , 1 ≤ jh−1 ≤ m.

case ii: xh = z1uh−1, z1 ∈ V ∗, ∃ three indices q2, r2, s2 ≥ 0,where q2 ≤ r ≤
r2 ≤ s2, such that uh−1 = wq2 . . . wr, xh−1 = wr+1 . . . wr2 , vh−1 =
wr2+1 . . . ws2 , xh−1 ∈ Sjh−1 , (uh−1, vh−1) ∈ Cjh−1 , 1 ≤ jh−1 ≤ m.

case iii: xh = vh−1z3, z3 ∈ V ∗, ∃ three indices q′3, q3, r3 ≥ 0,where q′3 ≤ q3 ≤
q ≤ r3 ≤ r, s.t uh−1 = wq′

3
. . . wq3−1, xh−1 = wq3 . . . wq−1, vh−1 =

wq . . . wr3 , xh−1 ∈ Sjh−1 , (uh−1, vh−1) ∈ Cjh−1 , 1 ≤ jh−1 ≤ m.
case iv: xh = z′2vh−1, z

′
2 ∈ V ∗, ∃ three indices q′4, q4, r4 ≥ 0,where q′4 ≤ q4 ≤

r4 ≤ r, s.t uh−1 = wq′
4
. . . wq4−1, xh−1 = wq4 . . . wr4−1, vh−1 =

wr4 . . . wr, xh−1 ∈ Sjh−1 , (uh−1, vh−1) ∈ Cjh−1 , 1 ≤ jh−1 ≤ m.
5. M tries to identify three indices qi, ri, si, i = 1, 2, or ql, q

′
l, rl, l = 3, 4,

with the above mentioned property. If there exists three such indices,
then M goes to next step. Else, M rejects w.

6. Check yh−1 ∈ A. If yes, then M accepts w. Else, M replaces the vari-
ables simultaneously as given below and goes to Step 4 for further
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back tracking. (uh, yh, vh ← uh−1, yh−1, vh−1) and one of the follow-
ing. (i) (p, q, r, s← p, q1, r1, s1), (ii) (p, q, r, s← q2, r + 1, r2, s2),
(iii) (p, q, r, s← q′3, q3, q − 1, r3), (iv) (p, q, r, s← q′4, q4, r4, r).

Since M tries correct derivations only (with respect to G), it cannot accept a
word not in the language generated by G, and so L(M) ⊆ Lemdf (G). Conversely,
if w ∈ Lemdf (G), then there is a derivation in G yielding w from the axiom, and
M guesses the right choices for the added contexts (in the reverse order), thus
accepting w. Consequently, L(M) = Lemdf(G).

The space required by M is the space needed to remember the four indices
p, q, r, s, and three more indices during the computation and therefore M needed
to store 7 indices all the time which is O(7log(|w|)). Since the selectors are
regular type and the contexts are finite, verifying the membership and the four
cases require only finite amount of space. This follows, M operates in space
O(logn). The remaining proof of the result follows from the well known result
NSPACE (log(n) ⊆ P).

3.3 Semilinear Property

In this section, we analyze the semilinear property for ICCα(F ), α ∈
{mdf,mldf, emdf,mloc}, F ∈ {FIN,REG}.
Theorem 2. The family of languages ICCemdf (REG) contains non-semilinear
languages.

Proof. Consider the emdf grammarG = ({a, b, c, d}, cababc, P ) with P consisting
the following production rules:

1. (ca, (λ, bL)), 2. (bba, (λ, bL)), 3. (bbc, (λ, cL)), 4. (bcc, (aR, λ)),
5. ((ba)+, (aR, λ)), 6. (caba, (cL, λ)), 7. (cca, (λ, bL)), 8. (caba, (cdL, λ)),
9. (aa, (cdL, λ)), 10. (cdaa, (λ, dR)), 11. (cdc(ab)+c, (λ, dR)).

The intuition behind the construction of the above rules is the following. Between
every a and b, one b is introduced from left to right of the word by rules 1 and
2. Therefore, the number of b’s are doubled. Now, between every two b’s, one
a is introduced from right to left of the word by rules 4 and 5. Therefore, the
number of a’s are doubled. c is the terminal identifier of the word. Whenever, the
scanning of the word is over (from left to right or right to left), c is incremented
to one time (by rules 3 and 6), and the selector for further derivations move
right or left in order to double the occurrences of b’s or a’s respectively. Rules
6 and 7 are applied to continue the derivations further and rules 8,11 or 9,10
are applied to terminate the derivation. Once, the context (λ, dR) is introduced,
no further derivation can be performed, as there is no selector end with d. We
present a sample derivation in emdf mode as below (the number in suffix of each
derivation indicates the rule which is applied). Initially, ca is assumed to be the
selector for the axiom.

cababc =⇒1 ca
↓bba↓bc =⇒2 cabba

↓bbc↓ =⇒3 cabbab
↓bcc↓ =⇒4 cab

↓baba↓bc2 =⇒5

ca↓ba↓(ba)2bc2 =⇒5 c
↓aa↓(ba)3bc2 =⇒9 c

↓cdaa↓(ba)3bc2 =⇒10 ccdaad(ba)3bc2.
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Now, consider the words containing two d’s. One can also terminate the deriva-
tion at any time without doubling the occurrences of a’s and b’s and not introduc-
ing any d’s. But, we do not bother such words as our claim is that the generated
language contains non-semilinear also. Now, intersect Φ{a,b,c,d}(Lemdf (G)) with
the semilinear set R = {(n1, n2, n3, 2) | n1, n2, n3 ≥ 1}, we obtain

R′ = {|a| = 2i + 1, |b| = 2i, |c| = 2i, |d| = 2 | i ≥ 1},

which is not semilinear as the family of semilinear sets is closed under intersec-
tion. This proves that Lemdf(G) is not semilinear. �
The proof does not hold for ICCiemdf (REG) since the contexts in the rules
(1-5 and 7) are not of the form mentioned in the definition. So, the question of
semilinearity is left open for ICCimedf (F ), F ∈ {FIN,REG}.

Theorem 3. The family of languages ICCmldf (REG) (and so ICCmdf (REG))
contains non-semilinear languages.

Proof. Consider the above grammar G where the contexts do not have any
end-markers. With the same proof, one can easily verify that Lmldf (G) is not
semilinear. This result also hold true for ICCmdf (REG) since ICCmldf (F ) ⊆
ICCmdf (F ), F ∈ {FIN,REG} [3]. �
This solves the open problem posed in [3]. In the next theorem, we solve an
important open problem in affirmative, addressed by Ilie in [1].

Theorem 4. The family of languages generated by maximal local grammars with
F selection, F ∈ {FIN,REG}, is semilinear.

Proof. We prove the result for local grammars and the proof can be easily ex-
tended to maximal local grammars. Let L be the language generated by the
local grammar G = (V,A, P ) with finite or regular choice, where P is the set of
production rules are of the form (S1, C1), . . . , (Sm, Cm)),m ≥ 1.

For all 1 ≤ j, f, r, s, t ≤ m, uf = u′fu
′′
f , vf = v′fv

′′
f such that u′f ∈

Pref(uf ), u′′f ∈ Suf(uf), and v′f ∈ Pref(vf ), v′′f ∈ Suf(vf ). As the contexts
are finite languages, any uf will be of finite length, say n. Then there will be only
(n + 1) possible u′f (since u′f = Pref(uf )) and u′′f (since u′′f = Suf(uf)) exist.
Similar statement holds true for vf also. Also, as x ∈ A is a finite language,
x2 ∈ Sub(x) will also be finite. Therefore, once x2 ∈ Sf is known, checking
u′′fx2v

′
f ∈ Sr will only be of finite combination (in fact, (n + 1)(k + 1) possible

combinations, if we assume |vf | = k).
Now, construct a linear grammar G′ as follows:

G′ = ({S, Sr,s | 1 ≤ r, s ≤ m}, V, {S}, P ′)

where P ′ consists of the following production rules:

(1) {S → x1x2x3 | x = x1x2x3 ∈ A}
(2) {S → x1x2x3ujvj | x2 ∈ Sj , (uj, vj) ∈ Cj}
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(3) {S → x1x2x3u
′′
jSj,rv

′
j | u′′j x2v

′
j ∈ Sr, (ur, vr) ∈ Cr}

(4) {Sr,s → u′rv
′′
ru
′′
sSs,tv

′
s | u′r . . . u′jx2v

′
j . . . v

′
s ∈ St, (ut, vt) ∈ Ct}

(5) {Sr,s → u′rv
′′
rusvs | u′r . . . u′jx2v

′
j . . . v

′
s ∈ St, (ut, vt) ∈ Ct}.

Rules 1,2,5 are terminal rules which can be used to stop the derivation whenever
necessary. The non-terminals in rule 3,4 will be used to simulate the derivations
for further steps. It is easy to verify from the structure of P ′ that Lloc(G) and
L(G′) are letter equivalent. Since L(G′) is linear, L(G) is also semi-linear [9]. �
Note that a similar proof cannot be given to iemdf grammars with regular se-
lectors and the reason is the following: If z is a regular selector in a derivation,
then by definition of iemdf grammars, uz′ (or z′v), z′ ∈ Sub(z) may be a pos-
sible selector for the next derivation and this cannot be represented by a linear
grammar with finite rules. On the other hand, in local grammars, if z is a regular
selector for a derivation, then the selector for the next derivation is u′′zv′. As z
fully presents in the selector for the next derivation (in fact, at each derivation,
the selector is expanded by the contexts which are adjoined) and u′′, v′ are of
finite length, it can be represented by a linear grammar with finite rules.

4 Conclusion

In this paper, we have introduced two new classes of contextual grammars and
investigated their feasibility with respect to MCS formalism. Both the variants
are capable of generating the non-context-free languages. The membership prob-
lem has been solved for these two new classes of languages. Though, the family of
languages generated by emdf grammars does not satisfy the semilinear property,
it satisfies the bounded growth property since every derivation of a contextual
grammar is obtained by adjoining the contexts of finite length, any two consec-
utive derivations can be easily bounded by a constant. We have also solved two
open problems on semilinearity for the class of languages generated by mdf and
mloc grammars. Thus, we have defined two new classes of contextual grammars
which are shown to be MCS if we take the condition for MCS as properties 1,2
and 3′ mentioned in the introduction. The semilinear property for the family
ICCiemdf (F ) is left as open and the techniques used in this paper to generate
non-semilinear languages or semilinear languages did not work for this family of
languages. As the variants discussed in this paper were analyzed towards MCS
point of view, analyzing the generative power and hierarchical relations of these
variants remain as future work.
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7. Gh.Păun, Marcus Contextual Grammars, Kluwer Academic Publishers, 1997.
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Abstract. The class of semi-rational dag languages can be characterized by la-
beled Petri nets with ε-transitions, by rather simple leaf substituting tree gram-
mars with additional non-local merge rules, or as a synchronization closure of
Courcelles class of recognizable sets of unranked, unordered trees. However,
no direct recognition by some magma is known. For a better understanding, we
present here some examples of languages within and without the class of semi-
rational dag languages.

1 Introduction

For languages of finite words, infinite words, finite and infinite ranked and ordered
trees various concepts like recognizability, rationality, regular expressions, definabil-
ity by monadic second-order logics over certain signatures, generation by right-linear
grammars, etc. proved to be equivalent. However, a generalization of those equivalence
results to dags (directed acyclic graphs) has failed. Even for finite grids the classic con-
cept of recognizability is stronger than that of monadic second-order definability, which
is stronger than that of acceptability with finite-state graph automata [1], which is again
stronger than acceptability by automata over planar dags [2], see [1].

In contrast to trees, dags are usually unranked and unordered. In a ranked graph the
label of a node determines its number of sons. A ranked and ordered tree is simply a
correct term over a ranked alphabet. The theory of ranked, ordered trees goes back to the
early works of Church, Büchi, Rabin, Doner, Thatcher, Trakhtenbrot. A good overview
is given in the TATA book project [3]. Most automata theoretical results transfer also
to ordered, unranked trees, see the well-known report [4]. Unranked and unordered
trees have been researched by Courcelle in [5], where he presented a characterization
of recognizable unranked, unordered tree languages by magmas.

In the last DLT conference 2005 a different approach to dag languages was presented
by Priese [6]. Semi-rational and semi-regular dag languages have been introduced via
Petri nets and merge grammars. The term ”semi” indicates that a concept of infinity is
involved. In the case of Petri nets this is the state space (set of reachable markings).
Merge grammars are non-local, as two leaves of an arbitrary, unbounded distance may
be merged.

Connections between true-concurrency Petri net behavior and graph grammars are
known for over 20 years. Early papers are from Kreowsky [7], Reisig [8] - from
1981 - , Castellani and Montanari [9], Genrich, Janssen, Rozenberg and Thiagarajan
[10], and Starke [11], all from 1983. Starke presents detailed proofs for a similarity
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between his so called graph structure grammars and semi-word languages of free Petri
nets without auto-concurrency. Grabowski introduced in [12] a concept (”Y-section”) of
synchronization of so-called partial words that became later better known as pomsets.
The connection between pomsets and dags is very close: pomsets may be regarded as
transitively closed dags. However, the essential difference between those well-known
approaches to pomset semantics and the latter one to dag semantics is the use of ε-nodes
in dags in [6].

It is shown in [6] that semi-rational dag languages coincide with semi-regular ones
and with the synchronization closure of regular or recognizable sets of trees. Here,
synchronization is a generalization of the Y-section of Grabowski.

However, no type of finite or infinite magma is known recognizing exactly the class
of semi-rational dag languages. In the case of their existence, such magmas should
also possess some feature of infinity, leading to a concept of ”semi-recognizable” dag
languages.

As a step towards such an algebraic characterization we present some examples and
counterexamples for those languages to deepen their understanding.

2 DAGs with ε-Nodes

Σ denotes a finite, non-empty alphabet of labels, ε the empty word, empty graph, and
also the ’empty label’. We assume that ε is not a symbol in the alphabet Σ and define
Σε := Σ∪{ε}. An unranked and unordered graph γ overΣ is a triple γ = (N,E, λ) of
two finite setsN of nodes andE ⊆ N×N of edges and a labeling mappingλ : N → Σ.
We use the notation •v := {v′ ∈ N |(v′, v) ∈ E}, v• := {v′ ∈ N |(v, v′) ∈ E}. Two
graphs γi = (Ni, Ei.λi) are isomorphic if there exists a bijective mapping h : N1 →
N2 with (v, v′) ∈ E1 ⇔ (h(v), h(v′)) ∈ E2 and λ1(v) = λ2(h(v)) holds for all v, v′

in N1.
A graph over Σε may possess nodes labeled with ε (ε-nodes). We treat ε-nodes like

the empty word, where uv = uεv holds: Let α′ result from a graph α over Σε by
removing one ε-node v and declaring all sons of v in α to be in α′ the sons of each
father of v in α. In this case α′ is called a reduct of α. The ε-equivalence of graphs over
Σε is the reflexive, symmetric and transitive closure of the reduct-relation. Isomorphic
and ε-equivalent graphs are identified. Thus, Figure 1 shows two representations of the
same dag.

aa
a

a
a

a
b

b

b
bb

b

εε

Fig. 1. Two representations of the same dag

Directed acyclic graphs (dags) and trees are special types of graphs. A pomset in
concurrency theory is nothing else than a transitive closed dag. Reducing a tree over
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Σε may result in a forest over Σ. As we allow ε-nodes we have to be a little bit careful
in defining concepts as an in-degree, out-degree, level, etc., in a dag. The correspond-
ing nodes labeled with a or b in the two dags in Figure 1 may possess different levels,
in-degrees, or out-degrees. Let α be a dag over Σε then εα denotes some ε-free repre-
sentative of α. The level of a node v in α is the length of the maximal path from a root to
v in εα. The level i of α is the set of all nodes of level i. Also, we define the In-degree or
Out-degree of a node v in α as the in- or out-degree of v in a representative εα. These
definitions are independent of the chosen representative. We write In- or Out-degree
whenever we refer to the degrees of an ε-free representative. The allowance of ε-nodes
is essential in this paper. Without such a treatment of ε-nodes the set of all (unranked,
unordered !) trees over {a} could not be generated by a finite regular grammar.

A Petri net N over Σ is a tuple N = (P, T,F , φ, s0, F ) of two finite sets P of
places and T of transitions, P ∩ T = ∅, a multi set F over T × P ∪ P × T of arcs, a
labeling mapping φ : T → Σε, an initial state s0 ∈ NP , and a finite set F ⊆ NP of
terminal states. A state s ofN is a multi set over P . A transition t with φ(t) = a ∈ Σε

is also called an a-transition. This general concept of a Petri net includes the possibility
of ε-transitions, unbounded places, multiple arcs, and auto-concurrency.

The standard interleaving semantics of a Petri net is given by the labelings of all firing
sequences from the initial to some terminal state. In a true concurrency semantics firing
sequences are replaced by processes. A process π is a possible concurrent execution of
a firing sequence. It is a dag over P ∪ T , with an in- and out-degree ≤ 1 for the P -
nodes. The roots (leaves) of π are the multi sets s (s′, respectively). A path from a root
to a leaf is the life span of a single token in s⇒x s′. The (terminal) process semantics
Pt(N ) of a Petri netN is given by all processes from the initial to some terminal state.
The (terminal) dag semantics Dt(N ) of N is hλ(Dt(N )). hλ(π) is an abstraction of
the process π where hλ maps all labels from P into ε and any label t ∈ T into φ(t).
Thus, all places are dropped and all transitions are replaced by their labels.

A dag language D is semi-rational if D = Dt(N ) holds for some Petri net N . In
this case we also say thatN accepts D.

3 A Connection Between Rational Word and Semi-rational DAG
Languages

Σ† denotes the set of all dags over Σ. For α ∈ Σ† we denote by path(α) the set of
all (labeling of) paths from some root to some leaf in α. For D ⊆ Σ† path(D) :=⋃

α∈D path(α) is the projection of D from Σ† into Σ∗. Vice versa, for L ⊆ Σ∗ DL :=
{α ∈ Σ†|path(α) ⊆ L} is the embedding of L from Σ∗ into Σ†. We shall study here
a property of embedding.

Let A = (S,Σ,Δ, s1, F ) be a finite ε-automaton over an alphabetΣ with a finite set
S of states, an initial state s1 ∈ S, a set F ⊆ S of final states, and a next-state relation
Δ ⊆ S × Σε × S, accepting the language LA := {w ∈ Σ∗ | Δ∗(s1, w) ∩ F �= ∅}.
To A we define the corresponding Petri net NA to consist of S as places, a transition
ts,a,s′ labeled with a and one arc from place s and one to place s′ for any s, s′, a with
s′ ∈ Δ(s, a), plus a further transition t′s,ε labeled with ε with an arc from s, but without
any outgoing arc, for any terminal state s ∈ F . The initial state of NA is 1·s1 and the
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empty marking 0 is the only terminal state. Obviously, the interleaving semantics ofNA

is L(A).
An i-j-a-loop at a place p in a Petri net N is a transition labeled with a with exactly

i arcs from p and exactly j arcs to p. The ε-completionN ε of a Petri net N is defined
by adding an additional 1-2-ε- and 2-1-ε-loop to each place in N . For readability, we
present a place with an attached 1-2-ε- and 2-1-ε-loop by a circle with a black bottom
and drop in the graphical presentation both loops. Figure 2 visualizes this.

It is rather obvious thatDt(N ε
A) ⊆ L(A) holds for any finite automatonA. However,

⊇ doesn’t hold in general. Figure 3 also presents the Petri net N ε
A1

with 1·p1 as initial
and 0 as terminal state.

Fig. 2. Graphical representation of a place with a 1-2-ε and 2-1-ε-loop

a
a

b

bb

bb

b

b

b

1 2 3

4 5

p1 p2 p3

p4 p5 ε

ε

Fig. 3. An automaton A1 and the N ε
A1

Nevertheless, the following theorem holds:

Theorem 1. L ⊆ Σ∗ rational =⇒ DL semi-rational.

Sketch of Proof. Let L be a regular language over some alphabet Σ. Let AL be the
minimal deterministic and complete ε-free finite automaton accepting L. The Petri net
N ε

AL
will in general not accept DL. We have to modify AL.

Without restriction we assume that for any ε-automaton E = (S,Σ,Δ, s1, F )
|Δ(s, a)| = 1 holds for a ∈ Σ, s ∈ S. Thus, nondeterminism is restricted to ε-
transitions.

Two different states s1, s2 of some finite ε-automaton E are called w-equivalent for
some word w ∈ Σ∗ if a path from s1 labeled with w can reach a terminal state and
a possibly different path from s2 also labeled with w can reach some terminal state.
The weak completion Ec of E is a finite ε-automaton where from any set M ⊆ S of
mutuallyw-equivalent states there exists an ε-transition from each s′ ∈M to a common
path pM,w with the labeling w to a terminal state. This weak completion may be easily
constructed as follows:
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a

bb

b

b

b

b

1 2 3

4 5

1, 2 3, 4 1, 5

εε εε

Fig. 4. The weak completion Ac
1 of A1

a

a

a

a b

b

b b

b

b

Fig. 5. A dag with its paths in L1, recognized by N ε
Ac

1
but not by N ε

A1

Set Ê := (2S , Σ, Δ̂, {s1}, 2F ), where for all M,M ′ ⊆ S, a ∈ Σ there holds:
Δ̂(M,a) :=

⋃
s∈M Δ(s, a),

M ′ ∈ Δ̂(M, ε) iff M ⊆M ′.
Set Ec := Êt, the trim sub-automaton of Ê, consisting only of the reachable and co-
reachable states. Note, |Δ(M,a)| = 1 holds for all M ⊆ S, a ∈ Σ.

Now, DL = Dt(N ε
Ac

L
) holds in general. �

Figure 4 shows the weak completion of A1 in Figure 3. For readability we dropped the
(unnecessary but harmless) ε-arcs from 1 and 5 to state {1, 5}.

Obviously, the dag in Figure 5 is in not in Dt(N ε
A1

) but in Dt(N ε
Ac

1
).

We suppose that the opposite is also true, namely:
D semi-rational =⇒ L rational.
However, we have no proof. A construction similar to the previous one will not work

as the set of reachable states in a Petri net is in general infinite. On the other hand, Petri
nets accepting any dag whose paths are in L seem to be so restrictive that one might be
able to construct a finite automaton accepting path(D). Some kind of normal form for
such ”path-closed” Petri nets would be welcome.

4 Further Examples of Semi-rational DAG Languages

4.1 Topological Constraints

We firstly examine some sets of dags with constraints on the neighborhood of nodes.
Thus, we are not interested in the names λ(v) of a node v and will operate with the
trivial alphabet {a}.
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aa bb1
2

2

3

Fig. 6. a, b with different in- or out-degrees in a process and its dag

Fixed In- and Out-Degree
We regard the dag language Di,o of all dags over {a} whose nodes possess only In-
degree i or 0 and Out-degree o or 0.

There is a difficulty in finding a Petri net acceptingDi,o as the topological structures
of a process, even without ε-transitions, and its ε-free dag may be rather different.
Figure 6 presents an example.

Thus, to get a node with Out-degree 2 in some dag the 2 token generated from a cor-
responding transition in the Petri net must not be both consumed by a single transition.
To get In-degree 2 in some dag the two token consumed by a corresponding transition
in the Petri net must not be generated by a single transition. This situation leads to a
combinatorial explosion and we only know of a Petri net of size O(2i+o) that accepts
Di,o.

Theorem 2. Di,o is semi-rational for all values of i and o.

Sketch of Proof. This is trivial for i = 1 or o = 1. Thus, i ≥ 2 and o ≥ 2. We define
the Petri netN i,o := (P, T,F , φ, s0, F ) over {a}ε by setting
P := {s,m, r1, . . . , rx}, for x := i · (o− 1) + 1,
T := {Sε, Sd, SM,Mε, E1, . . . , Ex, A1, . . . , Ay}, for y = (x− i)! · x! / i!,
F := F1 + F2, with F1 := 1 · (s, Sε) + 1 · (s, Sd) + 2 · (Sd, s) + 1 · (s, SM) + 1 ·
(SM,m) + 1·(m,Mε) +

∑
1≤j≤x(m,Ej) +

∑
1≤j≤y(Aj ,m) + o ·

∑
1≤j≤x(Ej , rj)

and F2 is defined below.
φ(X) := a , for = X ∈ {Ai|1 ≤ i ≤ y} ∪ {SM} and
φ(X) := ε for all other transitions X ,
s0 := 1·s, and
F := {0}.

By 2M
i we denote the set of all subsets of M that contain exactly i elements. As

|2{r1,...,rx}
i |

= y holds we can choose a bijection f from {r1, ..., rx} into {A1, ..., Ay}. Now, F2

defines an arc from any element of the j-th set in 2{r1,...,rx}
i to the transition Af(j).

Figure 7 shows the Petri net for i = o = 2.
The 1-2-ε-loop at s can create any number of tokens on s. Each of them leads to a

root in the dag by a firing of SM and is transferred on place m in the Petri net. Any
transition Aj puts exactly o token on the j-th place rj in the ring r1 to rx. Thus, an
a-transition in the Petri net that has created a token t on place m, and t is fired by an
Ej-transition, leads to a node in the dag with an Out-degree o. A firing of one of the
transitionsA1 to Ay removes exactly i token from i different ring places. Each of those
i token on different ring places was generated by a different transition in the Petri net.
Thus, a node with an In-degree i is created in the dag. There must be one Aj transition
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for every combination of i different places in the ring. Thus, Dt(N i,o) ⊆ Di,o is rather
obvious.
Di,o ⊆ Dt(N i,o): We firstly present an algorithm that adds to any node of a given

ε-free representative εα of a dag α ∈ Di,o a label from {ε, 1, ..., x} in such a way that
no node v in εα possesses two father nodes with the same label. v is labeled with ε iff
it is a leaf. Let εα possess the levels 0 up to n. The algorithm is simple:

Step 1: Add label ε to all nodes with out-degree 0.
Step 2: Create a list blacklist(v) with empty content for any node v in α. (blacklist(v)
tells which labels are forbidden for v.)
Step 3: For all i down from n− 1 to 0 do

for all nodes v of level i do
add a label l(v) not in blacklist(v) to v

for all sons v′ of v do
for all fathers v′′ of v′ do

add l(v) to blacklist(v′′).

Any node v has 0 or i sons, and any of its sons has exactly o − 1 fathers different
from v. Thus x = i · (o− 1) + 1 labels are sufficient.

A1

A2

A3

r1

r2 r3

ε

ε

ε

ε

ε

ε

Mε

m

E1

E2

E3

2

2

2

2
a

a

a a

Sε Sd

SM

s

Fig. 7. Petri net N 2,2 for D2,2

We now can generate α by a process π ofN i,o: A node v labeled with ε in α results
from a firing of Mε in π. A node v labeled with j results from a firing of Aj . Add in α
the label rj to all arcs leaving a node labeled with j. This indicates that a firing of Aj

puts all o token on the place rj . As any node v ∈ α possesses no or differently labeled
father nodes all its incoming arcs possess different labels. Thus, v is generated in π by a
firing of El(v) and all token required to fire El(v) are generated by different transitions
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a

a

a

a

ε

ε
2

n

Fig. 8. Petri net for D1,mod n

in N i,o. Thus, the situation as described in Figure 6 doesn’t apply and the abstraction
of the process π is εα with the correct number of in- and outgoing arcs. �
Out-Degree Modulo a Constant
Dc,mod n := {α ∈ {a}†|α = (N,E, λ)∧∀v ∈ N(|v•| mod n = 0∧(|•v| = c∨|•v| =
0))} defines the language of all dags over a single letter with an In-degree 0 or c and an
Out-degree 0 modulo n. Figure 8 shows a Petri net accepting D1,mod n. Thus

Theorem 3. D1,mod n is semi-rational.

However, it seems that Dc,mod n is no longer semi-rational for c > 1.

4.2 Constraints on Topology and Alphabet

Number of Labels for Fathers and Sons

Df
s := {α ∈ Σ†ε |εα = (N,E, λ) =⇒ ∀v ∈ N(|λ(•v)| ≤ 1 ∧ |λ(v•)| ≤ 1)}

defines the dag language over some alphabet Σε where in any ε-free representant of a
dag any node possesses only fathers with a common label and only sons also with a
common label.

Theorem 4. Df
s is semi-rational.

We present an example. The Petri net N f
s of Figure 9 accepts Df

s over the alphabet
{a, b, c} with 0 as initial and terminal state.

It is easily seen thatN f
s accepts Df

s over {a, b, c}. A token on a place px,y for x, y ∈
{a, b, c} results from firing an x-transition and allows only the firing of an y-transition.
The 2-1-ε-loop at px,y can melt thus only token resulting from x-transitions. Thus, any
ε-free representant of a dag inDt(N f

s ) possesses only nodes with all fathers of a unique
label. The 1-2-ε-loop at px,y can multiply a token only into further token that can only
fire a y-transition, therefor any ε-free representant of a dag in Dt(N f

s ) possesses only
nodes with fathers of a unique label and sons of a unique label. Obviously, N f

s can
generate any dag in Df

s . �

Number of Labels for Fathers

Df :={α ∈ {a, b, c}†|εα=(N,E, λ, ) =⇒ ∀v ∈ N((λ(v) ∈ {a, b}⇒|•v|= |v•| ≤ 1)

∧(λ(v) = c⇒ |{v′ ∈ •v | λ(v′) = a}| = |{v′ ∈ •v | λ(v′) = b}|))}.
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Fig. 9. A Petri net accepting Df
s
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Fig. 10. Petri net for Df
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is the language of all of those dags that possess only nodes a, b of In- and Out-degree
≤ 1 and that possess only ε-free representants whose nodes have the same number of
fathers labeled with a as labeled with b.

Theorem 5. Df is semi-rational.

Sketch of Proof. The Petri net of Figure 10
with 0 as initial and terminal state accepts Df . �

With the same idea it should be possible to construct a Petri net for versions of Df with
a weaker restriction on the In- and Out-degrees of a- and b-nodes. However, if we put
no restriction on those degrees the languages should not stay semi-rational. We have
no proof, only an argument: The In-degree of c-nodes is not bounded, nevertheless, it
has to be ensured that the numbers of ingoing arcs from a- and from b-nodes are equal.
Thus, the Petri net must not send to any c-transition two token that result from a firing
of the same a-transition and reach c only via some further ε-transitions (Condition
2a � c). In a process those two paths from one a-transition to the c-transition via
ε-transitions would be melted into a single arc from a to c in the corresponding dag,
compare Figure 6. Thus, even if an equal number of paths from a- and from b-transitions
to any c-transition is ensured in a process, it might no longer be true in the corresponding
dag. But how should a Petri net ensure condition 2a � c if the Out-degree of the a-
transitions is also unbounded?

5 Candidates for Counterexamples

5.1 Number of Fathers Equals Number of Sons

With the same argument as in 4.2 we are convinced that

Df=s := {α ∈ {a}†|εα = (N,E, λ) ∧ v ∈ N =⇒ |•v| = |v•|}

cannot be semi-rational, but we have no proof.

5.2 anbn

Let L := {anbn|n ∈ N} be the standard non-regular cf language of words. It is well-
known that L and even the non-cf language {anbncn|n ∈ N} are accepted by Petri-nets.
However, we again suppose thatDL = {α ∈ {a, b}|path(α ⊆ L)} is not semi-rational.

6 Counterexamples

6.1 Connectivity

An undirected path in a dag is a sequence of nodes v1, ..., vn with (vi, vi+1)
∈ E or (vi+1, vi) ∈ E holds for 1 ≤ i < n. A dag is connected if any two nodes
can be connected by an undirected path.

Theorem 6. Dconn := {α ∈ {a}†ε|α is connected} is not semi-rational.
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a

a

a

a

a

a

Fig. 11. Two dags resulting from Nc

Sketch of Proof. We define for n ∈ N a cyclic dag αcyc,n of length 2n in Dconn over
{a} as
αcyc,n = (Ncyc,n, Ecyc,n, λcyc,n) with
Ncyc,n = {vi,j |i ∈ {1, ..., n} ∧ j ∈ {1, 2}}
Ecyc,n = {(vi1,1, vi2,2)|i1 = i2 ∨ i2 = (i1 + 1)mod n}.

Let us assume a Petri net Nc with m transitions labeled with a accepts Dconn. In
αcyc,n for n large enough there must be a transition t such that a process π for Nc

generating αcyc,n must possess four nodes vi, v
′
i, vj , v

′
j where v′i is a son of vi, v′j is a

son of vj , and vi, vj possess the same label t, and also v′i, v
′
j possess the same label,

say p′, a place of Nc. There results a second process π′ from π where vi gets v′j as a
son and vj gets v′i. π

′ also is a correct process for Nc. However, π′ now generates an
unconnected dag. Figure 11 illustrates the situation. We assume the underlined labels
to result from the same transition. �

7 Conclusion

The paper presents some example dag languages with rather different local and global
properties. We have seen that some of these properties can easily be recognized by a
petri net, while others can not. This should give us an idea for the characteristics of
semi-rational languages and help us to proceed in examining further concepts.
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Abstract. We investigate the following lower bound methods for regular
languages: The fooling set technique, the extended fooling set technique,
and the biclique edge cover technique. It is shown that the maximal attain-
able lower bound for each of the above mentioned techniques can be algo-
rithmically deduced from a canonical finite graph, the so called dependency
graph of a regular language. This graph is very helpful when comparing
the techniques with each other and with nondeterministic state complex-
ity. In most cases it is shown that for any two techniques the gap between
the best bounds can be arbitrarily large. Moreover, we show that deciding
whether a certain lower bound w.r.t. one of the investigated techniques can
be achieved is in most cases computationally hard, i.e., PSPACE-complete
and hence is as hard as minimizing nondeterministic finite automata.

1 Introduction

Finite automata are one of the oldest and most intensely investigated compu-
tational models. It is well known that deterministic and nondeterministic finite
automata are computationally equivalent, and that nondeterministic finite au-
tomata can offer exponential state savings compared to deterministic ones [16].
Nevertheless, some challenging problems of finite automata are still open. For
instance, to estimate the size, in terms of the number of states, of a minimal
nondeterministic finite automaton for a regular language is stated as an open
problem in [1] and [9]. This is contrary to the deterministic case, where for a
given n-state deterministic automaton the minimal automaton can be efficiently
computed in O(n log n) time. Observe that computing a state minimal nonde-
terministic finite automaton is known to be PSPACE-complete [12].

Several authors have introduced communication complexity methods for prov-
ing such lower bounds; see, e.g., [3, 6, 8]. Although the bounds provided by these
techniques are not always tight and in fact can be arbitrarily worse compared
to the nondeterministic state complexity, they give good results in many cases.
In this paper we investigate the fooling set technique [6], the extended fool-
ing set technique [3, 8], and the biclique edge cover technique. Note that the
latter method is an alternative representation of the nondeterministic message
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complexity [8]. One drawback of all these methods is that getting such a good
estimate seems to require conscious thought and ”clever guessing.” However, we
show for the considered techniques that this is in fact not the case. In order
to achieve this goal, we present a unified view of these techniques in terms of
bipartite graphs. This setup allows us to show that there is a canonical bipartite
graph for each regular language, which is independent of the considered method,
such that the best attainable lower bound can be determined algorithmically for
each method. This canonical bipartite graph is called the dependency graph of
the language.

The dependency graph is a tool that allows us to compare the relative strength
of the methods, and to determine whether they provide a guaranteed relative
error w.r.t. the nondeterministic state complexity. Following [1], no lower bound
technique is known to have such a bounded error, but a lower bound can be ob-
tained by noticing that the numbers of states in minimal deterministic automata
and in minimal nondeterministic automata are at most exponentially apart from
each other. We are able to prove that the biclique edge cover technique always
gives an estimate at least as good as this trivial lower bound, whereas the other
methods cannot provide any guaranteed relative error. On the other hand, we
give evidence that the guarantee for the biclique edge cover technique is es-
sentially optimal. In turn we improve a result of [10, 13] on the gap between
nondeterministic message complexity and nondeterministic state complexity.

Finally, we also address computational complexity issues and show that de-
ciding whether a certain lower bound w.r.t. one of the investigated techniques
can be achieved is in most cases computationally hard, i.e, PSPACE-complete
and hence these problems are as hard as minimizing nondeterministic finite au-
tomata. Here it is worth mentioning that the presented algorithms for the upper
bounds also rely on the dependency graph, whose vertices are the equivalence
classes of the Myhill-Nerode relation for the language L and its reversal LR.
Hence, doing the computation on this object in a straightforward manner would
result in an exponential space algorithm. This is due to the fact that the index
of the Myhill-Nerode equivalence relation for LR can be exponential in terms
of the index of the Myhill-Nerode relation for L, or equivalently to the size of
the minimal deterministic finite automaton accepting L. Nevertheless, by clev-
erly encoding the equivalence classes we succeed in implicitly representing the
dependency graph, which finally results in PSPACE-algorithms for the problems
under consideration.

2 Definitions

We assume the reader to be familiar with the basic notations in formal language
and automata theory as contained in [7]. In particular, let Σ be an alphabet
and Σ∗ the set of all words over the alphabet Σ, including the empty word λ.
The length of a word w is denoted by |w|, where |λ| = 0. The reversal of a
word w is denoted by wR and the reversal of a language L ⊆ Σ∗ by LR, which
equals the set {wR | w ∈ L }.
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A nondeterministic finite automaton is a 5-tuple A = (Q,Σ, δ, q0, F ), where Q
is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ → 2Q is the
transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting
states. The transition function δ is extended to a function from δ : Q×Σ∗ → 2Q

in the natural way, i.e., δ(q, λ) = {q} and δ(q, aw) =
⋃

q′∈δ(q,a) δ(q
′, w), for

q ∈ Q, a ∈ Σ, and w ∈ Σ∗. The language accepted by the finite automaton A is
L(A) = {w ∈ Σ∗ | δ(q0, w)∩F �= ∅ }. Two automata are equivalent if they accept
the same language. A nondeterministic finite automaton A = (Q,Σ, δ, q0, F ) is
deterministic, if |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. In this case we simply
write δ(q, a) = p instead of δ(q, a) = {p}. By the powerset construction one
can show that every nondeterministic finite automaton can be converted into
an equivalent deterministic finite automaton by increasing the number of states
from n to 2n; this bound is known to be sharp [15]. Thus, deterministic and
nondeterministic finite automata are equally powerful.

For a regular language L, the deterministic (nondeterministic, respectively)
state complexity of L, denoted by sc(L) (nsc(L), respectively) is the minimal
number of states needed by a deterministic (nondeterministic, respectively) finite
automaton accepting L. Observe that the minimal deterministic finite automaton
is isomorphic to the deterministic finite automaton induced by the Myhill-Nerode
equivalence relation ≡L, which is defined as follows: For u, v ∈ Σ∗ let u ≡L v if
and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗. Hence, the number of states
of the minimal deterministic finite automaton accepting the language L ⊆ Σ∗

equals the index, i.e., the cardinality of the set of equivalence classes, of the
Myhill-Nerode equivalence relation ≡L. The set of all equivalence classes w.r.t.
≡L is referred to Σ∗/≡L and we denote the equivalence class of a word u w.r.t.
the relation ≡L by [u]L. Moreover, we define the relation L≡ as follows: For
u, v ∈ Σ∗ let uL≡ v if and only if wu ∈ L ⇐⇒ wv ∈ L, for all w ∈ Σ∗. The
set of all equivalence classes w.r.t. L≡ is referred to Σ∗/L≡ and we denote the
equivalence class of a word u w.r.t. the relation L≡ by L[u].

Finally, we recall two remarkably simple lower bound techniques for the non-
deterministic state complexity of regular languages. Both methods are commonly
called fooling set techniques and were introduced in [3] and [6].

Theorem 1 (Fooling Set and Extended Fooling Set Technique). Let L ⊆
Σ∗ be a regular language and suppose there exists a set of pairs S = { (xi, yi) |
1 ≤ i ≤ n } with the following properties:

1. If (i) xiyi ∈ L for 1 ≤ i ≤ n, (ii) xiyj �∈ L, for 1 ≤ i, j ≤ n, and i �= j, then
any nondeterministic finite automaton accepting L has at least n states, i.e.,
nsc(L) ≥ n. Here S is called a fooling set for L.

2. If (i) xiyi ∈ L for 1 ≤ i ≤ n, (ii) and i �= j implies xiyj �∈ L or xjyi �∈ L, for
1 ≤ i, j ≤ n, then any nondeterministic finite automaton accepting L has at
least n states, i.e., nsc(L) ≥ n. Here S is called an extended fooling set for L.

Note that the lower bounds provided by these techniques are not always tight and
in fact can be arbitrarily bad compared to the nondeterministic state complexity.
Nevertheless, they give good results in many cases—for the fooling set technique
see the examples provided in [6].
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3 Lower Bound Techniques and Bipartite Graphs

In this section we develop a unified view of fooling sets and extended fooling
sets in terms of bipartite graphs and introduce a technique that leverages the
shortcomings of the fooling set techniques. We need some notations from graph
theory.

A bipartite graph is a 3-tuple G = (X,Y,E), where X and Y are the (not
necessarily finite, or disjoint) sets of vertices, and E ⊆ X×Y is the set of edges.
A bipartite graph H = (X ′, Y ′, E′) is a subgraph of G, if X ′ ⊆ X , Y ′ ⊆ Y ,
and E′ ⊆ E. The subgraph H ′ is induced if E′ = (X ′ × Y ′) ∩ E. Given a set of
edges E′, the subgraph induced by E′ w.r.t. E is the smallest induced subgraph
containing all edges in E′.

The relation between fooling sets and graphs is quite natural, because a (ex-
tended) fooling set S can be interpreted as the edge set of a bipartite graph
G = (X,Y, S) with X = { x | there is a y such that (x, y) ∈ S } and Y = { y |
there is a x such that (x, y) ∈ S }. In case S is a fooling set, the induced bipartite
graph is nothing other than a ladder, i.e., a collection of pairwise vertex-disjoint
edges. More generally, the notation of (extended) fooling sets carries over to
bipartite graphs as follows: Let G = (X,Y,E) be a bipartite graph.

1. Then a set S ⊆ E is a fooling set for G, if for every two different edges e1
and e2 in S, the subgraph induced by the edges e1 and e2 w.r.t. E is the
rightmost graph of Figure 1,

2. and a set S ⊆ E is an extended fooling set for G, if for every two different
edges e1 and e2 in S, the subgraph induced by the edges e1 and e2 w.r.t. E
is one of the graphs depicted in Figure 1.

ei

ej

ei

ej

ei

ej

Fig. 1. Three important bipartite (sub)graphs

Now let us associate to any language L ⊆ Σ∗ and sets X,Y ⊆ Σ∗ a bipartite
graph G = (X,Y,EL), where (x, y) ∈ EL if and only if xy ∈ L, for every x ∈ X
and y ∈ Y . Then it is easy to see that the following statement holds—we omit
the straight forward proof.

Theorem 2. Let L ⊆ Σ∗ be a regular language. Then the set S is a fooling set
for L if and only if the edge set S ⊆ EL is a fooling set for the bipartite graph
G = (Σ∗, Σ∗, EL). An analogous statement holds for extended fooling sets. �

For the lower bound technique to come we need the notion of a biclique edge
cover for bipartite graphs. Let G = (X,Y,E) be a bipartite graph. A set C =
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{H1, H2, . . .} of non-empty bipartite subgraphs of G is an edge cover of G, if
every edge in G is present in at least one subgraph. An edge cover C of the
bipartite graph G is a biclique edge cover if every subgraph in C is a biclique,
where a biclique is a bipartite graph H = (X,Y,E) satisfying E = X × Y . The
bipartite dimension of G is denoted d(G) and is defined to be the size of the
smallest biclique edge cover of G if it exists and is infinite otherwise. Then the
biclique edge cover technique reads as follows—this technique is a reformulation
of the nondeterministic message complexity method [8] in terms of graphs:

Theorem 3 (Biclique Edge Cover Technique). Let L ⊆ Σ∗ be a regular
language and suppose there exists a bipartite graph G = (X,Y,EL) with X,Y ⊆
Σ∗ (not necessarily finite) for the language L. Then any nondeterministic finite
automaton accepting L has at least as many states as the bipartite dimension
of G, i.e., nsc(L) ≥ d(G).

Proof. Let A = (Q,Σ, δ, q0, F ) be any nondeterministic finite automaton accept-
ing L. We show that every finite automaton induces a finite size biclique edge
cover of the bipartite graph G. For each state q ∈ Q let Hq = (Xq, Yq, Eq) with
Xq = X ∩ {w ∈ Σ∗ | δ(q0, w) 3 q }, Yq = Y ∩ {w ∈ Σ∗ | δ(q, w) ∩ F �= ∅ },
and Eq = Xq × Yq. We claim that C = {Hq | q ∈ Q } is a biclique edge cover
for G. By definition each Hq, for q ∈ Q, is a biclique. Moreover, each bipartite
graph Hq is a subgraph of G. Since by construction Xq ⊆ X and Yq ⊆ Y it re-
mains to show that Eq ⊆ EL. To this end assume that x ∈ Xq and y ∈ Yq. Then
the word xy belongs to the language L because q ∈ δ(q0, x) and δ(q, y)∩ F �= ∅.
But then (x, y) is an edge of G. Finally, we must prove that C is an edge cover.
Let (x, y) be an edge in G, for x ∈ X and y ∈ Y . Then the word xy is in L and
since the nondeterministic finite automaton A accepts the language L, there is
a state q in Q such that q ∈ δ(q0, x) and δ(q, y) ∩ F �= 0. Therefore x ∈ Xq

and y ∈ Yq and moreover (x, y) is an edge in Eq, because Hq is a biclique. This
proves that C is a biclique edge cover of G.

Now assume that there is a nondeterministic finite automaton accepting L
whose number of states is strictly less than the bipartite dimension of G. Then
this automaton induces a biclique edge cover C of G, whose size is bounded by
the number of states and thus is also strictly less than the bipartite dimension
of G. This is a contradiction because the bipartite dimension is defined to be
the size of the smallest biclique edge cover. Therefore any nondeterministic finite
automaton accepting L has at least as many states as the bipartite dimension
of G. �
By the previous theorem we obtain the following corollary.

Corollary 4. Let L ⊆ Σ∗ be a regular language. Then the bipartite graph G =
(Σ∗, Σ∗, EL) has finite bipartite dimension. �

4 The Dependency Graph of a Language

In applying the lower bound theorems from the previous section to any particular
language it is necessary to choose pairs (xi, yi) or sets X and Y appropriately. For
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fooling sets a heuristic,1 which of course also applies to the other techniques, was
proposed in [6] and seems to work well in most cases. In fact, we show that such
a heuristic is not needed. To this end we define the following bipartite graph:

Definition 5. Let L ⊆ Σ∗. Then the dependency graph for the language L
is defined to be the bipartite graph GL = (X,Y,EL), where X = Σ∗/ ≡L and
Y = Σ∗/L≡ and ([x]L, L[y]) ∈ EL if and only if xy ∈ L.

It is easy to see that the dependency graph GL for a language L is independent
of the chosen representation of the equivalence classes. Hence all these graphs are
isomorphic to each other. Moreover, it is worth mentioning that the dependency
graph of a language was implicitly defined in [14]. Now we are ready to state the
main lemma of this section.

Lemma 6. Let L ⊆ Σ∗ be a regular language and G = (Σ∗, Σ∗, EL) its associ-
ated bipartite graph.

1. The maximum size of a (extended, respectively) fooling set for G is n if and
only if the maximum size of a (extended, respectively) fooling set for the
dependency graph GL equals n.

2. The bipartite dimension of G is n if and only if the bipartite dimension of
the dependency graph GL equals n.

Proof (Sketch). The idea is to replace the “left” vertices in the bipartite graph
G = (Σ∗, Σ∗, EL) with the Myhill-Nerode equivalence classes Σ∗/≡L, (see also,
e.g., [8]), and simultaneously the “right” vertices with the classes Σ∗/L≡. Then
one can show that S = { (xi, yi) | 1 ≤ i ≤ n } is a fooling set for G if and only
if { ([xi]L, L[yi]) | 1 ≤ i ≤ n } is a fooling set for GL, and that similar facts hold
for the other techniques. �
An immediate consequence of the previous lemma is that finding the best pos-
sible lower bound for the technique under consideration is indeed solvable in
an algorithmic manner. For instance, a fooling set corresponds to an induced
matching [5] in GL, and an extended fooling set to a cross-free matching in GL,
and vice versa. Their associated decision problems are easily seen to be solvable
in nondeterministic time polynomial in terms of the size of GL. The drawback,
however, is that this size can be exponential in terms of the state complexity of
the deterministic finite automaton for the language [17].

5 How Good Are the Lower Bounds Induced by These
Techniques?

We compare the introduced techniques with each other w.r.t. the lower bounds
that can be obtained in the best case and to the nondeterministic state complexity.
1 In [6] the following heuristic is proposed: “Construct a nondeterministic finite au-

tomaton A = (Q, Σ, δ, q0, F ) accepting L, and for each state q in Q let xq be the
shortest string such that δ(q0, xq) = q, and let yq be the shortest string such that
δ(q, yq) ∩ F 	= ∅. Then choose the set S to be some appropriate subset of the pairs
{ (xq, yq) | q ∈ Q }.”
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It is noted in [10] that the bipartite dimension generalizes the fooling set techniques
and can sometimes yield exponentially better bounds than these. In fact we show
that the gaps can be arbitrary, also between the fooling set technique and its simple
extension. Due to the lack of space we omit the proof of the following theorem—the
first statement is from [6].

Theorem 7. There is a sequence of languages (Ln)n≥1 such that the nondeter-
ministic state complexity of Ln is at least n, i.e., nsc(Ln) ≥ n, but any fooling
set for L has size at most c, for some constant c. An analogous statement holds
for extended fooling sets versus fooling sets, nondeterministic state complexity
versus extended fooling sets, and the bipartite dimension versus extended fooling
sets. �

As the reader may have noticed, the comparison between bipartite dimension
and nondeterministic state complexity is missing in the previous theorem. The
following theorem shows that the bipartite dimension of a regular language is a
measure of descriptional complexity.

Theorem 8. Let L ⊆ Σ∗ be a regular language and GL the dependency graph
for L. Then 2d(GL) is greater or equal to the deterministic state complexity of L,
i.e., 2d(GL) ≥ sc(L).

Proof (Sketch). Let GL = (X,Y,EL) and assume that the bipartite dimension
of GL equals k. Then the edge set of GL can be covered by a set of bicliques
C = {H1, H2, . . . , Hk}. For x ∈ Σ∗, let B(x) ⊆ C be the set of bicliques where x
occurs as a “left vertex.” Then define x ∼ x′ with x, x′ ∈ Σ∗ if and only if
B(x) = B(x′). This equivalence relation induces 2|C| equivalence classes, and
is a refinement of the Myhill-Nerode relation. Thus we have shown that 2|C| is
greater or equal to the deterministic state complexity of L. �

Hence, d(GL) ≥ log sc(L) and d(GL) ≥ log nsc(L). By Corollary 4 and Theo-
rem 8 we obtain a characterization of regular languages in terms of bipartite
dimension: A language L ⊆ Σ∗ is regular if and only if d(G) is finite, where
G = (Σ∗, Σ∗, EL). The above result is essentially optimal. In [10, 13] it was
shown that the nondeterministic state complexity can be Ω(2

√
d), where d is the

bipartite dimension of the dependency graph. We significantly improve on this
result using graph-theoretic methods.

Theorem 9. There is a sequence of languages (Ln)n≥1 over a one letter alpha-

bet such that nsc(Ln) = Ω
(
d
−1/2
n · 2dn

)
, where dn is the bipartite dimension

of GLn .

Proof (Sketch). Let Lm = {w ∈ 0∗ | |w| �= 0 mod m } and define GLm :=
(X,Y, (X × Y ) \ EL) to be the bi-complement of GLm . Observe that the bi-
partite graph GLm is an induced matching with n edges. By a recent result
in graph theory [2], the bipartite dimension dm of GLm equals k, where k is
the smallest integer such that m ≤

(
k
� k

2 �
)
,and thus m = Ω

(
d
−1/2
m · 2dm

)
. It re-

mains to be shown that there are infinitely many m such that nsc(Lm) ≥ m.



370 H. Gruber and M. Holzer

We show that this is the case, whenever m is a prime number and thus taking
the sequence (Lpn)n≥1, where pn is the nth prime number, will prove the stated
result. This follows by closer inspection of the languages together with a result
on unary cyclic languages [11, Corollary 2.1]. �

6 Computational Complexity of Lower Bound Techniques

To determine the nondeterministic state complexity of a regular language is
known to be a computationally hard task, namely PSPACE-complete [12]. In this
section we consider three decision problems based on the lower bound techniques
presented so far. The fooling set problem is defined as follows:

– Given a deterministic finite automaton A and a natural number k in binary,
i.e., an encoding 〈A, k〉.

– Is there a fooling set S for the language L(A) of size at least k?

The extended fooling set and the biclique edge cover problem are analogously
defined. We start our investigations with the fooling set problem.

Theorem 10. The fooling set problem is NP-hard and contained in PSPACE.

Proof. For the NP-hardness we reduce the NP-complete induced matching prob-
lem on bipartite graphs [5] to the problem under consideration. We omit the
proof due to lack of space.

The containment in PSPACE is seen as follows: Let 〈A, k〉 be an instance
of the fooling set problem, where A = (Q,Σ, δ, q0, F ) is a deterministic finite
automaton and k an integer. If S is a fooling set, then one can assume w.l.o.g.
that for every (x, y) ∈ S we have |x| ≤ |Q| and |y| ≤ 2|Q|. Moreover we note that
the size of S cannot exceed |Q|. This gives the idea to the following algorithm:
A polynomially space bounded nondeterministic Turing machine can guess k
different words xi with |xi| ≤ |Q| and store k copies of the states qi = δ(q0, xi)
in a k2-vector. Then the Turing machine simultaneously guesses pairwise dif-
ferent words yi of length at most 2|Q| letter by letter, for 1 ≤ i ≤ k, thereby
simulating the automaton A on all inputs xiyj using the k2-vector of states. It
verifies that the yi are indeed pairwise different by remembering that they are
of different length or eventually differ in at least one position. Finally it checks
that δ(q0, xiyj) ∈ F if and only if i = j. �

The following theorem exactly classifies the computational complexity of the
extended fooling set problem.

Theorem 11. The extended fooling set problem is PSPACE-complete.

Proof. The upper bound for the fooling set problem shown in Theorem 10 easily
transfers to extended fooling sets. The details are left to the reader.

The hardness is shown by a reduction from the PSPACE-complete determin-
istic finite automaton union universality problem: Given a list of deterministic
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finite automata A1, A2, . . . , An over a common alphabet Σ, is
⋃n

i=1 L(Ai) = Σ∗?
For technical reasons we assume w.l.o.g. that all words of length at most one
are in

⋃n
i=1 L(Ai). The construction to come relies on a definition of a special

language L commonly specified by the multiple deterministic finite automata—
recall the proof given in [12, Theorem 3.2]. Let 〈A1, A2, . . . , An〉 be the in-
stance of the union universality problem for deterministic finite automata, where
Ai = (Qi, Σ, δi, qi1, Fi), for 1 ≤ i ≤ n is a deterministic finite automaton with
state set Qi = {qi1, qi,2, . . . qi,ti}. We assume that Qi ∩ Qj = ∅ for i �= j. De-
fine the language P (i, j) = {w ∈ Σ∗ | δ(qi1, w) = qij }. We introduce a new
symbol ai for each automaton Ai, and a new symbol bij for each state qij in⋃n

i=1 Qi. In addition, we have new symbols c, d and f . The let P (i) be the
marked version of the language accepted by Ai, i.e., P (i) =

⋃ti

j=1[ai ·P (i, j) ·bij ].
The language Q(i) = {wbij | w ∈ (Σ ∪ λ) and δ(qi1, w) = qij } consists of short
prefixes of words in L(Ai), which are marked at the end. Let B be the set
of symbols bij introduced above. Then the auxiliary language R is given by
R = ({c} ∪Σ)(d ∪Σ)Σ∗({f} ∪B). Lastly, let

L =
n⋃

i=1

[P (i) ∪ aiL(Ai) ∪Q(i)] ∪R ∪Σ∗. (1)

As noted in [12], a deterministic finite automaton accepting L can be obtained
in polynomial time from the finite state machines A1, A2, . . . , An.

Let k = 4 +
∑n

i=1 |Qi|. Then one can show the following claim: There is an
extended fooling set of cardinality at least k+ 1 if and only if

⋃n
i=1 L(Ai) �= Σ∗.

To this end we argue as follows: (1) The set S = S′ ∪ S′′ with

S′ = { (aiwij , bij) | 1 ≤ i ≤ n and 1 ≤ j ≤ ti }
and

S′′ = {(λ, a1b11), (a1b11, λ), (c, df), (cd, f)},
where wij is any word in P (i, j), for each 1 ≤ i ≤ n and 1 ≤ j ≤ ti, is an
extended fooling set of size k. (2) If

⋃n
i=1 L(Ai) = Σ∗, then S is optimal [12,

Claim 3.2], i.e., |S| = nsc(L). Otherwise one can show that S can be extended
by any pair (x, y) with |x| ≥ 1 and |y| ≥ 1 satisfying xy ∈ Σ∗ \

⋃n
i=1 L(Ai). The

details are omitted. �
Finally, we show that that deciding the biclique edge cover problem is also
PSPACE-complete, although the dependency graph of the given language can
be of exponential size in terms of the input.

Theorem 12. The biclique edge cover problem is PSPACE-complete.

Proof. The PSPACE-hardness follows along the lines of the proof of Theorem 11.
In the case where L as defined in Equation (1) is not universal, there is an ex-
tended fooling set of size k + 1, and since the bipartite dimension cannot be
lower we have d(GL) ≥ k+1. In the other case, the nondeterministic state com-
plexity equals k, and matches the size of a the extended fooling set S for L. But
the bipartite dimension of the graph GL is sandwiched between both measures.
Thus, d(GL) ≤ k.
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The containment in PSPACE is seen as follows: We present a PSPACE al-
gorithm deciding on input 〈A, k〉 whether there is a biclique edge cover of size
at most k for GL(A). Since PSPACE is closed under complement, this routine
can also be used to decide whether there is no biclique edge cover of size at
most k−1, and moreover that the bipartite dimension of the graph is at least k.

Due to the space constraints, keeping the dependency graph GL(A) in mem-
ory is ruled out, since the index of L(A)≡ can be exponential in the size of
the given deterministic finite automaton. Recall that the vertex sets of GL(A)
can be chosen to correspond to the equivalence classes of ≡L(A) and L(A)≡. So
the first vertex set is in one-to-one correspondence with the state set Q of the
automaton A, while by Brzozowski’s theorem [4], the second vertex set corre-
sponds one-to-one to a certain subset of 2Q. Namely, for A = (Q,Σ, δ, q0, F ) let
AR = (Q,Σ, δR, F, {q0}), where p ∈ δR(q, a) if and only if δ(p, a) = q, be a finite
automaton with multiple initial states, the so called reversed automaton of A.
Moreover, let D(AR) be the automaton obtained by applying the “lazy” subset
construction to the automatonAR, that is we generate only the subsets reachable
from the set of start states of the finite state automaton AR. Then these subsets
of Q correspond to the equivalence classes of L(A)≡. Since this automaton can
be of size exponential in |Q|, however, it cannot be kept in the working memory,
too. Nevertheless, assuming Q = {q0, q1, . . . qn−1}, we can represent the subsets
of Q as binary string of length n in a natural fashion. By these mappings, we
may assume now that GL(A) = (X,Y,EL(A)) with X = Q, Y = {0, 1}n, and
the suitably induced edge relation EL(A). Thus, we have established a compact
representation of the vertices in the dependency graph. Next, we need a routine
to decide membership in the edge set of GL(A).

Given the implicit representation of GL(A) in terms of a n-state deterministic
finite automaton A = (Q,Σ, δ, q0, F ), there is a PSPACE algorithm deciding,
given a state q of A and a subset address s = a0a1 . . . an−1, if (q, s) ∈ EL(A).
Assume x to be a word satisfying δ(q0, x) = q. As |x| ≤ n, it can be determined
and stored to the work tape without affecting the space bounds. If s corresponds
to a reachable subset M in D(AR), then we can guess on the fly a word y of
length at most 2n, and verify that M is reached in D(AR) by reading y. Now,
(q, s) is an edge in GL(A) if and only if xyR is in L(A). This is the case if and
only if (xyR)R = yxR is accepted by D(AR). Recall that the word y may be of
exponential length and cannot be directly stored on the work tape. But D(AR)
is in the state set M after reading y, and we only have to verify that we reach an
accepting state if we continue by reading xR. This is the desired subroutine for
deciding whether (q, s) ∈ EL(A), which runs in (nondeterministic) polynomial
space.

The next obstacle is that, although there surely exists a biclique edge cover
of cardinality at most n for GL(A), a single biclique in this cover can be of
exponential size. Thus we have to reformulate the biclique edge cover problem
in a suitable manner. Let G = (X,Y,E) be a bipartite graph, and for y ∈ Y
define Γ (y) = { x ∈ X | (x, y) ∈ E }. Then the formula

∃C ⊆ 2X : |C| ≤ k ∧
(
∀(x, y) ∈ E : ∃c ∈ C : x ∈ c ∧ c ⊆ Γ (y)

)
(2)
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is a statement equivalent to the biclique edge cover problem. This is seen as
follows: Assume C is a set of at most k subsets of X satisfying the above con-
ditions. We construct a set of |C| bicliques covering all edges in G. For c ∈ C,
let c′ be the set of vertices in Y such that Γ (y) ⊇ c. Then (c, c′) induces a bi-
clique in G, since every vertex in c is adjacent to all vertices in c′. Furthermore,
the condition on C ensures that every edge is a member of least one such bi-
clique, and we have obtained a biclique edge cover of size at most k. Conversely,
assume that {H1, H2, . . . , Hk} is a biclique edge cover of size k for G, where
Hi = (ci, c′i, ci × c′i) for 1 ≤ i ≤ k. We set C = {c1, c2, . . . ck}. Then for every
edge (x, y) in G, there is a c ∈ C such that x ∈ c and c ⊆ Γ (y). If Hi is a biclique
covering of the edge (x, y), then obviously x ∈ ci and y is adjacent to all vertices
in ci. This proves the stated claim on Equation (2).

Now let us come back to the input 〈A, k〉, where A = (Q,Σ, δ, q0, F ). The
reformulated statement can be checked in PSPACE by guessing a set C of at
most k subsets of Q, and then the Turing machine checks the following for
each pair (x, y) ∈ X × Y , where X and Y is chosen as described above: If
(x, y) /∈ EL(A) it goes to the next pair. Otherwise, it guesses a subset c ∈ C
and verifies that both x ∈ C and that for every x′ ∈ c, (x′, y) ∈ EL(A). By our
previous investigations it is easy to see that this algorithm can be implemented
on a nondeterministic polynomial space bounded Turing machine. This proves
that the biclique edge cover problem belongs to PSPACE. �

Finally, let us mention that the complexity of the fooling set and the extended
fooling set problem does not increase, if the regular language is specified as
a nondeterministic finite automaton. The proofs for the upper bounds on the
complexity carry over to this setup with minor modifications. Currently, we
do not know whether this also true for the biclique edge cover technique, if the
regular language is given as a nondeterministic finite automaton. The best upper
bound we are aware of is co-NEXPTIME, obtained by explicit construction ofGL

and verifying that there is no biclique edge cover of size at most k.

Acknowledgments. Thanks to Martin Kutrib for some discussion on the subject
during the early stages of the paper, and to the referees for hints and suggestions.
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Abstract. In this paper we consider several reachability problems such
as vector reachability, membership in matrix semigroups and reachabil-
ity problems in piecewise linear maps. Since all of these questions are
undecidable in general, we work on lowering the bounds for undecidabil-
ity. In particular, we show an elementary proof of undecidability of the
reachability problem for a set of 7 two-dimensional affine transforma-
tions. Then, using a modified version of a standard technique, we also
prove the vector reachability problem is undecidable for two (rational)
matrices in dimension 16. The above result can be used to show that
the system of piecewise linear functions of dimension 17 with only two
intervals has an undecidable set-to-point reachability problem. We also
show that the “zero in the upper right corner” problem is undecidable
for two integral matrices of dimension 18 lowering the bound from 23.

Keywords: Theory of computing, membership, vector reachability, ma-
trix semigroups, piecewise linear maps.

1 Introduction

The significant property of iterative maps as well as dynamical systems in gen-
eral is that the slightest uncertainty about the initial state leads to very large
uncertainty after some time. With such initial uncertainties, the system’s be-
haviour can only be predicted accurately for a short amount of time into the
future. Many fundamental questions about iterative maps are closely related to
reachability problems in different abstract structures. The question of whether
these problems have an algorithmic solution or not is important since it gives
an answer to many practical questions related to the analysis of model systems,
whose components are governed by simple laws, but whose overall behaviour is
highly complex.

Let us start with an example of Iterative Function Systems (IFS). IFS can be
defined as a set of affine transformations that are iteratively applied (equiprob-
ably or with assigned probability) starting from some initial state. A fascinating
property of IFS is that they have the ability to create incredibly complex images
by very small sets of functions. A spleenwort fern (Figure 1, left) can be gen-
erated by 4 planar affine transformations and the well-known Sierpinski gasket
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(Figure 1, centre) is an attractor for only 3 affine transformations. The “Dragon
Fractal” is another example that is generated by affine transformations and is
shown in figure 1 on the right.

Fig. 1. Fractals generated by two-dimensional affine maps

The fact that we can encode Post’s Correspondence Problem (PCP) shows
that IFS with 7 transformations are in fact so complex that they can be used as
a computational device. This is not a first attempt to encode PCP into an IFS
framework. However, in contrast to the previous research [6], which shows only
the undecidability of parameterized reachability, we show the undecidability of
point-to-point reachability for a set of non-deterministic affine maps.

The question as to whether the reachability problem is decidable for a set
of one dimensional affine transformations applied in a non-deterministic way is
currently an open problem. It is also not clear whether there exists any class of
more complex functions for which the reachability problem in non-deterministic
maps becomes undecidable in one dimension. Similar open problems are stated in
[1, 10] for piecewise affine or polynomial maps. It is known that the reachability
question for piecewise maps in the case of semi-algebraic [12] or analytic maps
[11] is undecidable even in one dimension. In the first part of this paper we show
an elementary proof of the undecidability of the reachability problem for two-
dimensional affine transformations. This leads us to the undecidability result for
the vector reachability problem in 3× 3 rational matrix semigroups.

We then extend the result to show the undecidability of the vector reachability
problem in the case of a matrix semigroup generated by two rational matrices of
dimension 16. Using a similar encoding, we improve the bound for the “zero in
the upper right corner problem”. It was shown that for a semigroup generated
by two integral matrices of dimension 24, the problem of determining if some
matrix in the semigroup has zero in the upper right corner is undecidable [5].
This bound was later improved to 23 [7]. We show that the problem is still
undecidable for two integral matrices of dimension 18.

We also show how to lower the dimensions in related problems concerning
control systems that are defined by a system of piecewise transformations. We
apply our result for the undecidability of the vector reachability problem in
dimension 16 to show that set-to-point reachability is undecidable for piecewise
linear functions of dimension 17 with only two intervals. The natural problem we
can thus state for iterative maps is whether we can find any undecidable problems
for lower dimensions concerning maps defined by only two transformations.



Lowering Undecidability Bounds for Decision Questions in Matrices 377

2 Lowering Undecidability Bounds

2.1 Reachability in Affine and Linear Transformations

In this subsection we show an elementary proof of the undecidability of the
reachability problem for two-dimensional affine transformations and the vector
reachability problem for 3× 3 rational matrix semigroups.

Let us define Σ = {a, b} to be a binary alphabet and Σ∗ to be the free monoid
generated by Σ. For any word, w = w1w2 · · ·wk we denote the reverse of the
word by wR = wk · · ·w2w1. Define a mapping ψ ′ : Σ ∪ {ε} → Q2×2 by

ψ′(ε) =
(

1 0
0 1

)
ψ′(a) =

(
1 1
0 2

)
ψ′(b) =

(
1 2
0 2

)
where ψ′(ε) is the identity matrix I2. We can now define ψ : Σ∗ → Q2×2 by:

ψ(w) = ψ′(w1)× ψ′(w2)× · · · × ψ′(wn) |w = w1w2 · · ·wn ∈ Σ∗

It is easy to check that the matrices ψ ′(a) and ψ ′(b) generate a free semigroup
[4] and the mapping ψ is an isomorphism between Σ∗ and the monoid gener-
ated by {ψ ′(ε), ψ ′(a), ψ ′(b)}. We also define the mapping φ ′ using the inverse
matrices:

φ′(ε) =
(

1 0
0 1

)
φ′(a) =

(
1 − 1

2
0 1

2

)
φ′(b) =

(
1 −1
0 1

2

)
and similarly we have the related morphism φ : Σ∗ → Q2×2 given by:

φ(w) = φ′(w1)× φ′(w2)× · · · × φ′(wn) |w = w1w2 · · ·wn ∈ Σ∗

Notice that for any word w ∈ Σ∗, ψ(w) and φ(w) will have a matrix repre-
sentation of the following form:(

1 x
0 y

)
|x, y ∈ Q

Post’s correspondence problem (in short, PCP) is formulated as follows: Given
a finite alphabet Γ and a finite (ordered) set of pairs of words in Γ ∗: {(u1, v1), . . . ,
(uk, vk)}. Does there exist a finite sequence of indices (i1, i2, . . . , im) with 1 ≤
ij ≤ k for 1 ≤ j ≤ m, such that ui1 ·. . .·uim = vi1 ·. . .·vim . It is easily shown that
this problem is undecidable even with a binary alphabet Γ . PCP(n) denotes the
problem with a set of n pairs. We write np for the minimum size PCP is known
to be undecidable (currently 7, see [13]).

Problem 1. Decide whether a point (x, y) ∈ Q2 can be mapped to itself by non-
deterministically applying a sequence of two-dimensional affine transformations
from a given finite set.

We shall now show that this problem is undecidable.
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Theorem 1. PCP(n) can be reduced to Problem 1 with a set of n affine trans-
formations.

Proof. Given a set of pairs of words over a binary alphabet Σ:

{(u1, v1), (u2, v2), . . . , (un, vn)} |ui, vi ∈ Σ+

Let us construct a set of pairs of 2× 2 matrices using the two mappings φ and
ψ, i.e. : {(φ(u1), ψ(v1)), . . . , (φ(un), ψ(vn))}.

Instead of the equation u = v, we consider a concatenation of two words uR ·v,
which is a palindrome in the case where u = v. In fact by using inverse elements
for the u word, then u is equal to v if and only if uR · v = ε. We call this an
inverse palindrome since it equals the identity iff uR is the reverse and inverse
of v. Initially we take an empty word and for every pair (ui, vi) that we use, we
concatenate the reverse of word ui (using inverse elements) to the left and word
vi from the right.

Let us consider now a matrix interpretation of the PCP problem. We associate
a 2× 2 matrix

C =
(

1 x
0 y

)
with a word w of the form uR · v. Initially C is an identity matrix corresponding
to an empty word. The extension of a word w by a new pair of words (ui, vi) (i.e.
that gives us w′ = uR

i ·w · vi) corresponds to the following matrix multiplication

Cw′ = CuR
i ·w·vi

= φ(uR
i )× Cw × ψ(vi) (1)

Equation (1) is therefore written:(
1 x′

0 y′

)
=

(
1 p1
0 p2

)
×

(
1 x
0 y

)
×

(
1 q1
0 q2

)
(2)

If we multiply the matrices in (2) we have a very simple transformation from
a word vR

i · w · ui to a matrix:(
1 x′

0 y′

)
=

(
1 q2x+ q2p1y + q1
0 q2p2y

)
(3)

Thus we can state that PCP has a solution iff we can get the identity matrix
by using by a set of transformations defined for each pair of words from PCP.

In fact we can rewrite (3) as a two-dimensional affine transformation:{
x′ = q2x+ q2p1y + q1
y′ = p2q2y

where we define one such affine transformation for each pair in the PCP. It can
now be seen that the problem is reduced to the question about reaching the point
x = 0, y = 1 starting from the point x = 0, y = 1. This follows since x = 0, y = 1
corresponds to the identity matrix (see [15]) in the above calculations.
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Corollary 1. Problem 1 is undecidable for a set of seven affine transformations
of dimension two.

Proof. PCP(7) was shown to be undecidable in [13].

We now show that the vector reachability problem is undecidable for rational
matrices of dimension 3. The stronger result about integer matrices was included
in [7] but unfortunately the proof does not cover all cases and cannot be used
for the vector reachability problem. We therefore use a different idea for rational
matrices of dimension 3 and the problem remains open over integral matrices.

Theorem 2. The vector reachability problem in rational matrix semigroups of
dimension 3 is undecidable.

Proof. Let us convert each two-dimensional affine transformation into a three-
dimensional linear transformation as follows:{

x′ = q2x+ q2p1y + q1
y′ = p2q2y

⇒

⎛⎝x′

y′

1

⎞⎠ =

⎛⎝ q2 q2p1 q1
0 p2q2 0
0 0 1

⎞⎠⎛⎝x
y
1

⎞⎠
Thus for a set of n affine functions, this conversion gives us a set of matrices

{M1,M2, . . . ,Mn}, where Mi ∈ Q3×3 for 1 ≤ i ≤ n.
From the proof of Theorem 1 follows that the problem to decide whether

there exists a product M = Mi1Mi2 · · ·Mik
where 1 ≤ ij ≤ n for 1 ≤ j ≤ k such

that Mv = v where v = (0, 1, 1)T is undecidable. It was stated that PCP(7) is
undecidable in Corollary 1 thus seven matrices are needed.

It is also possible to get a symmetric result by converting the additive form of
linear transformations into multiplicative form. In this case we will obtain the
undecidability of the reachability problem for two dimensional transformations
of the following form: {

x = 2q1xq2yq2p1

y = yp2q2

Theorem 3. The vector reachability problem is undecidable for two matrices of
dimension 2np +2 (where np is the instance size for which PCP is undecidable).

Proof. We use a modification of a standard technique for converting membership
problems from a set of matrices into one defined by just two matrices (see,
for example, [5] or [3]). We first obtain the undecidability for two matrices of
dimension 21 then show how this can be reduced to just 16.

Given a set of matrices {M1,M2, . . . ,Mn} where Mi ∈ Qm×m. Let us define
two block diagonal matrices A′ and T ′ by:

A′ =

⎛⎜⎜⎜⎝
M1 0 0 0
0 M2 0 0

0 0
. . . 0

0 0 0 Mn

⎞⎟⎟⎟⎠ , T ′ =
(

0 Im
In(m−1) 0

)
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where 0 denotes a submatrix with zero elements. Clearly the dimension of both
of A′ and T ′ is nm. Further, it can be seen that for any 1 ≤ j ≤ n then
T ′n−j+1A′T ′j−1 cyclically permutes the blocks of A′ so that the direct sum of
T ′n−j+1A′T ′j−1 is Mj⊕Mj+1⊕· · ·⊕Mn⊕M1⊕· · ·⊕Mj−1. We can also note that
A′ ∼ T ′n−j+1A′T ′j−1 (i.e. this is a similarity transform) since T ′n−j+1 · T ′j−1 =
T ′n = In. It is therefore apparent that any product of the matrices can thus
occur and in fact can appear in the first block of the nm matrix product.

Let us define a vector x = (vT , 0, 0, · · · , 0)T ∈ Qnm×1 where v = (0, 1, 1)T as
before. It is easily observed that there exists a matrix productM=Mi1Mi2 · · ·Mit

satisfying Mv = v iff there exists a product R′ = {A′, T ′}+ satisfying R′x = x.
From theorem (2), this establishes the undecidability of vector reachability over
2 matrices of dimension 3 · 7 = 21.

We can observe however that (Mi)[3,3] = 1 and Mi is upper triangular for all
1 ≤ i ≤ n. Let us now construct two new matrices of dimension 2n+ 2:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(q2)1 (q2p1)1 0 0 · · · (q1)1 0
0 (p2q2)1 0 0 · · · 0 0
0 0 (q2)2 (q2p1)2 · · · (q1)2 0
0 0 0 (p2q2)2 · · · 0 0
...

...
...

...
. . .

... 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, T =

⎛⎜⎜⎝
0 I2 0 0

I2n−2 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠

where 0 denotes either the number zero or a submatrix with zero elements, Ik is
the k dimensional identity matrix and (x)i denotes the element x from matrix
Mi. Straight forward calculation shows that T n−j+1AT j−1 permutes the pairs of
rows in A and using a similar argument as before, we thus can form any product
of matrices in the first two rows of this matrix. We define a 2n+ 2 dimensional
vector w = (0, 1, 0, · · · , 0, 1, 1)T to act in the same way as v did previously.
Now define a vector s = (0, 1, 0, · · · , 0, 1, 0)T needed to avoid the pathological
case where only T matrices are used. Finally we see that there exists a solution
Mv = v to PCP iff there exists a product R = {A, T }+ satisfying Rw = s. Note
that in this construction we have two matrices of dimension 2n+ 2.

Since PCP(7) is undecidable, the dimension of the two matrices for which the
vector reachability is undecidable is therefore (2 · 7) + 2 = 16 as required:

Corollary 2. The vector reachability problem is undecidable for two matrices
of dimension 16.

Next we show a related problem but instead of considering vector reachability in
a semigroup, we instead choose the next matrix to apply in a piecewise manner
depending upon the current position of an element in the vector. This realates
non-deterministic and piecewise reachability questions in a natural way.

Theorem 4. Given a pair of matrices M1,M2 ∈ Qk×k and a vector y′ ∈ Qk×1,
the problem of deciding if there exists a vector w′ ∈ Qk×1 of a special form which
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can be mapped to y′ by (left) multiplication by M1 or M2 chosen in a iteratively
piecewise way is undecidable for k = 2np + 3.

Proof. We extend the matrices A, T ∈ Qm×m defined in the previous proof by 1
dimension therefore k = m+ 1. Let:

Υ =
(
A z
d1 10

)
, W =

(
T z
d2 10

)
where z = (0, 0, . . . , 0)T ∈ Q(k−1)×1 is the zero vector, d1 = (0, 0, . . . ,−1),
d2 = (0, 0, . . . ,−2) and d1, d2 ∈ Q1×(k−1). We also extend the vector w used in
the previous proof to w′ = (wT , x)T = (0, 1, 0, 0, . . . , 1, x)T ∈ Qk×1 where x ∈ Q
and x ∈ (0, 1]. We will choose which matrix (Υ or W ) to apply at each step
depending upon the current x value. Define y′ = (0, 1, 0, 0, . . . , 1, 0)T ∈ Qn×1.

Let vector w′ be given where 0 < x ≤ 1. We choose which matrix to multiply
by on the next step by a simple rule. Let t = (0, 0, . . . , 1)T ∈ Qn×1. Then at
each step of the computation we update w′ according to:

w′ =
{
Υw′ ; if 1

10 ≤ w′T · t < 2
10

Ww′ ; if 2
10 ≤ w′T · t < 3

10

and the next step if undefined outside of these regions. Note that Υw′ is the
same as in the previous proof except for the last element of the vector. This is
equal to 10x− 1, which is equivalent to shifting the decimal representation of x
to the left and removing the integer part (since the first decimal digit is a 1).
Similarly, (Ww′)[n,1] = 10x − 2 which is equivalent to shifting the decimal one
place left and subtracting the integer part.

This is applied in an iterative manner until either 0 < x < 1
10 or x ≥ 3

10
(which is undefined so we halt) or else x = 0 in which case, if w′ = y′ then there
exists a correct solution to the PCP as in the previous proof. If w′ �= y′ then
x did not correspond to a correct solution and we halt because the next step is
undefined (when x = 0).

The previous theorem is a set-to-point piecewise reachability question. If there
exists some x with the desired property (e.g. of the form x = 0.1221121 . . .) then
we choose the next matrix depending on whether we have a 1 or a 2 in the next
decimal position (e.g. ΥWWΥΥWΥ ). Note that in this case, the decimal part of
x at the start of the computation corresponded to a sequence of indices giving
a solution to PCP.

2.2 Zero in the Upper Right Corner Problem

We now move to a different problem which has been studied in the literature
and is related to Skolem’s problem.

Problem 2. Given a set of matrices M1,M2, . . . ,Mn of dimension m generating a
semigroup S, is it decidable if there exists a matrix M ∈ S such that M[1,m] = 0.
I.e. does there exist a matrix M ∈ S with a 0 in the upper right corner.
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This problem has been studied for two main reasons. Firstly it is related to
the mortality problem (Does the zero matrix belong to a semigroup?). Actually
the upper left corner is used in the proof but the upper right corner problem is
used in related problems. See for example [9].

Secondly the problem is related to Skolem’s problem of finding zeros in lin-
ear recurrent sequences. It can be easily shown that Skolem’s problem can be
reformulated in terms of a single matrix R and the question, “Does there exist a
k ∈ Z+ such that (Rk)[1,m] = 0 where m is the degree of the linear recurrence?”.
For an overview of this problem and a proof of the decidability for degree 5 linear
recurrence sequences, see the recent paper [8].

In terms of undecidability, it was shown that for two integral matrices of
dimension 24 the zero upper right corner problem is undecidable [5]. This was
improved to dimension 23 in [7]. Using a similar idea to that shown above and
the technique used in [5], we show how to improve the bound to two integral
matrices of dimension 18.

Theorem 5. Given two matrices A,B ∈ Zn×n forming a semigroup S, it is
undecidable if there exists a matrix X ∈ S with a zero in the upper right corner
for n = 2np + 4 (currently 18).

Proof. It can be seen that there exists an injective morphism between words over
a binary alphabet Γ = {L1, L2} and three dimensional matrices. In fact, one such
morphism, which was originally used by Paterson to prove undecidability of the
mortality problem [14], is λ′ : Γ ∗ × Γ ∗ �→ Z3×3 defined by:

λ′(u, v) =

⎛⎝3|u| 0 σ(u)
0 3|v| σ(v)
0 0 1

⎞⎠
for two words u=Li1Li2 · · ·Lir and v=Lj1Lj2 · · ·Ljs , with i1, · · · , ir, j1, · · · , js ∈
{1, 2}, where we define

σ(u) =
|u|∑

k=1

ik3|u|−k

and similarly for v. This matrix is the unique 3-adic representation of the binary
words u, v ∈ Γ ∗. Now consider the following matrix:

H =

⎛⎝1 −1 0
0 −1 0
0 0 −1

⎞⎠
which is self-inverse since HH = I3. We can thus define a similarity transform
Hλ′(u, v)H which gives us the alternate (but still injective) morphism:

λ(u, v) = Hλ′(u, v)H =

⎛⎝3|u| 3|v| − 3|u| σ(v) − σ(u)
0 3|v| σ(v)
0 0 1

⎞⎠
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Notice that u = v iff λ(u, v)[1,3] = 0 since the top right element of the matrix
is the subtraction of the 3-adic representations of u, v.

Using the same idea as before, we can now encode n such matrices into a
single matrix, B, of size 2n + 1 and use a second matrix T which is identical
to the permutation matrix defined previously. Therefore, given n pairs of words
{(u1, v1), (u2, v2), . . . , (un, vn)} we define:

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3|u1| 3|v1| − 3|u1| 0 0 · · · σ(v1)− σ(u1)
0 3|v1| 0 0 · · · σ(v1)
0 0 3|u2| 3|v2| − 3|u2| · · · σ(v2)− σ(u2)
0 0 0 3|v2| · · · σ(v2)
...

...
...

...
. . .

...
0 0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
We can see that a product containing both B and T has a zero in the upper

right corner iff there exists a solution to the PCP however T has a zero upper
right corner on its own. We can apply the encoding technique used in [5] so that
the case with a power of only T matrices can be avoided. Define:

B′ =

⎛⎜⎜⎝
0 1 x 1
0 0 0 1
0 0 B z
0 0 · · · 0

⎞⎟⎟⎠ , T ′ =

⎛⎜⎜⎝
0 1 x 1
0 1 0 1
0 0 T z
0 0 · · · 0

⎞⎟⎟⎠
where x = (1, 0, · · · , 0), z = (0, 0, · · · , 1)T , with x ∈ Z1×k, z ∈ Zk×1 and k is
the dimension of matrix B (and T ). It is clear that the sub-matrices B, T are
multiplied in the same way as before and unaffected by this extension. Notice
the [2, 2] element is 0 in B′ and 1 in T ′. This is used to avoid the pathological
case of a matrix product with only T ′ matrices.

Consider a product of these matrices Q = Q1Q2 · · ·Qm where Qi ∈ {B′, T ′}
for 1 ≤ i ≤ m. It is easily seen that if m ≤ 2 then the top right element of Q
equals 1 for any Q1, Q2. Let us thus assume m ≥ 3 and write this multiplication
as Q = Q1CQm where C = Q2Q3 · · ·Qm−1,

C =

⎛⎜⎜⎝
0 ∗ ∗ ∗
0 λ 0 ∗
0 0 C′ ∗
0 0 · · · 0

⎞⎟⎟⎠
where ∗ denotes unimportant values, λ = {0, 1} and C′ is a submatrix equal to
some product of B, T matrices.

Now we will compute the top right element of Q. Let r denote the dimension
of matrix C (or Q). The first row of Q1C equals (0, λ, C′1,1, C

′
1,2, · · · , C′1,k, ∗)

where again ∗ is unimportant. Note that this vector contains the top row of
the C′ submatrix. We can now easily see that Q[1,r] = (Q1CQm)[1,r] equals
(0, λ, C′1,1, C

′
1,2, · · · , C′1,k, ∗) · (1, 1, zT , 0)T = λ + C′1,k. It is clear that λ = 1 iff
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C = (T ′)m−2 i.e. C is a power of only T ′ matrices. In this case, note that
(C′m−2)[1,k] = 0 since this is a power of matrix T . Thus Q[1,r] = 1 + 0 = 1.

In the second case, λ = 0 whenever C′ contains a factor B′. Therefore Q[1,r] =
0 +C′[1,k] = C′[1,k] which is exactly the top right element of C′ as required. This
equals 0 iff there exists a solution to the PCP.

We require 3 extra rows and columns for this encoding therefore the problem
is undecidable for dimension 2np + 1 + 3 = 2np + 4 (currently 18).

3 Conclusion

We showed that point to point reachability is undecidable for np two-dimensional
affine transformations. A simple extension allowed us to prove that the vector
reachability problem for np rational matrices of dimension 3 is undecidable and
also for 2 matrices of dimension 2np+2. We then showed an undecidable result for
a piecewise vector reachability question where the next matrix applied depends
upon the current value of an element in the vector. Finally we improved the
bounds on the “zero in the upper right corner problem” from 3np + 2 (currently
23) to 2np + 4 (currently 18) using two integral matrices.

It is interesting to consider the lowest dimensions possible for these types of
reachability and membership questions, especially when we have just two trans-
formations. As far as the authors know, 16 is currently the smallest dimension
for an undecidablity result over two matrices. It would be interesting to con-
sider whether there exists other problems related to matrices with undecidbility
over some smaller dimension. We showed a connection between semigroup mem-
bership and piecewise reachability, however we believe this connection can be
strengthened to show other undecidability results in piecewise functions.
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Abstract. We consider Billiard Words on alphabets with k = 3 let-
ters: such words are associated to some 3-dimensional positive vector−→α = (α1, α2, α3). The language of these words is already known in the
usual case, i.e., when the αj are linearly independent over Q, and so for
the α−1

j ’s. Here we study the language of these words when there exist
some linear relations. We give the complexity of Billiard Words in any
case, which has asymptotically a ”polynomial-like” form, with degree less
or equal to 2. These results are obtained by geometrical methods.

Keywords: Languages, Billiard Words, Complexity.
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1 k-Dimensional Billiard Words

1.1 Standard Billiard Words

Let D be the half-line of origin O, in the k-dimensional space RI k, and parallel
to the positive vector −→α := (α1, α2, . . . , αk). Then we define the associated
Standard Billiard word, or cutting sequence, (starting from O) denoted by c−→α =
cα1,α2,...,αk

on the alphabet A = {a1, a2, . . . , ak} as shown in Fig.1.

In dimension 2, this can be made using the three following methods:

1. encoding by a1 the black horizontal unitary segment and by a2 the black
vertical unitary segment (see Fig.1.a). Then a1cα1,α2 encodes the discrete
path immediately below the half-line, hence cα1,α2 = a2a1a2a1a2a2a1a2a1 . . .
in Fig.1.a. The infinite word a1cα1,α2 is the well-known Christoffel word.
However this method cannot be generalized in higher dimensions;

2. moving from the origin to infinity, encode the sequence of intercepts between
D and the grid, using a1 for a vertical line and a2 for an horizontal one (black
points on Fig.1.a);

3. by looking at the sequence of the centers (white points) of the unit squares
crossed by D. Two consecutive centers correspond to joining squares, so that
the vector joining these two points is one of the two vectors of the canonical
basis (−→e1 ,−→e2). Then encode by aj the vector −→ej , j = 1, 2.

� Partially supported by Region Limousin.

O.H. Ibarra and Z. Dang (Eds.): DLT 2006, LNCS 4036, pp. 386–396, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In higher dimension k ≥ 3, both methods 2 and 3 can be generalized. We consider
now the facets of the unit k-cubes crossed by D, instead of the sides of the unit
squares (see Fig.1.b, with k = 3). In this figure, the crossing points are the black
points and the centers of unit k-cubes are the white ones, as in Fig.1.a. In both
cases, we encode the vectors −→ej (1 ≤ j ≤ k) of the canonical basis by the letters
aj , and a crossed facet by its orthogonal direction, and we get in Fig.1.b the
billiard word cα1,α2,α3 = a1a2a3a1a2a3 . . ..

D

OO

D

e2

e1 e1

e2
e3

Fig. 1. Standard Billiars Words in dimension 2 (left part 1.a) and in dimension 3 (right
part 1.b)

This works as long as the half-lineD crosses each facet in its interior (so we can
define consecutive crossed unit k-cubes), i.e., D does not contain any 2-integer
point, except for O: a 2-integer point in RI k is a point with at least two integer
coordinates, see [9]. Geometrically, a 2-integer point is a point which belongs to
more than two unit k-cubes of the grid. This property for D corresponds to the
following condition which is (almost) always assumed in the sequel:

Hypothesis 1. All ratios
αi

αj
are irrational numbers, 1 ≤ i < j ≤ k.

This condition already holds in the usual case:

Hypothesis 2. The real numbers α1, α2, . . . , αk, are Q-linearly independent.

This strong hypothesis has always been made in the former works in this topic,
and was not sufficient: it has been pointed out in [5] when k = 3. In this paper,
we also consider the following hypothesis:

Hypothesis 3. The real numbers
1
α1
,

1
α2
, . . . ,

1
αk

, are Q-linearly independent.
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Note that Hyp.1, Hyp.2 and Hyp.3 are identical when k = 2. When Hyp.2 or
Hyp.3 are not satisfied, there exist some relations over ZZ :

k∑
j=1

mjαj = 0 (1)

or
k∑

j=1

mj

αj
= 0 (2)

with coprime integers mj , 1 ≤ j ≤ k.

1.2 Billiard Words with Intercept

The same construction can be made with the half-line D starting from any point
S and parallel to the positive vector −→α . To simplify we can choose S in the
subspace −→α⊥, and by periodicity we can assume that S is in the orthogonal
projection P of the unit k-cube centered at the origin onto −→α⊥. Thus P is a
(k − 1)-dimensional convex polyhedron, and the projection O′ of the center of
this unit k-cube is a symmetry center for P . We denote by

−→
bj , 1 ≤ j ≤ k, the

orthogonal projections of −→ej onto −→α⊥. For k = 3, P is an hexagon whose edges

b1

b3

b2

O’

O

P

Fig. 2. The hexagon P and the three vectors b1, b2 and b3 when k = 3

correspond to the three vectors
−→
b1 ,
−→
b2 and

−→
b3 , see Fig.2. O is the starting point

of the Standard Billiard word, and
−−→
O′O = −1

2

k∑
j=1

−→
bj .

The starting point S ∈ P is called a nonambiguous point in P when the line
L parallel to −→α and passing by S does not contain any 2–integer point. Then
the Billiard Word starting from S is well defined, as we have seen before (we
only need that the positive part D of L does not contain any 2-integer point).
This word is denoted by c−→α ,S = cα1,α2,...,αk,S .
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We must also consider those starting points S such that L contains 2-integer
points: the existence and position of these points is the keypoint of the main
theorem. We call these points a d-ambiguous point when L contains exactly d
2-integer points, or a ∞–ambiguous point when L contains infinitely many 2-
integer points.

The set of ambiguous points is neglectible in P , in the sense of the Lebesgue
measure of RI k−1. However, except for some vectors −→α , this set is dense in P .

2 Already Known Results on Factors of Billiard Words

Billiard Words and Sturmian Words have been intensively studied, see [1], [7],
[8], [14] or [15], for general surveys, and many results are known, concerning the
language of these words, i.e., the set of all finite factors.

In the usual case, i.e., with Hyp.2 and Hyp.3, the complexity function is
known, and so for the palindromic complexity function: the complexity function
pu(n) (resp. pU(n)) of an infinite word u (resp. of a set U of words u) is the
number of distinct factors v of length n of u (resp. of some word u ∈ U), see
[17], [3] and [13] for a general exposure concerning complexity..

In the generic case, the language of the Billiard word c−→α ,S depends only on
the vector −→α , and the complexity function pk(n) = pk,−→α ,S(n) depends only on
the dimension k:

p2(n) = n+ 1
p3(n) = n2 + n+ 1

pk(n) =
min(k−1,n)∑

i=0

i!
(
k − 1
i

)(
n
i

)
These results come from the original works on Sturmian Words in dimension
k = 2, from [2] (dimension k = 3, with the additional hypothesis that Hyp.3 is
also satisfied as it was noticed in [5]; this result was first conjectured in [16]),
and [4] (for any k). In this last case, the property that the complexity function
does not depend on −→α is the main key of the proof which is both technical
and complicated. When Hyp.2 is true, but not for Hyp.3, it can be proved that
An2 ≤ p3(n) ≤ Bn2 for positive constants A and B, see [6].

We consider in the following the case k = 3, and the two complexity functions
p(n) := p3(n) of the Billiard Word c−→α ,S and p+(n) := p+

3 (n) of the set of all Bil-
liard Words c−→α ,S corresponding to a given vector −→α , S being any nonambiguous
starting point.

3 Main Result
3.1 Some Notations

In this section we have k = 3. We consider the six distinct possibilities:
Case 1. Hyp.2 and Hyp.3 are true.

Case 2. Hyp.2 is true and Hyp.3 is false.
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Case 3. Hyp.2 is false and Hyp.3 is true.

Case 4. Both Hyp.2 and Hyp.3 are false, and Hyp.1 is true.

Case 5. Hyp.1 is false (and so for Hyp.2 and Hyp.3), but only one of the ratios
α1

α2
,
α2

α3
,
α3

α1
is a rational number.

Case 6. The three ratios
α1

α2
,
α2

α3
,
α3

α1
are rational numbers.

(when two of these ratios are rational numbers, so is the third one).
Denote by d+ and d− the dimension of the Q-vector space generated by

(α1, α2, α3) and (
1
α1
,

1
α2
,

1
α3

) respectively. We have (d+, d−) = (3, 3), (3, 2),

(2, 3), (2, 2), (2, 2), (1, 1) respectively, in the six cases above.
When d+ = 2, we denote p1α1 + p2α2 + p3α3 = 0 the only relation (1) with

integer coprime numbers pj (this relation is defined up to a factor ±1, we set
P := |p1|+ |p2|+ |p3|) , and when d− = 2,

q1
α1

=
q2
α2

+
q3
α3

the only relation (2)

with coprime positive integers qj (this gives the general case, up to a circular
permutation of the coordinates).

In Case 5 we define coprime positive integers by
α1

α2
=
r1
r2

when it is a rational

number, which can be supposed up to a circular permutation of coordinates. In
Case 6 we define positive coprime integers rj by (α1, α2, α3) = λ(r1, r2, r3).

We consider a given vector −→α . Then the compexity function pk(n) of the
Billiard Word depends only on the starting point S, which needs to be a non-
ambiguous point.

3.2 The Main Theorem

Theorem 1. The complexity functions p(n) and p+(n) have the following forms:

– (Case 1, see [2]) for all n and all S :

p+(n) = p(n) = n2 + n+ 1

– (Case 2) for all S :

p+(n) = p(n) = (1− 1
2q1

α1

α1 + α2 + α3
)n2 +O(n)

– (Case 3) for all n :
p+(n) = n2 + n+ 1

and, only for large n:

p(n) = Pn+ P in the general case for S

p(n) = (P − 1)n+ P ′′ for special S

with P ′′ ≥ P except P ′′ = P − 1 in a very special case;
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– (Case 4) for all n :

p+(n) = (1 − 1
2q1

α1

α1 + α2 + α3
)n2 +O(n)

and, only for large n :

p(n) = Pn+ P in the general case for S

p(n) = P ′n+ P ′′ for special S

with P ′ = P − 1 or P ′ = P − 2, and P ′′ ≥ P , and P ′′ ≥ P ;
– (Case 5)

p+(n) =
α3

α1 + α2 + α3
n2 +O(n)

and for large n :

p(n) = Rn+R in the general case for S

p(n) = (R− 1)n+R′′ for special S

with R′′ ≥ R := r1 + r2;
– (Case 6) for large n:

p+(n) = (R− 1)R

p(n) = R

with R := r1 +r2 +r3, the first formula is valid for pairwise coprime integers
rj.

The special starting points S can be explicitely given as we see further. In Case
2 the result improves Theorem 8 in [6]. In Case 6, a formula for p+(n) can be
given in the general case, using the rij := pgcd (ri, rj) for i �= j. The formula
for p(n) in Case 6 may be viewed as a classical unwritten result. Remark that
the ratio

αj

α1 + α2 + α3
is the asymptotic frequency of occurence of the letter aj

in the Billiard Word.

4 Some Details on the Proofs

4.1 Some New Results: On 2-Integer Points on a Line

We consider a line L parallel to −→α and passing by the point S in P .

Lemma 1. ([11]) With Hyp.1:

– for any 1 ≤ j �= j′ ≤ k, there is at most one point M in L with rational
coordinates mj and mj′ ;

– there is at most
n(n− 1)

2
2-integer points in L;
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– when L contains an integer point, there exist no other 2-integer point in L;
– when L contains a point with rational non integer coordinates, there exist no

2-integer point in L, i.e., S is a nonambiguous point.

The proof is very easy, as we have
m2j −m1j

m′2j′ −m′1j′
=

λαj

λαj′
=

αj

αj′
/∈ Q when

−−−→
M ′M = λ−→α . The second item is an easy consequence of the first one.

We said that the finite sequence j1, j2, . . . , jd+1 of indices is a chain of length
d if there exist a sequence M1,M2, . . . ,Md of distinct points in L such that Mi

has rational coordinates of indices ji �= ji+1. This chain is called a circular chain
when jd+1 = j1. We denote by d− the dimension of the Q-vector space generated

by (
1
α1
,

1
α2
, . . . ,

1
αk

).

Lemma 2

Circular chain exactly corresponds to some linear relation
d∑

i=1

ni

αji

= 0 with

nonzero integer coefficients.

The proof is based on
−−−−−→
MiMi+1 =

mi+1,j −mi,j

αi+1

−→α with j := ji+1. Using lemma

2 with k = 3, we may have at most two 2-integer points on a line L with Hyp.3
and at most three with Hyp.1.

4.2 Previous Results

The following results can be proved for any k ≥ 3 and most of them are proved
in [11]. As we used them for computing the complexity functions when k = 3,
we give their expressions in this context, which is rather simple.

Grids and Tilings of the Plane. The hexagon P is a fundamental domain
associated to the lattice L0 generated in −→α ⊥ by the vectors

−→
b3 −

−→
b1 and

−→
b2 −

−→
b1 .

For i ≥ 0 we denote by Mi the sets of the hexagons T−→
b
P translated from

P by the vectors
−→
b = n1

−→
b1 + n2

−→
b2 + n3

−→
b3 , with relative integers such that

n1 +n2 +n3 = −i (see Fig.3 for the tilingsM0,M1,M2). We get regular tilings
of −→α⊥, and we have Mi+1 = T−−→bj

Mi for any 1 ≤ j ≤ 3. We consider in the
following the pieces of P obtained by cutting P by all the grids corresponding to
the tilings Mi, 1 ≤ i ≤ n. In Fig.3 we give these thirteen pieces corresponding
to n = 3, i.e., the possible factors of length 3 for the Billiard Words. We denote
by P(n) a generic piece.

On the Projection of the Integer Points. We denote by G the closure of
the set of the projection of the integer points in RI k onto −→α⊥. Using a classical
result on closed subgroups in vector spaces RI d, see for example [12], TG VII.5,
Theorem 2, we describe in [11] the set G, which is in the case k = 3 the set of
those points (x1, x2, x3) in −→α⊥ such that m1x1 + m2x2 + m3x3 ∈ ZZ for any
integers (m1,m2,m3) satisfying (1). It implies that G is:
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O’

P
M2

M0

M1

Fig. 3. Grids and pieces in the hexagon

– when d+ = 3, the whole plane −→α ⊥;
– when d+ = 2, a set of equidistant parallel lines, perpendicular to the vector
−→p := (p1, p2, p3);

– when d+ = 1, a lattice of the plane −→α⊥.
On the Set of Edges of ”b-Walks”. We introduce in [10] the notion of b-walk,
which consists to start from some point S = S0 in P , and make some translation
to get a new point S1 := S +

−→
bj in P . When S is a nonambiguous point, there

exist only one index 1 ≤ j1 ≤ 3 such that S +
−→
bj still remains in P , and we

can iterate to get an infinite b-walk, coded by the sequence of indices j1, . . .. We
prove in [11] that the infinite word coding this walk is the Billiard Word c−→α ,S ,
and that the closure HS of the set of the edges S0, S1, . . . of the infinite b-walk
starting from S is the intersection between P and S + G. So we get (≡1 means
that the difference is an integer):

Proposition 1. When k = 3 the set HS is:

– the whole hexagon P in Cases 1 and 2;
– the set of those points (x1, x2, x3) such that p1x1 + p2x2 + p3x3 ≡1 p1s1 +
p2s2 + p3s3 in Cases 3 and 4, which is a set of P parallel segments, except
when p1s1 + p2s2 + p3s3 = 0, when it contains only P − 1 parallel segments
(see Fig.4.a and 4.b resp.);

– a set of R equidistant segments parallel to
−→
b� in Case 5;

– a set of R points in Case 6.

In Fig.4, (p1, p2, p3) = (3, 1,−2) and O′ belongs to G as the sum P = p1 +p2+p3

is even. We have −→p = 3
−→
b1 +

−→
b2 − 2

−→
b3 ∈ −→α ⊥, and the set HS is the union of six

(resp. five) vertical thick segments.
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Fig. 4. The set HS, generic case (4.a on the left) and special case (4.b on the right)

On the Complexity Functions. We prove in [11] that each polygonal piece
P(n) of P is the set Pv of the starting points of the b walks of length n encoded
by some word v of length n. Then the complexity function p+(n) is the number
Π(n) of pieces of P under the tilings M1,M2, . . . ,Mn.

In the same way, we prove thatHS is the closure set of the edges of the infinite
b-walk starting from S, hence the complexity function p(n) is the number ΠS(n)
of pieces of P under the tilings M1,M2, . . . ,Mn, whose the interior intersects
the set HS .

Moreover, except in Case 6, the diameter of the pieces Pv tends to zero as
the length |v| of v tends to infinity. So we get:

– when d+ = 3, p(n) = ΠS(n) = Π(n);
– when d+ = 2, p(n) = ΠS(n) for large n.

4.3 Computation of Π(n) and ΠS(n) When k = 3

The Number of Pieces of P. The keypoint is to observe that two grids
Mi and Mj have exactly two intersecting points in P for i < j, except for
j = i+ 1 (only one, which is the new edge due to Mi) and i = 0 (four intersect-
ing points) (see the white points in Fig.3, which correspond to the intersecting
points between M3 and Mj , j = 0, 1, 2, respectively 4, 0, 2 points, and the one
corresponding to the new edge), and that these points are always distinct, except
if it corresponds to 3-ambiguous points.

These exceptional points appear only in Cases 2 and 4.
When they do not appear, we get n2 +2n+4 edges and 2n2 +3n+4 vertices

for positive n, and so n2 + n+ 1 pieces, this is the main result of [2].
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As one 3-ambiguous point appears the number of edges decreases of 2 and the
number of vertices decreases of 1, and we loose one piece. Hence the complexity
is equal to n2 +n+1−m, where m = m(n) is the number of exceptional points,
i.e., of common points of three grids Mi1 ,Mi2Mi3 , 0 ≤ i1 < i2 < i3 ≤ n. The
following lemma, whose proof is based on Lemma 2, gives the anounced result
in this case.

Lemma 3. When d− = 2, the number of common points of three grids
Mi1 ,Mi2Mi3 , 0 = i1 < i2 < i3 ≤ n, is the maximal integer κ such that

κq1 +
⌊
κq1

α2

α1

⌋
+

⌊
κq1

α3

α1

⌋
≤ n.

In particular, we have κ =
1
q1

α1

α1 + α2 + α3
n+O(1).

The Number of Pieces of HS. When d+ = 2 the number of intersecting
points between the Mi’s and HS modulo P is equal to the number of segments
composingHS . This number is equal to P or P−1. If we consider only the number
en of new intersecting points, i.e., those in Mn but not in the preceeding ones,
then we have:

– e0 = P or P − 1;
– en−1 − en is the number of common points of HS , M0 and Mn.

Lemma 4. (For d+ = 2) A common point (x1, x2, x3) of M0 and Mm satisfies

p1x1 + p2x2 + p3x3 ≡1

{
−N piαi

α�

}
=

{
N
pjαj

α�

}
.

Any {i, j, �} = {1, 2, 3} and N ∈ ZZ ∗ appears exactly one time, for some value
m ∈ NI ∗.

In Case 3, these scalar products are all distincts. This proves that either en = e0
for all n, or en = e0 for n ≤ n0, and en = e0 − 1 for n > n0. This gives
the annouced form of the complexity function p(n) in this case, the exceptional
starting points being those such that the scalar product p1s1 + p2s2 + p3s3 is
modulo one a nonzero multiple of some ratio

piαi

αj
.

In Case 4, the scalar products are not always distincts, and a given value can
be obtained one or two times. So there also exist points S such that en = e0 for
small n, and then on some interval en = e0−1, and then en = e0−2 for large n.

In Case 5, the same value may appears infinitely many in these scalar products
modulo one. The lines of G are parallel to

−→
b3 , the set HS is the union of r1 + r2

segments parallel to
−→
b3 , and we get easily ΠS(n) = (r1 + r2)(n + 1), as each

new tiling Mm, m ≥ 1, crosses (r1 + r2) time exactly the set HS , except when
there exist 2-ambiguous points on HS . Then the result is the same as in Case 3.
However, the computation of Π(n) is rather different.
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Case 6 is a very special case and cannot be treated in the same way. As
the integers rj are coprime, the Billiard Word c−→α ,S is periodic with a smallest
period equal to R, so that p(n) = R for n ≥ R. The computation of Π(n) is
more technical. When the rj are paiwise coprime integers and for large n, the
hexagon is cutted by r1 + r2 − 1 segments (resp. r1 + r3 − 1, r2 + r3 − 1) in the
three directions parallel to its sides. Then we cut the hexagon, to build a new
fundamental domain of the lattice L0, which is a parallelogram. The number of
pieces can be computed more easily in this parallelogram, and we get the formula
p+(n) = (R− 1)R.
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Abstract. The complexity (or growth) functions of some languages are
studied over arbitrary nontrivial alphabets. The attention is focused on
the languages determined by a finite set of forbidden factors, called an
antidictionary. Let m be a nonnegative integer. Examples of languages of
complexity Θ(nm) with finite (and even symmetric finite) antidictionar-
ies are given. For any integer s such that 1 ≤ s ≤ m, a sequence of
languages with finite antidictionaries and Θ(nm) complexities, converg-
ing to the language of Θ(ns) complexity, is exhibited. Some languages
of intermediate complexity are shown to be the limits of sequences of
languages with finite antidictionaries and polynomial complexities.

The combinatorial complexity of a formal language (just complexity throughout
the paper) is a function that shows the diversity of the language. The most
well-known and intensively studied particular case of complexity is the subword
complexity of an infinite word (see Sect. 9 of [3], for example). Also, some atten-
tion is drawn to complexity of languages of power-free words. The first result in
this direction was obtained in [2], where some bounds were given for complexity
of two important languages, namely, the language of binary cube-free words, and
the one of ternary square-free words.

At the same time, complexity is an important characteristics of any language.
So, there are good reasons to study complexity of languages in a more general
framework, moving from the question “what complexity has the given language?”
to the question “what complexities can the languages from a given class have?”.
So far, a satisfactory classification of complexity classes is known only for infinite
words, generated by iterations of morphisms (cf. [3]), and this particular result
is already highly nontrivial. In this paper we continue the study of complexity
classes for rational languages, initiated in [7], and show that polynomial com-
plexities of any degree are permitted for an interesting and important subclass
of rational languages.

The mentioned subclass consists of languages with finite antidictionaries (see
the definition below), and plays a very important role in the study of complexity
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of languages. The complexity of a language with finite antidictionary can be
effectively evaluated. The finite automaton, recognizing such a language, can be
consructed using the algorithm of [4]. The structure of such an automaton allows
us to decide whether the language is exponential or polynomial, and to determine
the precise degree of the polynomial in the latter case ([7], see Theorem 1 below).
In the former case the growth rate of the language (the base of the exponential
function) is equal to the Frobenius root of the adjacency matrix of the automaton
(cf. [5]).

Thus, to evaluate the complexity of a language, we can approximate this
function by complexities of languages with finite antidictionaries. To do this, we
construct a sequence of languages with finite antidictionaries, converging to the
target language. In this paper we consider both natural ways of approximation:
from above and from below. For the case of the above approximation we con-
sider the relation between the polynomial complexity of the target language and
complexities of its approximations. The approximation from below is used to
prove that some languages defined over non-trivial finite alphabets under some
natural conditions have intermediate complexities.

The paper is organized as follows. The definitions and some necessary prelim-
inaries are given in Sect. 1. In Sect. 2 two countable families of finite automata
are introduced. Sections 3–5 contain main results, the proofs of which are based
on the properties of those automata.

1 Preliminaries

We begin with some notation and definitions on words, finite automata and
complexity functions. For more background see, e.g., [6].

An alphabet Σ is a non-empty set the elements of which are called letters. A
word is a finite sequence of letters, say W = a1 . . . an. A word U is a factor of
the word W if W can be written as PUQ for some (possibly empty) words P
and Q. The power factorization of a word W is its factorization W = an1

i1
. . . ant

it

to the minimal number of factors with all factors being powers of a single letter.
As usual, we write Σn for the set of all n-letter words, and Σ∗ for the set of all
words over Σ. The subsets of Σ∗ are called languages. A language is factorial
if it is closed under taking factors of its words, and antifactorial if no one of its
words is a factor of another one. If X is a word over an auxiliary alphabet Δ,
W is a word over Σ, and for any substitution f : Δ → Σ∗\{λ} the word f(X)
is not a factor of W , then W is said to avoid the pattern X .

A deterministic finite automaton (DFA) is a 5-tuple (Σ,Q, δ, s, T ) consisting
of a finite input alphabet Σ, a finite set of states (vertices) Q, a partial transition
function δ : Q×Σ → Q, one initial state s, and a set of terminal states T . The
underlying digraph of the automaton contains states as vertices and transitions
as directed labeled edges. Then every path in this digraph is labeled by a word.
We make no difference between a DFA and its underlying digraph. An accepting
path is any path from the initial to a terminal vertex. A DFA recognizes the
language which is the set of all labels of the accepting paths, and is consistent
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if each its vertex is contained in some accepting path. A trie is a DFA whose
underlying digraph is a tree such that the initial vertex is its root and the set of
terminal vertices is the set of all its leaves.

For an arbitrary language L over a finite alphabet Σ the complexity function
(or simply complexity) is defined by CL(n) = |L ∩Σn|. We are interested in the
growth rate rather than the precise form of the complexity function. As usual,
we call a complexity function polynomial if it is O(np) for some p ≥ 0 (bounded
from above by a polynomial of degree p), and exponential if it is Ω(αn) for
some α>1 (bounded from below by an exponential function at base α). We also
write Θ(np) for the function which is bounded from above and from below by
polynomials of degree p. A complexity function is said to be intermediate if it
is bounded neither by a polynomial from above nor by an exponential function
from below. Alternatively, it can be said that such a function is superpolynomial
and subexponential.

The definition of Ω (and, hence, of Θ) suits well only for increasing functions.
So, if the complexity function is not increasing, we estimate its fastest increasing
subsequence. In this paper we deal only with factorial languages (but Theorem 1
works for any rational language). For a factorial language the complexity is
known to be either bounded by a constant or strictly increasing (cf. [3], and also
[1] for the proof in the general case). We also note that the complexity of the
language of all finite factors of an infinite wordW is well-known in combinatorics
of words under the name of subword complexity of the word W .

The following useful theorem characterizes complexities of rational languages.

Theorem 1 ([7]). Let a language L be recognized by a consistent DFA A. Then
1) If A is acyclic, then L is finite;
2) If A contains two cycles sharing one vertex, then L is exponential;
3) If A contains a cycle, and all cycles in A are disjoint, then L is polynomial,

and its complexity function is Θ(nm−1), where m is the maximum number of
cycles encountered by an accepting path.

A word W is forbidden for the language L if it is a factor of no element of L.
A forbidden word is minimal if all its proper factors are not forbidden. The sets
of all minimal forbidden words for given languages were intensively studied by
different authors. One of the most significant early works is [5]. Following [4], we
refer to such sets as antidictionaries of languages. The antidictionary is always
antifactorial. If a factorial language L over the alphabet Σ has the antidictionary
AD, then the following equalities holds:

L = Σ∗\AD·Σ∗·AD, AD = Σ·L ∩ L·Σ ∩Σ∗\L.
We see that any antidictionary determines a unique factorial language, which
is rational if the antidictionary is also rational. In particular, the factorial lan-
guages with finite antidictionaries form a proper subclass of the class of rational
languages. The role of this subclass in the study of complexity was already men-
tioned in the introduction. In order to build an automaton recognizing a language
with a known finite antidictionary, we use the algorithm of [4] which is shortly
described here in a suitable notation.
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Algorithm.
Input: an antidictionary AD.
Output: a DFA A recognizing the factorial language L with the antidictionary
AD.
Step 1. Construct a trie T , recognizing AD. (T is actually the digraph of the
prefix order on the set of all prefixes of AD.)
Step 2. Associate each vertex of T with the word labeling the accepting path
ending in this vertex. (Now the set of vertices is the set of all prefixes of AD.)
Step 3. Add all possible edges to T , following the rule:
the edge (U, V ) labeled by a should be added if
U is not terminal, and
U has no outgoing edge labeled by a, and
V is the longest suffix of Ua which is a vertex of T .

(These edges are called backward while the edges of the trie are called forward.)
Step 4. Remove terminal vertices and mark all remaining vertices as terminal to
get A.

It is easy to check thatA is consistent, and hence can be studied using Theorem 1.

2 Web-Like Automata

The results of this paper are derived from the properties of deterministic finite
automata of a special form, recognizing factorial languages with finite antidic-
tionaries.

Let Σ be a k-letter alphabet with k ≥ 2. To define the first family of DFA,
suppose that Σ is endowed with a cyclic order ≺. Let ā denote the successor
of a in this order. The family of finite antidictionaries {ADm,≺}m≥1 over Σ is
defined by

ADm,≺ = {ab | a, b ∈ Σ, b �=a, b �=ā}∪
{a2ā¯̄a, a3ā2¯̄a, . . . , amām−1¯̄a | a ∈ Σ} ∪ {am+1ā | a ∈ Σ}. (1)

For any m, we use the Algorithm to construct the DFA recognizing the factorial
language Lm,≺ with the antidictionary ADm,≺ (see Fig. 1). We denote this DFA
by Wk,m and call it a web-like automaton.

This automaton contains k loops, and exactly one cycle of length sk for any
s = 1, . . . ,m, which is referred to as the level s cycle. It is clear that all cycles
of Wk,m are disjoint. An accepting path encounters at most m+1 cycles, which
are level 1 to level m cycles, and a loop. Thus, Lm,≺ has Θ(nm) complexity
by Theorem 1. The internal structure of the words of Lm,≺ is clarified by the
following lemma.

Lemma 1. The language Lm,≺ consists of all words with the power factorization
U = at1

i1
. . . atn

in
such that

1) aij ≺ aij+1 for all j = 1, . . . n−1,
2) tj ≤ tj+1 for all j = 1, . . . n−2, and
3) tj ≤ m for all j = 1, . . . n−1.
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︸ ︷︷ ︸
m cycles

Fig. 1. The web-like automaton Wk,m. The cyclic order is a1 ≺ a2 ≺ . . . ≺ ak ≺ a1.
The larger circle represents the initial vertex.

Proof. The first, second and third sets of words in the antidictionary ADm,≺ (see
(1)) provide exactly the conditions 1), 2), and 3) of the lemma, respectively. �

Now define the second family of DFA. It consists of more complicated automata,
which we call generalized web-like automata. Such an automaton can be consid-
ered as a special construction of a large finite number of isomorphic web-like
automata.

Consider a family of symmetric finite antidictionaries {ADm}m≥1 over Σ,
where ADm is the minimal symmetric (that is, stable under all permutations of
Σ) language containing the following set of words:

{ am+1
1 a2,
am
1 a

m
2 a1, am

1 a
m
2 a

m
3 a1, . . . , am

1 a
m
2 . . . am

k−1a1,
am
1 a

m−1
2 a3,

am−1
1 am−1

2 a1, a
m−1
1 am−1

2 am−1
3 a1, . . . , a

m−1
1 am−1

2 . . . am−1
k−1 a1,

am−1
1 am−2

2 a3,
. . .
a2
1a2a3,
a1a2a1, a1a2a3a1, . . . , a1a2 . . . ak−1a1 }.

(2)
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As above, for anym, we use the Algorithm to construct the DFA Gk,m recognizing
the factorial language Lm with the antidictionary ADm. The automaton G3,2 is
shown in Fig. 2 (this is the most representative example which can be drawn in
one page).

a

a
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b c

b cb
c
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b

b

b

c
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c

a
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b
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b
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b

c

c

a

b
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a

b

c
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b

a

Fig. 2. The generalized web-like automaton G3,2. The forward edges are drawn by usual
lines, while the backward ones are represented by dash or dotted lines depending on
whether they belong to a cycle or not. The larger circle represents the initial vertex.

The cycles of this automaton are exhausted by k loops, and (k−1)! level s
cycles of length sk for any s = 1, . . . ,m. In Fig. 2 one can see level 1 cycles
labeled by abc (vertices bc, ca, ab), and acb (vertices cb, ba, ac); level 2 cycles are
labeled by aabbcc (vertices bbcc, cca, ccaa, aab, aabb, bbc), and aaccbb (vertices
ccbb, bba, bbaa, aac, aacc, ccb). All cycles of Gk,m are disjoint, and an accepting
path encounters at most m+1 cycles. The corresponding proofs are omitted for
the sake of brevity. Thus, Lm has Θ(nm) complexity by Theorem 1. The internal
structure of the words of Lm is a bit more complicated, than the one of the words
of Lm,≺, as the following lemma shows.
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Lemma 2. The language Lm consists of all words with the power factorization
U = at1

i1
. . . atn

in
such that

1) there exist cyclic orders ≺1, . . . ,≺m on Σ such that tj = s implies aij ≺s

aij+1 for all j = 1, . . . n−1,
2) tj ≤ tj+1 for all j = 1, . . . n−2, and
3) tj ≤ m for all j = 1, . . . n−1.

Proof. The words of the antidictionary that are situated in the odd rows of (2)
clearly provide the conditions 2) and 3). To prove 1) we construct the required
cyclic order ≺s for any s = 1, . . . ,m. Fix the number s and consider the segment
Us = atl

il
. . . atr

ir
a

tr+1
ir+1

of the power factorization of U such that

tl = tr = s,
tl−1 < s or l = 1,

tr+1 > s or r+1 = n.

Since the antidictionary contains the words

as
1a

s
2a1, a

s
1a

s
2a

s
3a1, . . . , a

s
1a

s
2 . . . a

s
k−1a1,

together with all their cyclic permutations, we obtain the following. If Us consists
of at most k powers of letters, then all these letters are different. Hence we can
order the existing letters as ail

≺ . . . ≺ air ≺ air+1 , and complete this partial
order to a cyclic order on Σ in an arbitrary way. Suppose that Us consists of
more than k powers of letters. We see that any k successive powers are that of
different letters. Then ail+k

= ail
, ail+k+1 = ail+1 , and so on. Therefore we can

define the required cyclic order as

ail
≺s ail+1 ≺s . . . ≺s ail+k−1 ≺s ail

.

It can be directly verified that any word with the power factorization satisfying
the conditions 1)–3) has no factors from ADm and hence belongs to Lm. �

3 Polynomial Languages with Finite Antidictionaries

Since the languages with finite antidictionaries are very important in the study
of complexity functions, it is very natural to ask the following question: what
kind of complexity functions can languages with finite antidictionaries have?

Some well-known properties of words are stable under all permutations of the
alphabet. The language of all words possessing such a property is closed under all
permutations of the alphabet, i.e., symmetric. For example, the language of all
words avoiding a given pattern is symmetric. A symmetric language surely has
the symmetric antidictionary. So, it is natural to consider a resctricted version
of the above question as well: what kind of complexity functions can languages
with symmetric finite antidictionaries have?

Here we give a partial answer to both of the above questions.
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Theorem 2. For arbitrary alphabet Σ such that |Σ| > 1, and arbitrary nonneg-
ative integer m there exists a factorial language over Σ with a non-symmetric
finite antidictionary and the complexity Θ(nm).

Proof. For the binary alphabet this statement was proved in [7], Theorem 4.1.
If |Σ| ≥ 3, and ≺ is an arbitrary cyclic order on Σ, then the language Lm,≺ has
the required properties. �

Theorem 3. For arbitrary alphabet Σ such that |Σ| > 1, and arbitrary nonneg-
ative integer m there exists a factorial language over Σ with a symmetric finite
antidictionary and the complexity Θ(nm).

Proof. The language Lm has the required properties. �

4 Factorial Languages: Approximations from Above

The complexity of any factorial language can be estimated using the following
approximation scheme. Let L ∈ Σ∗ be a factorial language with the (infinite)
antidictionary M . Consider a family {Mi} of finite subsets of M such that

M1 ⊆M2 ⊆ . . . ⊆Mn ⊆ . . . ⊆M,
∞⋃

i=1

Mi = M.

(It is often convinient to take for Mi the set of all words of M with lengths at
most i.) Denote by Li the factorial language over Σ having the antidictionary
Mi. One has

L ⊆ . . . ⊆ Li ⊆ . . . ⊆ L1,

and for any n, there is i such that L ∩Σn = Li ∩Σn. Then for any n

CL(n) = . . . = CLi(n) ≤ . . . ≤ CL1(n). (3)

Hence the sequence CLi(n) converges to CL(n) from above. It is clear that with
larger i we obtain better approximations, but the computational complexity in
most cases depends on i exponentially (actually it depends polynomially on the
total length of the words in the antidictionary). The sequence {Li} will be called
an above approximating sequence of the language L.

Assuming that L is polynomial we study the possibilities for complexities of
the languages Li. If all but finitely many of them belong to the same complexity
class, we say that the sequence {Li} has the final complexity of this class. In
view of Theorem 1 it is clear that only two cases may occur. Either all Li are
exponential, or all but finitely many of them have polynomial complexity of the
same degree m. It is clear that all approximation sequences of the same language
have the same final complexity. Indeed, the elements of any approximation se-
quence can be placed in between the languages of the “standard” approximation
sequence {Li} with the antidictionaries defined by Mi = M ∩ (Σ ∪ . . . ∪Σi).

It was proved in [7] that the above approximating sequences of the Thue-
Morse language have exponential final complexity, while the complexity of the
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language itself is known to be linear. S.V. Avgustinovich and A.E. Frid gave an
example of Θ(n2) ternary language, the above approximating sequences of which
belong to the same complexity class (personal communication). Therefore, the
second case mentioned above is possible as well. Moreover, it takes place in very
different forms, as the theorem below shows.

Theorem 4. For any non-trivial alphabet Σ and any positive integers s and m,
s ≤ m, there exists a factorial language over Σ having an infinite antidictionary
and Θ(ns) complexity, while its above approximating sequences have the final
complexity Θ(nm).

The remaining special case s = 0 is covered by the following proposition.

Proposition 1. Let L be a factorial language over a non-trivial alphabet Σ with
an infinite antidictionary and Θ(1) complexity. Then the above approximating
sequences of L have the final complexity Θ(1).

Proof. The complexity of an arbitrary factorial language is either bounded by
a constant or exceeds n for all n (see [1], and also [3], Theorem 9.1). Suppose
that the complexity function CL(n) is bounded by a constant N . Fix an n ≥ N .
By (3) we have CL(n) = CLi(n) for some approximation Li of L. Consequently,
we have CLi(n) ≤ N ≤ n, and thus CLi(n) is bounded by a constant. Since the
sequence CLj (n) is decreasing and converges to CL(n) from above, the statement
follows. �

To proof Theorem 4, we take the language Lm,≺ of complexity Θ(nm), and
exclude words from it, expanding the antidictionary ADm,≺. We add words to
ADm,≺ in an infinite sequence of steps, finite set of words per one step. On each
step O(nm−1) words are excluded from the current language, but as the result
of the entire procedure, Lm,≺ loses Θ(nm) words. The expansion of ADm,≺ can
be organized in such a way, that the resulting language will have the complexity
Θ(ns) for any 1 ≤ s ≤ m. The description of the corresponding expansion
procedures is omitted here.

5 Factorial Languages: Approximations from Below

The approximations from below of factorial languages by languages with finite
antidictionaries are much more restrictive. For many languages all such approx-
imations are trivial, due to the following lemma.

Lemma 3. Let L be the set of all words avoiding a given set of patterns. Then
L has no infinite subset with finite antidictionary.

Proof. Assume that L′ is an infinite subset of L with finite antidictionary. Then
its recognizing automaton has a cycle. Hence, any power of the label V of this
cycle is a factor of some word of L′. Take an avoided pattern X and substitute
V for each letter of X to get a contradiction. �
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Nevertheless, approximations from below provide another useful tool for
studying complexity, as our next result shows.

Consider the language L of all words U ∈ Σ∗ with the power factorization
U = at1

i1
. . . atn

in
satisfying tj ≤ tj+1 for all j = 1, . . . , n−2. Thus, the powers

of letters in U are non-decreasing, with the last letter being the only possible
exception. This exception is necessary to make L factorial. Now try to determine
the complexity of L.

The language L is obviously exponential if k ≥ 3. For example, it contains
the language of all square-free words over Σ, which is known to be exponential
(cf. [2]). However, there is no evidence about the complexity of L in the case
of binary alphabet. It appears to be intermediate, as a partial case of a more
general result on subsets of L for arbitrary k.

We introduce two subsets of L. For the first one we fix a cyclic order ≺ on
Σ, and consider all words U ∈ L with the power factorizations satisfying the
additional condition aij ≺ aij+1 for all j = 1, . . . , n−1. We denote the obtained
language by L≺.

As to the second mentioned subset of L, we can informally say that all its
words locally satisfy the same additional condition. More precisely, this subset,
denoted by L̄, consists of all words U ∈ L with the power factorizations satisfying
the following condition. There exists an infinite sequence {≺m} of cyclic orders
on Σ such that for any m ∈ N the statement (*) below holds true. A segment of
the power factorization is a product of several consecutive factors.

(*) Suppose that am
il
. . . am

ir
is a segment of the power factorization such that

tl−1 < m or l = 1, and tr+1 > m or r+1 = n. Then
ail
≺m . . . ≺m air ≺m air+1 .

Note that L≺ ⊆ L̄ for any cyclic order ≺, and L≺ = L̄ = L for the binary
alphabet.

Theorem 5. The languages L≺ and L̄ have intermediate complexity.

Proof (of superpolynomiality). By Lemmas 1 and 2 we have

L1,≺ ⊂ . . . ⊂ Lm,≺ ⊂ . . . ⊂ L≺; L1 ⊂ . . . ⊂ Lm ⊂ . . . ⊂ L̄;
∞⋃

m=1

Lm,≺ = L≺;
∞⋃

m=1

Lm = L̄.

Since the complexity of the languages Lm,≺ and Lm is Θ(nm), we immediately
conclude that the complexity of L≺ and L̄ is not bounded from above by a
polynomial. �
The proof of subexponentiality is long and based on detailed study of the au-
tomata Wk,m and Gk,m, so we omit it here. The complexity functions of both
languages are shown to be O(n

√
n).
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Abstract. We introduce the polynomial-time tree reducibility (ptt-
reducibility). Our main result establishes a one-one correspondence be-
tween this reducibility and inclusions between complexity classes. More
precisely, for languages B and C it holds that B ptt-reduces to C if and
only if the unbalanced leaf-language class of B is robustly contained in
the unbalanced leaf-language class of C. Formerly, such correspondence
was only known for balanced leaf-language classes [Bovet, Crescenzi, Sil-
vestri, Vereshchagin].

We show that restricted to regular languages, the levels 0, 1/2, 1, and
3/2 of the dot-depth hierarchy (DDH) are closed under ptt-reducibility.
This gives evidence that the correspondence between the dot-depth hier-
archy and the polynomial-time hierarchy is closer than formerly known.

Our results also have applications in complexity theory: We obtain the
first gap theorem of leaf-language definability above the Boolean closure
of NP. Previously, such gap theorems were only known for P, NP, and
ΣP

2 [Borchert, Kuske, Stephan, and Schmitz].

1 Introduction

In their pioneering work for the leaf-language approach, Bovet, Crescenzi,
and Silvestri [4] and Vereshchagin [18] independently introduced the notion of
polylog-time reducibility (plt-reducibility for short). This reducibility allows an
amazing translation between two seemingly independent questions.

1. Are given complexity classes separable by oracles?
2. Are given languages plt-reducible?

Leaf Languages. The translation mentioned above uses the concept of leaf lan-
guages. Let M be a nondeterministic polynomial-time bounded Turing machine
such that every computation path outputs one letter from a fixed alphabet. Let
M(x) denote the computation tree of M on input x. Let βM (x) be the concate-
nation of all leaf-symbols of M(x). For a language B, let Leafpu(B) be the class of

O.H. Ibarra and Z. Dang (Eds.): DLT 2006, LNCS 4036, pp. 408–419, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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languages L such that there exists a nondeterministic polynomial-time-bounded
Turing machine M as above such that for all x,

x ∈ L ⇐⇒ βM (x) ∈ B.

We refer to Leafpu(B) as the unbalanced leaf-language class of B. Call a non-
deterministic polynomial-time-bounded Turing machine M balanced if on all
inputs, it produces a balanced computation tree in the following sense: On in-
put x, there exists a path p with length l(x) such that all paths on the left
of p have length l(x), and all paths on the right have length l(x) − 1. This is
equivalent to demanding that there exists a polynomial-time computable func-
tion that on input (x, n) computes the n-th path of M(x). If we assume M
to be balanced in the definition above, then this defines the class Leafpb(B)
which we call the balanced leaf-language class of B. For any class of languages
C let Leafpu(C) =

⋃
B∈C Leafpu(B) and Leafpb(C) =

⋃
B∈C Leafpb(B). Call a com-

plexity class D unbalanced leaf-language definable if there exists C such that
D = Leafpu(C). Analogously define balanced leaf-language definability. We will
also consider relativized leaf-language classes which are denoted by Leafpb(C)O,
where the superscript O indicates that the nondeterministic machine is allowed
to query oracle O. For a survey on leaf-languages we refer to [19].

BCSV-Theorem. Suppose for given complexity classes D1 and D2, there exist
languages L1 and L2 such that D1 = Leafpb(L1) and D2 = Leafpb(L2). Bovet,
Crescenzi, Silvestri, and Vereshchagin showed:

L1≤plt
m L2 ⇔ ∀O

(
Leafpb

O(L1) ⊆ Leafpb
O(L2)

)
(1)

Here ≤plt
m denotes polylog-time reducibility (Definition 1). For this equivalence it

is crucial that balanced leaf-language classes are used. The theorem does not hold
for the unbalanced model: Observe that languages L,L′ ⊆ {0, 1}∗ with L =def
{w

∣∣ |w| is odd}, L′ =def 0{0, 1}∗ form a counterexample, since Leafpu(L) = ⊕P
is not robustly contained (i.e., relative to all oracles) in Leafpu(L′) = P though L
plt-reduces to L′. In this paper we introduce a new reducibility (ptt-reducibility)
which allows us to prove:

L1≤ptt
m L2 ⇔ ∀O

(
Leafpu

O(L1) ⊆ Leafpu
O(L2)

)
(2)

Besides the scientific interest of a Bovet-Crescenzi-Silvestri-Vereshchagin-like
theorem (BCSV-theorem for short) for the unbalanced case, further motivation
comes from a connection between complexity theory and the theory of finite
automata: We show that on the lower levels, the dot-depth hierarchy perfectly
corresponds to the polynomial-time hierarchy when we consider unbalanced leaf-
languages. Below, after the introduction of both hierarchies, we will explain the
term perfect correspondence.

Dot-Depth Hierarchy. Starfree regular languages (starfree languages for short)
are regular languages that can be build up from single letters by using Boolean
operations and concatenation (so iteration is not allowed). SF denotes the class
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of starfree languages. Brzozowski and Cohen [8, 5] introduced the dot-depth hi-
erarchy (DDH for short) which is a parameterization of the class of starfree
languages. The dot-depth counts the minimal number of nested alternations be-
tween Boolean operations and concatenation that is needed to define a language.
The classes of the dot-depth hierarchy consist of languages that have the same
dot-depth. For a class of languages C, let Pol(C) denote C’s closure under finite
union and finite concatenation. Let BC(C) denote the Boolean closure of C. The
classes (or levels) of the dot-depth hierarchy are defined as:

B0 =def {L ⊆ A∗
∣∣A is a finite alphabet with at least two letters and L
is a finite union of terms vA∗w where v, w ∈ A∗}

Bn+ 1
2

=def Pol(Bn)

Bn+1 =def BC(Bn+ 1
2
)

The dot-depth of a language L is defined as the minimal m such that L ∈ Bm

where m = n/2 for some integer n. All levels of the dot-depth hierarchy are
closed under union, under intersection, under taking inverse morphisms, and
under taking residuals [13, 1, 14]. The dot-depth hierarchy is strict [6, 17] and
exhausts the class of starfree languages [9].

Polynomial-Time Hierarchy. For a complexity classD let coD = {L
∣∣L ∈ D}.

Let ∃·D denote the class of languages L such that there exists a polynomial p and
B ∈ D such that x ∈ L ⇔ ∃y, |y| ≤ p(|x|), (x, y) ∈ B. Let ∀·D = co∃·coD. Define
∃!·D and ∀!·D similarly by using ∃! and ∀! instead of ∃ and ∀. Stockmeyer [16]
introduced the polynomial-time hierarchy (PH for short). We use a definition
which is due to Wrathall [20].

ΣP
0 = ΠP

0 =def P, ΣP
n+1 =def ∃·ΠP

n , Π
P
n+1 =def ∀·ΣP

n

Connection between DDH and PH. Hertrampf et al. [11], and Burtschick
and Vollmer [7] proved that the levels of the polynomial-time hierarchy are
connected with the levels of the dot-depth hierarchy. For n ≥ 1,

L ∈ Bn−1/2 ⇒ ∀O(Leafpb
O(L) ⊆ ΣP

n

O
), (3)

L ∈ Bn−1/2 ⇒ ∀O(Leafpu
O(L) ⊆ ΣP

n

O
). (4)

In particular, the attraction of this connection comes from the fact that both
hierarchies are prominent and well-studied objects. Even more, with the P-NP
problem and the dot-depth problem, they represent two of the most fundamental
problems in theoretical computer science.

Gap Theorems. For certain lower levels of the dot-depth hierarchy, much closer
connections than those in (3) and (4) are known. The following theorem is due
to Borchert, Kuske, Stephan, and Schmitz:
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Theorem 1 ([2, 3, 15]). Let L be a regular language.

1. [2] If L ∈ B0, then Leafpu(L) ⊆ P. If L /∈ B0, then Leafpu(L) ⊇ NP or
Leafpu(L) ⊇ coNP or Leafpu(L) ⊇MODpP for a prime p.

2. [3] If L ∈ B1/2, then Leafpu(L) ⊆ NP. If L /∈ B1/2, then Leafpu(L) ⊇ coNP or
Leafpu(L) ⊇ co1NP or Leafpu(L) ⊇ MODpP for a prime p.

3. [15] If L ∈ B3/2, then Leafpu(L) ⊆ ΣP
2 . If L /∈ B3/2, then Leafpu(L) ⊇ ∀·UP

or Leafpu(L) ⊇ co∃!·UP or Leafpu(L) ⊇ MODpP for a prime p.

For instance, by (4), for all L ∈ B1/2 it holds that Leafpu(L) is robustly contained
in NP. Theorem 1 states that the languages in B1/2 are in fact the only regular
languages having this property. This means that for B1/2 and regular L, even
the converse of (4) holds. So B1/2 and NP perfectly correspond:

L ∈ B1/2 ⇔ ∀O(Leafpu
O(L) ⊆ NPO) (5)

By our main result (2) this is equivalent to the following:

Restricted to regular languages, B1/2 is closed under ptt-reducibility. (6)

Here and in the following, this formulation means that Rptt
m (B1/2)∩REG = B1/2

where Rptt
m (B1/2) denotes B1/2’s closure under ptt-reducibility.

Perfect Correspondence. The example above shows that we can utilize (1)
and (2) to make the notion of perfect correspondence precise:

1. A class of regular languages C and a complexity class D perfectly correspond
with respect to balanced leaf-languages if (restricted to regular languages) C
is closed under plt-reducibility and Leafpb(C) = D.

2. A class of regular languages C and a complexity class D perfectly correspond
with respect to unbalanced leaf-languages if (restricted to regular languages)
C is closed under ptt-reducibility and Leafpu(C) = D.

Due to (2), we obtain the following perfect correspondences from known re-
sults [2, 3, 15].

– B0 perfectly corresponds to P with respect to unbalanced leaf-languages.
– B1/2 perfectly corresponds to NP with respect to unbalanced leaf-languages.
– B3/2 perfectly corresponds to ΣP

2 with respect to unbalanced leaf-languages.

In other words, we show that restricted to regular languages, the classes B0,
B1/2, and B3/2 are closed under ptt-reducibility.

Furthermore, we show that restricted to regular languages, B1 is closed under
ptt-reducibility. From this we obtain a new perfect correspondence:
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– B1 perfectly corresponds to the Boolean closure of NP with respect to un-
balanced leaf-languages.

Consequently, the following holds for every regular language L :

L ∈ B0 ⇔ ∀O(Leafpu
O(L) ⊆ PO) (7)

L ∈ B1/2 ⇔ ∀O(Leafpu
O(L) ⊆ NPO) (8)

L ∈ B1 ⇔ ∀O(Leafpu
O(L) ⊆ BC(NP)O) (9)

L ∈ B3/2 ⇔ ∀O(Leafpu
O(L) ⊆ ΣP

2
O

) (10)

As the dot-depth hierarchy perfectly corresponds to the polynomial-time
hierarchy on the lower levels, we consider this as evidence that restricted to
regular languages, all levels of the dot-depth hierarchy might be closed under
ptt-reducibility. This would turn (4) into an equivalence (for regular L).

Remarkably, this correspondence does not hold for balanced leaf-language
classes: It is known that the reverse of (3) does not hold, even if we demand
L to be starfree: For every n ≥ 1, there exists a starfree regular language
Ln /∈ Bn−1/2 such that Ln plt-reduces to a language in B1/2 [10]. So by (1),
∀O(Leafpb

O(Ln) ⊆ NPO), but Ln /∈ Bn−1/2. This shows that the levels of the
dot-depth hierarchy are not closed under plt-reducibility even if we restrict our-
selves to starfree regular languages.

A New Gap Theorem. From our studies of the ptt-closure of B1, we obtain
a gap in unbalanced leaf-language definability above the Boolean hierarchy over
NP: If D = Leafpu(C) for some class C of regular languages, then D ⊆ BC(NP)
or there exists an oracle O such that DO �⊆ PNP[ε·log n]O for all ε < 1.

Remarks. Our investigations of the ptt-reducibility further show the following
phenomenon: While we can (unconditionally) prove that level 0 of the dot-depth
hierarchy is closed under ptt-reducibility, we can show the similar property for
higher levels only if we restrict ourselves to regular languages. We can construct
a language B ∈ NP � REG that is ptt-reducible to a language in B1/2. The
exception of level 0 allows to improve the correspondence between B0 and P
even further: Not only that B0 and P perfectly correspond, but in fact it even
holds that for any language L /∈ B0 (this includes all nonregular languages) there
exists an oracle O such that Leafpu

O(L) � PO.
Besides the new perfect correspondence stated in (9), dot-depth one also is

closely related to a certain class of arithmetic circuits. Maciel, Peladeau, and
Thérien [12] use a concept of non-uniform leaf languages to establish a one-one
connection between these classes.

Organization of the Paper. Section 3 defines ptt-reducibility. In section 4 we
formulate the central result of this paper. Section 5 studies the ptt-closure of
classes of the dot-depth hierarchy, and it shows that on some lower levels, the
dot-depth hierarchy perfectly corresponds to the polynomial-time hierarchy.
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2 Preliminaries

For a machine or automaton M , let L(M) denote the accepted language.
For a finite alphabet Σ, the initial word relation / on Σ∗ is defined by
u / v

df⇐⇒ ∃w(w ∈ Σ∗ ∧ uw = v).
We write u 	 v if and only if u / v and u �= v. The lexicographical order on

{0, 1}∗ is defined by x � y
df⇐⇒ x / y ∨ ∃u(u0 / x ∧ u1 / y).

The quasi-lexicographical order on {0, 1}∗ is defined by x ≤ y
df⇐⇒ |x| <

|y| ∨ (|x| = |y| ∧ ∃u(u0 / x ∧ u1 / y)) ∨ x = y.
In what follows we identify the set {0, 1}∗ with the set N of natural numbers

according to the quasi-lexicographical order. So {0, 1}∗ inherits operations like +
from the natural numbers. Furthermore, we identify a set O ⊆ N with the char-
acteristic sequence cO(0)cO(1)cO(2) · · · ∈ {0, 1}ω where cO is the characteristic
function of O. A language L ⊆ Σ∗ is called nontrivial if L �= ∅ and L �= Σ∗.

The following theorem shows the aforementioned close relation between the
dot-depth hierarchy and the polynomial-time hierarchy. Here NP(n) denotes
level n of the Boolean hierarchy over NP.

Theorem 2 ([11, 7, 3]). The following holds for n ≥ 1 and relative to all ora-
cles.

1. P = Leafpb(B0) = Leafpu(B0)
2. ΣP

n = Leafpb(Bn−1/2) = Leafpu(Bn−1/2)
3. ΠP

n = Leafpb(coBn−1/2) = Leafpu(coBn−1/2)
4. BC(ΣP

n ) = Leafpb(Bn) = Leafpu(Bn)
5. NP(n) = Leafpb(B1/2(n)) = Leafpu(B1/2(n))

Bovet, Crescenzi, and Silvestri [4] and Vereshchagin [18] introduced the notion of
polylog-time reducibility and showed that it is related to balanced leaf-language
definable classes.

Definition 1. A function f : Σ∗ → Σ∗ is polylog-time computable if there exist
two polynomial-time-bounded oracle transducers R : Σ∗×N → Σ and l : Σ∗ → N
such that for all x, f(x) = Rx(|x|, 1)Rx(|x|, 2) · · ·Rx(|x|, lx(|x|)) where R and l
access the input x as an oracle.

A language B is polylog-time reducible (plt-reducible) to a language C,
B≤plt

m C for short, if there exists a polylog-time computable f such that for all x,
x ∈ B ⇔ f(x) ∈ C.

Theorem 3 ([4, 18]). For all languages B and C,

B≤plt
m C ⇔ for all oracles O, Leafpb

O(B) ⊆ Leafpb
O(C).

3 Polynomial-Time Tree Reducibility

The idea. With polynomial-time tree reducibility (ptt-reducibility for short) we
introduce the unbalanced analog of polylog-time reducibility (plt-reducibility).
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For the representation of a balanced computation tree it suffices to think of
a leaf-string such that each symbol is accessible in polylog-time in the length
of the leaf-string. Representations of unbalanced computation trees are more
complicated. Here the particular structure of the tree must be taken into account.
This makes it necessary to define suitable representations of trees. Intuitively, a
language B ptt-reduces to a language C, if there exists a polynomial-time (in
the height of the tree) computable function f that transforms trees such that
for every tree t, the leaf-string of t belongs to B if and only if the leaf-string of
f(t) is in C.

1 0
1 1

1 0

1 1 1 01 1

1
1 1

1 1
1

1 1

1 11
1 1

1 1 1

f
=⇒

Tree t Tree t′ = f(t)

Fig. 1. An example of a tree function f

Example 1. Let Σ1 = {0, 1} and Σ2 = {1} be alphabets, and let L1 ⊆ Σ∗1 be
defined as L1 = (0∗10∗1)∗0∗, the language of all words w over {0, 1}∗ such that
w contains an even number of 1’s. Let L2 ⊆ Σ∗2 be defined as L2 = (11)∗, the
language of all words w over {1}∗ such that w has even length. Then L1 ptt-
reduces to L2.1 This can easily be seen: Imagine M to be a nondeterministic,
polynomial-time Turing machine that outputs words from Σ∗1 as leaf-strings.
Roughly speaking, in order to prove that L1 ptt-reduces to L2, we have to
transform the computation tree t of M into a tree t′ whose leaf-string β(t′) is a
word from Σ∗2 and β(t′) ∈ L2 if and only if β(t) ∈ L1. Since the desired tree-
function f transforms trees and not machines, it needs to be independent of the
program of M , i.e., it also has to work with any other machine that outputs
words from Σ∗1 as leaf-strings. In our case, the transformation can be described
as follows: For all paths in t that output 1, do not change anything. For all paths
that output 0, do not output 0 but branch nondeterministically into two paths
and output 1 on both paths. This is shown in Figure 1.

Formalization. This idea of ptt-reducibility can be formalized as follows: We
start with representations of trees. Let Σ be a finite alphabet. A triple t =
(T, h,m) is called a Σ-tree if T ⊆ {0, 1}∗ is finite, h : T → Σ, and m ∈ N such
1 Note that L1 does not plt-reduce to L2.
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that ∀z∀u((u / z∧z ∈ T )→ u ∈ T ) and ∀z(z ∈ T → |z| ≤ m). Let TΣ be the set
of all Σ-trees. A leaf of t is a z ∈ T such that there is no u ∈ T with z 	 u. For a
Σ-tree t = (T, h,m), we define the leaf word of t as β(t) =def h(z1)h(z2) · · ·h(zs)
where {z1, z2, . . . , zs} is the set of all leaves of t and z1 ≺ z2 ≺ · · · ≺ zs. Hence,
the labels of the inner nodes have no effect on the leaf word.

We describe how a Σ-tree can be encoded as a language: Choose r ≥ 1 such
that |Σ| ≤ 2r, and let e : Σ → {0, 1}r be an injective mapping. A Σ-tree
t = (T, h,m) is encoded by the set Ot =def {ze(h(z))

∣∣ z ∈ T } and the number
mt =def m.

Now let us define functions that transform unbalanced computation trees.

Definition 2. Let Σ1 and Σ2 be finite alphabets. A function f : TΣ1 → TΣ2 is
called a polynomial-time tree function (ptt-function for short) if there exist k > 0
and functions g1 : TΣ1 × {0, 1}∗ × N → {0, 1} and g2 : TΣ1 × {0, 1}∗ × N → Σ2
such that:

– There exists a polynomial p(·, ·) such that g1(t, z,m) and g2(t, z,m) are com-
putable in time p(|z|,m) where the tree t is accessed as the oracle Ot.

– It holds that f(t) = (T ′, h′,mk
t + k) where T ′ =def {z

∣∣ g1(t, z,mt) = 1} and
h′(z) =def g2(t, z,mt).

We will also write gOt
1 (z,m) and gOt

2 (z,m) instead of g1(t, z,m) and g2(t, z,m),
respectively. Finally, we define polynomial-time tree reducibility.

Definition 3. For L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 , we define L1≤ptt
m L2 (L1 is ptt-

reducible to L2) if there exists a ptt-function f : TΣ1 → TΣ2 such that for all
t ∈ TΣ1 ,

β(t) ∈ L1 ↔ β(f(t)) ∈ L2.

Proposition 1. 1. ≤ptt
m is reflexive and transitive.

2. ≤ptt
m and ≤plt

m are incomparable.

Proof. We sketch a proof for the second statement. From Example 1 we know
that ≤ptt

m does not imply ≤plt
m . For the other direction, let Σ = {1}. It is easy to

see that (11)∗≤plt
m (1), but (11)∗ �≤ptt

m (1). Hence, neither of the two reducibilities
implies the other. �

Remark. Although plt- and ptt-reducibility are incomparable, the following
straightforward modification of Definition 3 yields plt-reducibility: On the one
hand, we let the tree function in Definition 3 assume that the input tree is
balanced, while on the other hand we require it to output a balanced tree. So
this modification is neither a restriction nor a generalization.

4 The BCSV-Theorem for Unbalanced Leaf Languages

We are now ready to prove the main theorem. Let B and C be languages. Bovet,
Crescenzi, and Silvestri [4] and Vereshchagin [18] proved that B polylog-time
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reduces to C if and only if for all oracles O, Leafpb
O(B) ⊆ Leafpb

O(C). So plt-
reducibility corresponds to robust inclusions of balanced leaf-language classes.
Our central theorem states that ptt-reducibility and unbalanced leaf-language
classes share the same connection:

Theorem 4. For nontrivial L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 the following are equivalent:

(1) L1≤ptt
m L2

(2) ∀O(Leafpu
O(L1) ⊆ Leafpu

O(L2))

5 ptt-Reducibility and the Dot-Depth Hierarchy

By Theorem 2, the levels of the dot-depth hierarchy and the levels of the
polynomial-time hierarchy are closely related. Note that this connection exists
for both models, balanced and unbalanced leaf-languages. In this section we dis-
cuss evidence showing that for the unbalanced model this connection is much
closer than that stated in Theorem 2.

Definition 4. A class of regular languages C and a complexity class D per-
fectly correspond with respect to balanced leaf-languages if (restricted to regular
languages) C is closed under plt-reducibility and Leafpb(C) = D. A class of reg-
ular languages C and a complexity class D perfectly correspond with respect to
unbalanced leaf-languages if (restricted to regular languages) C is closed under
ptt-reducibility and Leafpu(C) = D.

Perfect correspondences are connections closer than those stated in Theorem 2:
For a class of regular languages C and a complexity class D that perfectly corre-
spond with respect to unbalanced leaf-languages, we know that the languages in
C are precisely those whose unbalanced leaf-language classes are robustly con-
tained in D. Therefore, there can be no regular language L′ outside C such that
Leafpu(L′) is robustly contained in D.

Proposition 2. If C perfectly corresponds to D with respect to balanced leaf-
languages, then for every regular L /∈ C there exists an oracle relative to which
Leafpb(C) �⊆ D. The similar statement holds for unbalanced leaf-languages.

The levels of the dot-depth hierarchy and the levels of the polynomial-time
hierarchy do not perfectly correspond with respect to balanced leaf-languages. In
particular, for n ≥ 1, Bn/2 is not closed under plt-reducibility even if we restrict
ourselves to starfree regular languages.

Theorem 5. For every n ≥ 1, Bn−1/2 does not perfectly correspond to ΣP
n with

respect to balanced leaf-languages.

In contrast the classes B0, B1/2, B1, and B3/2 are closed under ptt-reducibility,
restricted to regular languages. In particular, these classes perfectly correspond
to the classes of the polynomial-time hierarchy. While for B0, B1/2, and B3/2
the latter can be derived from known results [2, 3, 15], this is a new result for
B1. The class B0 is closed under ptt-reducibility even without the restriction to
regular languages, this does not hold for the higher levels (see Corollary 2).
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Theorem 6. 1. Rptt
m (B0) = B0, so B0 and P correspond perfectly.

2. Rptt
m (B1/2) ∩REG = B1/2, so B1/2 and NP correspond perfectly.

3. Rptt
m (B3/2) ∩REG = B3/2, so B3/2 and ΣP

2 correspond perfectly.

The special case of B0 yields an even tighter connection of B0 and P: Not only
that B0 and P perfectly correspond, but in fact it even holds that for any language
L /∈ B0 (this includes all nonregular languages) there exists an oracleO such that
Leafpu

O(L) � PO.

Lemma 1. Let L ∈ REG � B1. Then there exists an oracle B such that
Leafpu

B(L) �⊆ PNP[ε·log n]B for all ε < 1.

Utilizing Theorem 4, we can translate this oracle separation into a statement
about the ptt-closure of B1.

Theorem 7. Rptt
m (B1) ∩ REG = B1.

We consider the results of Theorems 6 and 7 as evidence that restricted to regular
languages, all levels of the dot-depth hierarchy are closed under ptt-reducibility
and therefore, perfectly correspond to the levels of the polynomial-time hierarchy.
In addition, Theorem 7 enables us to prove the first gap theorem of leaf-language
definability above the Boolean closure of NP.

Corollary 1. Let D = Leafpu(C) for some C ⊆ REG. Then D ⊆ BC(NP) or
there exists an oracle O such that DO �⊆ PNP[ε·log n]O for all ε < 1.

Recall that by Theorem 6.1, B0 is closed under ptt-reducibility, and by Theo-
rems 6.2, 6.3, and 7, classes B1/2, B3/2, and B1 are closed under ptt-reducibility
if we restrict ourselves to regular languages. We now prove that the restriction
to regular languages is in fact crucial.

Theorem 8. There exists B ∈ NP � REG such that Leafpu(B) ⊆ NP.

In particular, for k ≥ 1, the ptt-closure of Bk/2 contains non-regular languages.
By Theorem 6.1, this does not hold for the ptt-closure of B0.

Corollary 2. 1. There exists B ∈ NP � REG such that B ∈ Rptt
m (B1/2).

2. For every k ≥ 1, Bk/2 is not closed under ≤ptt
m -reducibility.

We state an upper bound for the ≤ptt
m -closure of regular languages.

Theorem 9. Rptt
m (REG) ⊆

⋃
k≥1 DSPACE(logk n).

Due to this theorem, we can now specify the complexity of nonregular sets C
such that Leafpu(C) ⊆ NP. (Recall that for regular sets, we already know by
Theorem 6.2 that only languages in B1/2 come into question.)

Corollary 3. Let C be a set. If for all oracles O, Leafpu
O(C) ⊆ NPO, then

C ∈
⋃

k≥1 DSPACE(logk n).

Since PSPACE = Leafpu(REG) [11], the last corollary remains valid if we replace
NP by PSPACE.
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6 Conclusions and Open Questions

We have shown that the new ptt-reducibility is very useful in terms of unbalanced
leaf-language classes. It is in a sense the counterpart of plt-reducibility and
allows us to prove an analogue of the well known result by Bovet, Crescenzi,
and Silvestri [4], and Vereshchagin [18] for unbalanced leaf-languages.

Interestingly, the ptt-reducibility furthermore indicates that the connection
between the levels of the dot-depth hierarchy and the levels of the polynomial-
time hierarchy via unbalanced leaf-languages is much closer than the formerly
known connection via balanced leaf-languages. We have shown that the lower
levels of the DDH and the PH perfectly correspond. Whether the DDH and the
PH perfectly correspond on all levels (which we believe to hold true) remains a
challenging open question.

Acknowledgments. We thank Bernd Borchert, Heinz Schmitz, Victor Seliv-
anov, and Pascal Tesson for helpful discussions about leaf languages.
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12. A. Maciel, P. Péladeau, and D. Thérien. Programs over semigroups of dot–depth
one. Theoretical Computer Science, 245:135–148, 2000.

13. D. Perrin and J. E. Pin. First-order logic and star-free sets. Journal of Computer
and System Sciences, 32:393–406, 1986.



Perfect Correspondences between Dot-Depth and Polynomial-Time Hierarchy 419

14. J. E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of
computing systems, 30:383–422, 1997.

15. H. Schmitz. The Forbidden-Pattern Approach to Concatenation Hierarchies. PhD
thesis, Fakultät für Mathematik und Informatik, Universität Würzburg, 2001.

16. L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1977.

17. W. Thomas. An application of the Ehrenfeucht–Fräıssé game in formal language
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Abstract. Systems of language equations of the form Xi = ϕi(X1, . . . ,
Xn) (1 � i � n) are studied, in which every ϕi may contain the oper-
ations of concatenation and complementation. The properties of having
solutions and of having a unique solution are given mathematical charac-
terizations. As decision problems, the former is NP-complete, while the
latter is in co-RE and its decidability remains, in general, open. Unique-
ness becomes decidable for a unary alphabet, where it is US-complete,
and in the case of linear concatenation, where it is L-complete. The po-
sition of the languages defined by these equations in the hierarchy of
language families is established.

1 Introduction

Systems of equations with formal languages as unknowns have been studied since
the early 1960s, when Ginsburg and Rice [3] found an equivalent representation
of context-free grammars as resolved systems of the form Xi = αi1 ∪ . . . ∪ αi�i

(1 � i � n), where �i > 0 and every αij is a concatenation of variables and
symbols of the alphabet. For example, the equation X = aXb ∪ {ε} with the
unique solution {anbn | n � 0} corresponds to a context-free grammar with two
rules, S → aSb and S → ε. This equational semantics became an important tool
in the study of the context-free languages [5].

The study of more general types of language equations began only in the
1990s. In particular, equations of Ginsburg and Rice equipped with all Boolean
operations have been considered: Charatonik [2] showed the undecidability of
solution existence for such equations, later Okhotin [10] carried out a detailed
study of the hardness of different decision problems. The languages representable
by unique solutions of these equations are exactly the recursive languages [10].

Besides the cases of union only and of all Boolean operations, other interesting
variants of equations of Ginsburg and Rice have been considered. Equations with
union and intersection were found to share many theoretical properties of those
with union only [9]. This study led to natural generalizations of context-free
grammars known as conjunctive grammars and Boolean grammars [11, 12].

Systems of equations of the same form Xi = ϕi(X1, . . . , Xn) (1 � i � n),
in which ϕi use concatenation and complementation only, form another natural
� Supported by Academy of Finland grant 206039, CRDF Grant RM1–2543–MO–03
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case. These equations have been considered by Leiss [8], in the special case
of a unary alphabet and right-hand sides of a restricted form that guarantees
existence and uniqueness of a solution. He proved that this unique solution is
always context-sensitive, but it need not be context-free, as demonstrated by the
following equation

X = {a} ·X222

, (1)

which has a unique solution {an | ∃k � 0, such that 23k � n < 23k+2} [8].
The goal of this paper is to study these equations in the general case, with-

out the simplifying assumptions made by Leiss [8]. In Section 3, we consider the
property of having a solution and establish a key technical result, that a solution
modulo any finite nonempty language can be extended to a solution. This leads
us to a simple characterization of solution existence and allows us to establish its
NP-completeness. We give a mathematical characterization of solution unique-
ness in Section 4 and show that this problem is co-r.e. (cf. Π2-completeness in
the case of all Boolean operations [10]), but it remains open whether it is de-
cidable. For a unary alphabet, the problem is complete for the class US (unique
satisfiability) studied by Blass and Gurevich [1], which consists of all languages
representable as {w | ∃!x : R(w, x)} for a polynomial-time predicate R.

The rest of the paper is devoted to the study of the family of languages repre-
sentable as unique solutions of these equations. Recent results on computational
universality in language equations of an extremely simple form, see Kunc [6, 7],
make one suspect universality even in this restricted case. However, we show
that these equations are not universal, though their expressive power is not too
weak either. We show nonrepresentability of some concrete languages by our
equations in Section 5, and use these examples in Section 6, where we determine
that our equations are strictly weaker than Boolean grammars. We study the
case of equations with linear concatenation in Section 7, and find interesting
relations to linear context-free and linear conjunctive languages.

2 Definitions and Notation

Let n � 1 and let (X1, . . . , Xn) be a vector of variables, which assume values of
languages over Σ. Consider a system of equations resolved with respect to its
unknowns as follows: ⎧⎪⎨⎪⎩

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(2)

In general, each ϕi is an expression that contains variables and constant lan-
guages from some predefined language family, connected with arbitrarily nested
concatenation and Boolean set-theoretic operations. The equations studied in
this paper may use only one Boolean operation, the complementation, and we
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shall either consider arbitrary regular constants, or restrict them to be singletons
{w} (w ∈ Σ∗), which will be denoted by just w. Some restrictions on concate-
nation will be considered: concatenation in (2) is said to be linear, if for every
subexpression ξ ·η in every ϕi either ξ or η is a constant language; further, if it is
always ξ (or always η) that is a constant, the concatenation is one-sided linear.

A vector of languages (L1, . . . , Ln) is called a solution of (2), if a substitution
of Lj for Xj for all j turns each equation into an equality. We shall also consider
partial solutions modulo a given language. Two languages K,L ⊆ Σ∗ are said
to be equal modulo a third language M ⊆ Σ∗ if K ∩ M = L ∩ M ; this is
denoted K = L (mod M). A language L ⊆ Σ∗ is called subword-closed, if
for every word w ∈ L all its subwords are also in L (u is a subword of w if
∃x, y ∈ Σ∗: w = xuy). For any subword-closed language M ⊆ Σ∗, a vector
(L1, . . . , Ln), where Lj ⊆ M for all j, is a solution modulo M of (2), if the
same substitution turns each equation into an equality modulo M . Two vectors
of languages, (L1, . . . , Ln) and (L′1, . . . , L

′
n), are said to be equal modulo M , if

Li = L′i (mod M). Uniqueness of a solution of (2) modulo M is defined with
respect to this equivalence.

A system (2) is said to have a strongly unique solution, if its solution is unique
modulo every finite subword-closed language; this implies the uniqueness of so-
lution in the general sense [10]. Let us say that a solution (L1, . . . , Ln) modulo
M can be extended to a solution modulo M ′ ⊃ M , if there exists a solution
(L′1, . . . , L′n) modulo M ′, such that (L1, . . . , Ln) = (L′1, . . . , L′n) (mod M).

For convenience we shall often assume, without loss of generality, that every
equation in (2) is Xi = XjXk or X = const. It is easy to see that every system
can be equivalently transformed to this form.

We shall use the logical dual of concatenation, defined as K " L = K · L or,
equivalently, as K " L = {w | ∀u, v : w = uv ⇒ u ∈ K or v ∈ L} [12].

3 Existence of a Solution

A language equation may have or not have solutions. For equations with com-
plementation the property of having solutions is nontrivial even in the most
restricted case: consider an equation X = aX with the unique solution (a2)∗,
another equation X = X with every language as a solution, and one more equa-
tion X = X that has no solutions.

The following criterion of solution existence holds in a more general case:

Proposition 1 (Okhotin [10]). A system Xi = ψi(X1, . . . , Xn) (1 � i � n)
with concatenation and all Boolean operations has a solution if and only if it has
a solution modulo every finite subword-closed language.

Existence of a solution modulo any given finite language can be checked by
a straightforward search, so in order to test the existence of a solution it is
sufficient to repeat this procedure for countably many languages. It has also
been shown that this infinite search is in some sense necessary, because the
problem is undecidable [2, 10] — to be exact, Π1-complete [10].
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The following statement is the key element in the proof of Proposition 1:

Proposition 2 (Okhotin [10]). Let Xi = ϕi(X1, . . . , Xn) (1 � i � n) be a
system with concatenation, all Boolean operations, and with any constant lan-
guages. Let (L1, . . . , Ln) be a solution modulo a finite subword-closed language
M ⊂ Σ∗, such that for every subword-closed language M ′ ⊃ M there exists a
solution (L′1, . . . , L′n) modulo M ′, which coincides with (L1, . . . , Ln) modulo M .
Then the system has a solution (L̂1, . . . , L̂n) that equals (L1, . . . , Ln) modulo M .

The existence of an extension to every M ′ is essential here. For instance, the
system {X = X,Y = Y ∩ aX} [10] has a solution ({a},∅) modulo {ε, a}, but
none of its solutions modulo {ε, a, a2} contain a in the X component. If we
consider language equations with monotone operations only, then such wrong
partial solutions cannot exist, and a solution modulo M can be extended to any
M ′. Thus Proposition 2 degenerates to the following unconditional statement:

Proposition 3 (Okhotin [12]). Let Xi = ϕi(X1, . . . , Xn) (1 � i � n) be a
system with concatenation, dual concatenation, union and intersection, and with
any constant languages. Let M be a finite possibly empty subword-closed lan-
guage, let (L1, . . . , Ln) be a solution modulo M . Then the system has a solution
(L̂1, . . . , L̂n) that coincides with (L1, . . . , Ln) modulo M .

Our equations with complementation appear to have nothing in common with
this monotone case, and one could naturally expect the same difficulties as in
Proposition 2. On the contrary, we obtain a statement almost like Proposition 3:

Lemma 1. If a system Xi = ϕi(X1, . . . , Xn) (1 � i � n) with concate-
nation and complementation and with any constant languages has a solution
(L1, . . . , Ln) modulo some finite nonempty subword-closed language M , then it
has a solution (L̂1, . . . , L̂n) that is equal to (L1, . . . , Ln) modulo M .

The only difference between Proposition 3 and Lemma 1 is the requirement of
nonemptiness of M . While Proposition 3 allows one to obtain a solution “out
of the air” by taking M = ∅, Lemma 1 requires a solution modulo {ε}, which
serves as a basis of induction on |M |. The inductive construction proceeds as
follows. For every M and for w /∈M , such that all proper subwords of w are in
M , let (L1, . . . , Ln) be a solution modulo M and substitute it into the system.
Its extension to M ∪{w} can be represented by a system of Boolean equations in
variables (x1, . . . , xn), where each xi ∈ {0, 1} determines the membership of w in
Xi. A solution of this system can be constructed, which gives a required solution
modulo M ∪{w} of the system of language equations. Finally, by Proposition 2,
these finite extensions imply the existence of an infinite extension to a solution.

Now we can prove a necessary and sufficient condition of having a solution
for our class of language equations. As compared to the case of equations of
the general form, see Proposition 1, here it is sufficient to check existence of a
solution modulo just one finite language:
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Theorem 1. A system Xi = ϕi(X1, . . . , Xn) (1 � i � n) with concatenation
and complementation and with arbitrary constant languages has a solution if and
only if it has a solution modulo {ε}.

Proof. The ⇒© implication is trivial, while ⇐© is given by Lemma 1 for M = {ε}.

This leads us to the computational complexity of this problem:

Theorem 2. Fix any finite nonempty alphabet Σ and any set of constant lan-
guages, such that the membership of ε in constants is polynomially decidable.
Consider systems of language equations Xi = ϕi(X1, . . . , Xn) (1 � i � n) with
concatenation and complement and with the above constants. Then the problem
of testing whether a given system of this form has a solution is NP-complete.

The membership in NP is by guessing a solution modulo {ε} and verifying that
it is indeed a solution modulo {ε}; this, by Theorem 1, shows that a solution
exists. The proof of NP-hardness is based upon the following construction:

Lemma 2. Let f : {0, 1}n → {0, 1} be a Boolean function and for every
L ⊆ Σ∗ denote e(L) = 1 if ε ∈ L, e(L) = 0 otherwise. Then there exists an
expression ϕ(X1, . . . , Xn) with concatenation and complementation, such that
ε ∈ ϕ(L1, . . . , Ln) if and only if f(e(L1), . . . , e(Ln)) = 1.

Assuming that the formula f(x1, . . . , xn) uses two propositional connectives, con-
junction and negation, ϕ(X1, . . . , Xn) can have same structure as f : conjunction,
negation and variables xi are represented with concatenation, complementation
and variables Xi, respectively.

For the proof of Theorem 1 we reduce the satisfiability problem for f . Take
the variables X1, . . ., Xn, T and use equations Xi = Xi (1 � i � n) and
T = T · ϕ(X1, . . . , Xn). The latter equation, unless ε /∈ ϕ(e(X1), . . . , e(Xn)),
expresses a contradiction of the form “ε ∈ T if and only if ε /∈ T ”.

4 Uniqueness of Solution

Let us now devise a necessary and sufficient condition of having a unique solution.
For language equations of a more general form the following criterion of solution
uniqueness is known:

Theorem 3 (Okhotin [10]). A system with concatenation and all Boolean
operations has a unique solution if and only if for every finite subword-closed
language M there exists a finite subword-closed language M ′ ⊃M , such that all
solutions modulo M ′ coincide modulo M .

For our systems, Lemma 1 simplifies this condition to the following:

Corollary 1. A system with concatenation and complementation has a unique
solution if and only if it has a unique solution modulo every finite subword-closed
language M .
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Indeed, if there are multiple solutions modulo some M , then each of them can
be extended to a full solution, and these solutions are distinct.

Let us define a more precise uniqueness criterion. Consider a system of equa-
tions Xi = ϕi(X1, . . . , Xn) (1 � i � n). Assume that it has a unique solution
(Lε

1, . . . , L
ε
n) modulo {ε} and that this solution is defined by a Boolean vector

(y1, . . . , yn) in the sense that Lε
i = {ε} if yi = 1 and Lε

i = ∅ otherwise. By The-
orem 1, the system has a solution. Let (L′1, . . . L

′
n) be a solution modulo {ε, a},

for any a ∈ Σ. Since each L′i ∩ {ε} is determined by yi, (L′1, . . . , L′n) is uniquely
defined by a Boolean vector (x1, . . . , xn), which satisfies the following equations:

xi = (yj ∧ xk) ∨ (yk ∧ xj), for all ϕi(X1, . . . Xn) = Xj ·Xk;
xj = cj , for all ϕi(X1, . . . Xn) = const.

Here we have used the facts that Lj · Lk ⊂ {ε} and a /∈ Lj · Lk.
This system of Boolean equations can be represented by an oriented graph

Γ = Γ ({ε}, a) with vertices {1, . . . , n}, where each vertex i corresponds to a
variable xi and an arc (i, j) belongs to Γ if and only if there is k such that
yk = 1 and ϕi(X1, . . .Xn) equals either XjXk or XkXj . Let us say that the
initial system of language equations is rigid if is has a unique solution modulo
{ε} and Γ contains no cycles. This gives the following purely syntactical sufficient
condition of solution uniqueness:

Lemma 3. Every rigid system has a unique solution.

The proof is by a reduction to a system of Boolean equations. As in Lemma 1,
it is proved that the solution modulo every finite subword-closed M is unique,
because the Boolean system describing the extension from M to M ∪{w} always
has a unique solution. However, this sufficient condition is not necessary, and a
non-rigid system with a cyclic graph Γ can still have a unique solution.

Example 1. Take any language L0, such that {ε} ⊆ L0 ⊆ Σ∗. Then the system

X1 = Y X2 Y = {ε, a}
X2 = UX3 Z = ε ∪ ba∗
X3 = X4Z U = L0

X4 = X1U T = TX1

has a unique solution modulo {ε},
which is (∅, {ε},∅, {ε}, {ε}, {ε}, {ε}, {ε}). The corresponding graph Γ shown
here contains a cycle X1 → X2 → X3 → X4 → X1, and hence the system is not
rigid. However, it still has a unique solution (∅, Σ∗,∅, Σ∗, {ε, a}, ε∪ba∗, L0, Σ

∗).

It is enough to prove that for every finite subword-closed M there is a unique
solution (L1, . . . , L8) modulo M , such that L1 = L3 = ∅ and L2 = L4 = M .
This is proved inductively on |M |. Given M ′ = M ∪ {w}, where w /∈M ′ and all
subwords of w are in M , one can show that w /∈ L1, L3 and w ∈ L2, L4 by the
following argument: (i) if w = au for some u ∈ M , then u ∈ L2, w ∈ aL2, and,
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thereby, w /∈ L1; (ii) if w = ubai for u ∈M and i � 0, then u ∈ L4, w ∈ L4 · ba∗,
and w /∈ L3. Every nonempty word over {a, b} meets one of these conditions.

Note that the above argument is based upon the fact that every word w ∈ Σ+

has a nonempty prefix from Y or a nonempty suffix from Z; in other words,
Y ∗Z∗ = Σ∗. We shall now see that the exact condition of having a unique
solution is that an equality of this kind holds for all such cycles.

A variable Xi is said to be perishable if Γ contains a path from i to any
cycle; in the above example, X1, X2, X3, X4 and T are perishable. A solution
(L1, . . . , Ln) is distinguished if Li ∈ {Σ∗,∅} for each perishable variable Xi.

Lemma 4. If a system has a unique solution modulo ε, then it has a unique
distinguished solution.

To show that such a solution exists, substitute ∅ or Σ∗ for all perishable vari-
ables according to the solution modulo {ε}. The resulting system in variables
(X1, . . . , Xm) has the same unique solution modulo {ε}, and this system is rigid.

Corollary 2. If (L1, . . . , Ln) is the unique solution of a system, then Li ∈
{Σ∗,∅} for each perishable variable Xi.

Corollary 3. For every system that has a unique solution there exists and can
be effectively constructed a rigid system with the same unique solution, which
additionally uses constants ∅ and Σ∗.

Let us say that a minimal cycle S in Γ is appropriate if there is no arc (i, j),
such that j /∈ S and j is perishable. For every such cycle, define

J�(S) := {j /∈ S | ∃i ∈ S : ϕi(X1, . . . , Xn) = XjXk and yk = 1},
Jr(S) := {j /∈ S | ∃i ∈ S : ϕi(X1, . . . , Xn) = XkXj and yk = 1}.

The only cycle in Example 1 is appropriate and J�(S) = {Y }, Jr(S) = {Z}.
Note that, for every S, J�(S) ∪ Jr(S) = {j | j /∈ S, ∃i ∈ S : Γ contains (i, j)}.

Lemma 5. Suppose a system has a unique solution modulo {ε} and (L1, . . . , Ln)
is its distinguished solution. Let S ⊂ Γ be an appropriate cycle with
J�(S) = {�1, . . . , �t} and Jr(S) = {r1, . . . , rs}. Suppose that K :=
(L�1L�2 . . . L�t)∗(Lr1Lr2 . . . Lrs)∗ �= Σ∗, w /∈ K, and M is the set of the proper
subwords of w. Then there are at least two distinct solutions modulo M ∪ {w}.

The proof is again by reduction to a Boolean system, which is shown to have
two distinct solutions.

Theorem 4. A system Xi = ϕi(X1, . . . , Xn) (1 � i � n) with a unique solution
modulo {ε}∪Σ has a unique solution if and only if for the distinguished solution
(L1, . . . , Ln) and for each appropriate cycle S ⊂ Γ with J�(S) = {�1, . . . , �t},
Jr(S) = {r1, . . . , rs} we have (L�1L�2 . . . L�t)

∗(Lr1Lr2 . . . Lrs)
∗ = Σ∗.
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The forward implication is by Lemma 5: if the condition is violated, then the
system is bound to have multiple solutions. The converse is proved by a reduction
to a Boolean system.

An important question is whether the condition of Theorem 4 can be tested
algorithmically. Testing it requires deciding whether (K1 . . .Km)∗(L1 . . . Ln)∗ =
Σ∗ for any given languages Ki, Lj , and the languages are given by unique so-
lutions of rigid systems. Our present knowledge on the form of these unique
solutions is insufficient to resolve this question.

Let us consider a particular case, in which the decidability can be established.
This is the case of a unary alphabet: here our criterion of uniqueness is simplified
to the following clear condition that reminds of Theorem 1:

Theorem 5. Let Σ = {a}. A system Xi = ϕi(X1, . . . , Xn) (1 � i � n) over
Σ, with concatenation and complementation and with arbitrary constants, has a
unique solution if and only if it has a unique solution modulo {ε, a}.

The proof is based upon the observation that whenever LS =
(L�1L�2 . . . L�t)

∗(Lr1Lr2 . . . Lrs)
∗ �= a∗, it implies a /∈ LS , and then by

Lemma 5, the solution modulo {ε, a} is not unique.
Let us determine the computational complexity of the problem in this case.

Theorem 6. Let Σ = {a}. Fix any set of constants, for which the membership
of ε and a can be decided in polynomial time. Then the problem whether a system
Xi = ϕi(X1, . . . , Xn) (1 � i � n) with concatenation and complement and with
these constants has a unique solution is US-complete.

Membership in US is proved by guessing the unique solution modulo {ε, a}.
Hardness is established by a slight elaboration of the method used for Theorem 2.

5 Nonrepresentable Languages

Consider the family of languages that occur in unique solutions of language equa-
tions with concatenation and complementation. Actually, there are two families
corresponding to the cases of regular and singleton constants (we denote them
by NReg and N), and their distinctness is one of our results.

In order to prove that some languages are not representable by these equa-
tions, consider their factorizations. Let us say that a decomposition L = L1L2 is
trivial if either L1 or L2 equals {ε}. A language L is called prime [13], if L �= {ε}
and every decomposition L = L1L2 is trivial.

Lemma 6. Suppose (L1, . . . , Ln) is the unique solution of a system Xi =
ϕi(X1, . . . , Xn), where every equation is of the form X = Y Z or X = const.
Suppose that for some L = Li such that L /∈ {Σ∗,∅} there are no non-trivial
decompositions L = LjLk or L = LpLq. Then one of the languages L,L must be
among the constant languages used in the system.
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Assume that ε ∈ L and let (L, . . . , L, L, . . . , L, Lm, . . . , Ln) be the solution of
the system. If neither L nor L are among the constants, then it can be proved
that (Σ∗, . . . , Σ∗,∅, . . . ,∅, Lm, . . . , Ln) is a solution as well, which contradicts
the assumption of solution uniqueness.

Corollary 4. If L ⊆ Σ∗ and its complement L are primes, and either of them
is among the components of a unique solution, then one of them must be among
the constants.

Example 2. Let Σ = {a, b}. The regular language L = aΣ∗b ∪ bΣ∗a ∪ ε and
its complement L = aΣ∗a ∪ bΣ∗b ∪ a ∪ b are primes. Therefore, there exists
no system of language equations with concatenation and complementation such
that it has a unique solution, L or L is among the components of that solution,
and neither L nor L is among constant languages used in the system.

Example 3. Let Σ = {a, b}. The language L = (aΣ∗b∪bΣ∗a∪ε)\{anbn | n > 1}
and its complement L are primes. Therefore, in particular, L is not representable
by equations with concatenation, complementation and regular constants.

Let us turn to the case of a unary alphabet. Unfortunately, there is no L ⊂ a∗

such that both L and L are primes: one of them is bound to be divisible by {a}.
Thereby our construction of a nonrepresentable language is rather complicated.

Example 4. Let L1 = {an | ∃i � 0 : 23i � n < 23i+2} , L2 = a(a2)∗ and
L3 = {an, an+1 | n = 23i+1, i � 0}. The language L = L1ΔL2ΔL3 is not
representable using regular constants.

To prove its nonrepresentability, we define shifts Mk, Nk of L and L by the
formulas Mk = L · {ak}−1, Nk = L · {ak}−1. Note that Nk = Mk. We then
obtain

Lemma 7. All decompositions of Mk and Nk are of the form Mk = {ar}·Mk+r,
Nk = {ar}·Nk+r.

Now suppose there exists a system with a unique solution (K1, . . . ,Kn), such
that L or L are among {Ki}’s. Let k be the greatest number such that Mk or Nk

is among {Ki}’s. According to Lemma 7, there are no non-trivial decompositions
Mk = KjKt or Nk = KqKs. Hence, by Lemma 6, either Mk or Nk should be
among the constants. Since both are nonregular, we get a contradiction. This
shows the correctness of Example 4, i.e., L1ΔL2ΔL3 /∈ NReg.

6 Expressive Power of Unique Solutions

Let us continue the study of the family of languages representable by unique
solutions of our equations. Following is a general upper bound for this family:

Lemma 8. Consider a system with concatenation and complementation and
with constants generated by Boolean grammars. If it has any solutions, then
for one of them, (L1, . . . , Ln), every Li is generated by a Boolean grammar. If
the concatenation is linear, while the constants are regular, the components are
linear conjunctive. The corresponding grammars can be effectively constructed.
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Using Corollary 3 we can construct a rigid system that has one of the solutions
of the original system. Then, as stated in Corollary 1, it has a strongly unique
solution and therefore can be reformulated as a Boolean grammar [11]. The
exact transformations are due to the normal form theorems for conjunctive and
Boolean grammars [11]. On the other hand, the next example shows that even
with regular constants our equations are weaker than Boolean grammars.

Example 5. Consider L1, L2, L3 ⊆ a∗ given in Example 4. Then the system

X = a ·X222

Y = a2Y ∪ a Z = X
2 ∩ a2 ·X22

U = XΔY ΔZ

has the unique solution (L1, L2, L3, L1ΔL2ΔL3). This solution is strongly
unique, and therefore the system can be transcribed as a Boolean grammar
that generates L1ΔL2ΔL3.

The equation for X is from Leiss [8], who proved that L1 is its unique solution.
The rest can be verified by substituting L1 into the equations for Y , Z and U .

Since, as shown in Example 4, L1ΔL2ΔL3 is not representable by our equa-
tions, it separates these language families, establishing the following hierarchy:

Theorem 7. N ⊂ NReg ⊂ Bool , where Bool is the family of languages generated
by Boolean grammars.

The first inclusion is obvious, and its strictness is shown by Example 2. Lemma 8
establishes the second inclusion, and it is proper due to Example 5.

Consider the case of a unary alphabet. Here every regular language can be
represented using complementation, one-sided concatenation and constant {a}:

Lemma 9. For every DFA A over Σ = {a} one can effectively construct a sys-
tem {X = ϕ(Y ), Y = ψ(Y )} with one-sided concatenation and complementation
and with the constant language {a}, such that the first component of its unique
solution is L(A).

Recall the form of a unary DFA, which starts with a prefix and then enters a
loop. In the constructed system, ϕ represents the prefix and ψ represents the
loop, while the accepting states are encoded in the alternation of concatenation
of a and complementation.

Theorem 8. Consider equations over the alphabet {a} with concatenation and
complementation. The classes of languages representable using singleton or reg-
ular constants coincide, and this class is properly contained between regular lan-
guages and the languages generated by Boolean grammars.

The proof follows from Lemma 9, Examples 4 and 5, Theorem 7, and (1).
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7 The Case of Linear Concatenation

Let us consider a restricted class of equations, in which, for every occurrence of
concatenation in the right-hand sides, one of the operands must be a constant.
The general form of such equations is

Xi = Ki1 ·Ki2 · . . . ·Kimi ·Xji · Limi · . . . · Li2 · Li1 or Xi = const (3)

Note that each variable directly depends on at most one variable. The dependen-
cies of variables in this system can be represented by a graph with variables as
vertices and with arcs labelled by {+,−}. This graph contains an arc (Xi, Xji ,S)
for a non-constant equation (3) if ε ∈ Kj, Lj for all j and S = + if mi is even,
S = − otherwise. Using this graph, the solution existence and uniqueness prob-
lems for the system of language equations can be characterized as follows:

Lemma 10. A system (3) has a solution if and only if the constructed graph
has no cycles with an odd number of negative arcs. It has a unique solution if
and only if the graph has no cycles at all.

Since the constructed graph is of out-degree one, its cycles can be analyzed
in deterministic logarithmic space, and thus the properties of the system of
language equations can be decided efficiently, as long as it is computationally
easy to determine the membership of ε in constant languages.

Theorem 9. Consider any set of constants, for which the membership of ε is
decidable in L (deterministic logarithmic space). Then, given a system Xi =
ϕi(X1, . . . , Xn) (1 � i � n) with linear concatenation and complementation and
with the above constants, the problems of whether it has a solution and whether
it has a unique solution are L-complete wrt. one-way logspace reductions [4].

This applies to singleton constants, to regular constants given by DFAs, to con-
stants given by context-free grammars in Chomsky normal form, etc.

Let us turn to the expressive power of our equations in the case of linear
concatenation. Denote the family of languages by LinN and LinNReg for singleton
and regular constants. If the constants are singletons, there is a way to eliminate
complementation in the equations as follows:

u1u2Lv2v1 = u1Σ∗v1 ∪ u1u2Lv2v1 (∀ u1, u2, v1, v2 ∈ Σ∗ and L ⊆ Σ∗) (4)

The identity (4) can be used for equivalent transformation of equations:

Example 6. The equations X = aXb and X = bΣ∗ ∪ aXb, share the unique
solution L0 = {anwbn | w = ε or w ∈ bΣ∗}. Since L0 ∩ a∗b∗ = {ambn |m � n},
this solution is nonregular.

This method is in fact applicable to every one-variable equation.
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Fig. 1. Hierarchy of families of languages defined by language equations

Lemma 11. Let X = ϕ(X) be a one-variable language equation with linear con-
catenation and complementation and with singleton constants that has a unique
solution L. Then L = {unxvn | n � 0, x ∈ R} for some words u, v ∈ Σ∗ and for
some regular language R, such that R ∩ uΣ∗v = ∅.

If ϕ contains an even number of complementations, then the transformation
(4) applied appropriately many times converts the equation to the form X =
uXv ∪ R. If the number of complementations is odd, consider the equivalent
equation X = ϕ(ϕ(X)). These constructions can be used to obtain the following.

Theorem 10. If a system of language equations Xi = ϕi(X1, . . . , Xn) (1 � i �
n) with linear concatenation and complementation and with singleton constants
has a unique solution, then all of its components are linear context-free, and the
corresponding grammars can be effectively constructed.

In Theorem 10 it is essential that constants are singletons. If regular constants
are allowed, the languages need not be context-free:

Example 7. Let L0 be the unique solution of the equation X = aXb (see Exam-
ple 6), and let R = b+ ∪ a∗b+ab+. Then (L0 " R) ∩ a+b+ab+ = {aibjabk | i �
1, i � j, i � k} and hence L0 " R is not context-free. The system {X = aXb,
Y = X ·R} thus has a unique solution with a non-context-free component Y .

Denote the families of (linear) context-free and (linear) conjunctive languages
by LinCF , CF , LinConj and Conj. The following properties have been established:

Theorem 11. (I) LinN ⊂ LinCF ; (II) LinN ⊂ LinNReg ⊂ LinConj; (III) LinN is
incomparable with Reg; (IV) LinNReg is incomparable with LinCF and with CF .

Together with Theorem 7, this establishes the place of N, NReg, LinN and LinNReg

among the known families defined by language equations, shown in Figure 1.
The rest of the properties of these equations are left for future research. Let us

emphasize a particular open problem: is the condition of Theorem 4 decidable?
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Abstract. We present two infinite series of synchronizing automata
with a letter of deficiency 2 whose shortest reset words are longer than
those for synchronizing automata obtained by a straightforward modifi-
cation of Černý’s construction.

1 Background and Motivation

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where Q is the
state set, Σ stands for the input alphabet, and δ : Q×Σ → Q is the transition
function defining an action of the letters in Σ on Q. The action extends in a
unique way to an action Q×Σ∗ → Q of the free monoid Σ∗ over Σ; the latter
action is still denoted by δ. The DFA A is called synchronizing if there exists
a word w ∈ Σ∗ whose action resets A , that is leaves the automaton in one
particular state no matter which state in Q it started at: δ(q1, w) = δ(q2, w) for
all q1, q2 ∈ Q. Any word w with this property is said to be a reset word for the
DFA.

It is rather natural to ask how long a reset word for a given synchronizing
automaton may be. The problem is known to be NP-complete (see, e.g., [11,
Section 6]), but on the other hand, there are some upper bounds on the minimum
length of reset words for synchronizing automata with a given number of states.
The best such bound known so far is due to J.-E.Pin [10] (it is based on a
combinatorial theorem conjectured by Pin and then proved by P. Frankl [5]): for
each synchronizing automaton with n states, there exists a reset word of length
at most (n3−n)/6. In 1964 J. Černý [2] produced for each n > 1 a synchronizing
automaton Cn with n states whose shortest reset word has length (n− 1)2 and
conjectured that these automata represent the worst possible case, that is, every
synchronizing automaton with n states can be reset by a word of length (n−1)2.
By now this simply looking conjecture is arguably the most longstanding open
problem in the combinatorial theory of finite automata. The reader is referred to
the survey [8] for an interesting overview of the area and its relations to multiple-
valued logic and symbolic dynamics; applications of synchronizing automata to
robotics are discussed in [4].
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There are many papers where the Černý conjecture is proved for various
restricted classes of synchronizing automata (cf. [3, 7, 1, 12], to mention a few
recent advances only). On the other hand, there are only very few examples of
“slowly” synchronizing automata, that is automata whose shortest reset words
have lengths close to the Černý bound. In fact, it seems that the only infinite se-
ries of n-state synchronizing automata with shortest reset words of length O(n2)
that appeared in the literature so far is the Černý series Cn, n = 2, 3, . . . . Of
course, one can obtain more examples by some slight modifications of the Černý
automata (we shall discuss this later) but in general “slowly” synchronizing au-
tomata turn out to be rather exceptional. This observation is supported not
only by numerous experiments (see [13] for a description of certain noteworthy
experimental results in the area) but also by probabilistic arguments. Indeed,
if Q is an n-element set (with n large enough), then, on average, any product
of 2n randomly chosen transformations of Q is known to be a constant map,
cf. [6]. Being retold in automata-theoretic terms, this fact implies that a ran-
domly chosen DFA with n states and a sufficiently large input alphabet tends to
be synchronizing, and moreover, the length of its shortest reset word does not
exceed 2n.

In the present paper we construct two new infinite series of “slowly” syn-
chronizing automata. In contrast with the Černý series, in our automata one of
the letters acts as a transformation of deficiency 2. (Recall that the deficiency
of a transformation ϕ of a finite set Q is the difference |Q| − |ϕ(Q)|.) Since,
in the presence of such a letter, synchronization speeds up, one cannot expect
the lengths of shortest reset words for our automata to reach the Černý bound.
However, surprisingly enough, our examples turn out to synchronize slower than
automata with a letter of deficiency 2 derived in a natural way from the Černý
automata.

Besides enlarging our supply of examples, there are various additional moti-
vations for studying synchronizing automata with a letter of deficiency 2. For
instance, we recall that the best upper bound known so far for the minimum
length �(n) of reset words for synchronizing automata with n states is cubic.
Clearly, finding a quadratic upper bound for �(n) would constitute a major
step towards a proof of the Černý conjecture. It can be easily verified that if a
quadratic in n function f(n) provides an upper bound for the minimum length of
reset words for n-state synchronizing automata with a letter of deficiency 2, then
the function 4f(n) can serve as an upper bound for �(n). Thus, approaching the
problem through automata with a letter of deficiency 2 might be a reasonable
strategy. However we shall not touch this approach in the present paper.

2 Main Results and a Discussion

Let A = 〈Q,Σ, δ〉 be a DFA with |Q| ≥ 3. If a letter a ∈ Σ is such that the
transformation δ( , a) : Q → Q has deficiency 2, then exactly one of the two
following situations happens.
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1. There exist four different states q1, q2, q3, q4 ∈ Q such that

δ(q1, a) = δ(q2, a) �= δ(q3, a) = δ(q4, a).

In this situation we say that a is a bactrian letter.
2. There exist three different states q1, q2, q3 ∈ Q such that

δ(q1, a) = δ(q2, a) = δ(q3, a).

In this case we call a a dromedary letter.
Figure 1 illustrates these notions and explains the terminology.

The action of a bactrian letter The action of a dromedary letter

Fig. 1. Two types of letters of deficiency 2

An easy way to obtain slowly synchronizing automata with a letter of de-
ficiency 2 of either type consists in modifying the Černý automata. Namely,
consider the Černý automaton Cn−1 whose states are the residues modulo n− 1
and whose input letters a and b act as follows:

δ(0, a) = 1, δ(m, a) = m for 0 < m < n− 1, δ(m, b) = m+ 1 (mod n− 1).

We add to Cn−1 an extra state denoted n − 1 and then extend the transition
function by letting δ(n − 1, a) = 2, δ(n − 1, b) = n − 1. This will give an n-
state automaton C ′n in which a becomes a bactrian letter. Similarly, if we extend
δ by defining δ(n − 1, a) = 1, δ(n − 1, b) = n − 1, we obtain another n-state
automaton C ′′n in which a is a dromedary letter. Both these modifications are
shown on Fig. 2.

n−3

n−2

0

1

2

a

a a

a
b

b a, b

b

. . . . . .

n−1b a in C ′
n

a in C ′′
n

Fig. 2. The automata C ′
n and C ′′

n



436 D.S. Ananichev, M.V. Volkov, and Y.I. Zaks

It can be verified that the word (abn−2)n−3a, which resets the automaton
Cn−1, resets also both C ′n and C ′′n and is in fact the shortest reset word for each
of these automata. Hence (n − 2)2, i.e. the length of this word, turns out to be
a lower bound for the minimum length of reset words for n-state synchronizing
automata with a letter of deficiency 2 of either type. By analogy with the Černý
conjecture, one may think that the bound is tight. However, as our results show,
this is not the case.

Our first result significantly improves the lower bound for synchronizing au-
tomata with a bactrian letter:

Theorem 1. For each odd n > 3, there exists a synchronizing automaton Bn

with n states and two input letters one of which is bactrian such that the shortest
reset word of Bn is of length (n− 1)(n− 2).

The proof of Theorem 1 is presented in Section 2. In our opinion, this proof is of
independent interest as it involves a trick which, to the best of our knowledge,
has not appeared in synchronization proofs so far.

It seem that the restriction on the parity of the quantity of states in Theorem 1
is essential. If n is even, then the construction used to design the automaton Bn

still works but produces an automaton which is not synchronizing. For n = 6
we have found a synchronizing automaton with two input letters including one
bactrian and with the shortest reset word of length (6 − 1)(6 − 2) = 20 but
already for n = 8 our best bactrian example has the shortest reset word of
length 39 < (8 − 1)(8− 2) = 42.

Now consider the dromedary case. Here it appears that the ‘Černý-like’ exam-
ple C ′′n is indeed optimal for the two-letter alphabet. However over three letters
we are able to slightly improve the lower bound:

Theorem 2. For each n > 4, there exists a synchronizing automaton Dn with
n states and three input letters one of which is dromedary such that the shortest
reset word of Dn is of length (n− 2)2 + 1.

The proof of Theorem 2 shares some ideas with the proof of Theorem 1 but
is more bulky. Due to space limitations, it will be published elsewhere. The
automata Dn are presented in Section 3.

For n = 5 and n = 6, we have found some dromedary examples (again with
three input letters) whose shortest reset words are one letter longer than those of
respectively D5 and D6. These examples indicate that there may exist a series of
n-state synchronizing automata with three input letters including one dromedary
whose shortest reset words are of length (n− 2)2 + 2 but we have not managed
to find such a series so far.

3 The Automata Bn

Let n = 2k + 1 be an odd number greater than 3. The states of the automaton
Bn are the residues modulo n− 1 and its input letters a and b act as follows:

δ(m, a) =

{
m− 2 (mod n) for m = 0, 1,
m for 1 < m < n,

δ(m, b) = m− 1 (mod n).
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Observe that a is a bactrian letter in Bn. The smallest automaton in the series
is shown on Fig. 3.

0

1 4

2 3

a

a

b

b

b

b

b

a

a

a

Fig. 3. The automaton B5

The next fact can be straightforwardly checked and we omit its proof.

Lemma 1. Let n = 2k + 1, k > 1. Then the word

(ab2k−1)k−1ab2k−2(ab2k−1)k−1a (1)

is a reset word for the automaton Bn.

The length of the word (1) is 2k(k− 1) + 2k− 1 + 2k(k− 1) + 1 = 2k(2k− 1) =
(n− 1)(n− 2). We observe in passing that Bn has yet another reset word of the
same length.

To complete the proof of Theorem 1, it remains to show that the length of
each reset word for Bn is at least (n− 1)(n− 2). For this, we use a solitaire-like
game on the underlying graph of Bn. Assume that some of the states of Bn are
covered with pairwise distinct coins as shown on Fig. 4. Each move, that is the
action of a letter c ∈ {a, b}, makes the coins slide along the arrows labelled c so
that a state m will be covered with a coin after the move if and only if there
exists a state � such that δ(�, c) = m and � was covered with a coin before the
move. If two coins happen to arrive at the same state m, then from the structure
of Bn we conclude that c = a, m = n− 1 or m = n− 2 and both m and m+ 2
(mod n) held coins before the move. Then we retain the coin that had covered
m before the move and delete the coin arriving from m + 2(mod n). Figure 5
demonstrates how the position shown on Fig. 4 changes after a single action of
a letter.

Suppose that initially all the states of the automaton Bn are covered with
coins and let a word w ∈ {a, b}∗ (that is the sequence of its letters) act on this
initial position. It is easy to realize that after completing this action coins cover
precisely the states in the image of the transformation δ( , w). In particular, if
w is a reset word for Bn, then after the action of w only one coin survives.



438 D.S. Ananichev, M.V. Volkov, and Y.I. Zaks
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Fig. 4. A position on B5

Fig. 5. Redistributing coins under the actions of b (left) and a (right)

Now we can explain the idea of our proof of Theorem 1. Given a reset word w
and an initial distribution P0 of n coins on the states of Bn, let Pi (0 ≤ i ≤ |w|)
stand for the position that arises when we apply the prefix of w of length i to
the position P0. We shall assign each position Pi an integer parameter wg(Pi)
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(called the weight of the position) such that the following three conditions are
satisfied:

(i) wg(P0) ≥ (n− 1)2;
(ii) wg(P|w|) ≤ n− 1;
(iii) for each i = 1, . . . , |w|, the action of the ith letter of w decreases the weight

of Pi−1 by 1 at most, that is, 1 ≥ wg(Pi−1)− wg(Pi).

Clearly, if such a weight function indeed exists, then summing up all the inequal-
ities in (iii) and utilizing (i) and (ii), we obtain

|w| =
|w|∑
i=1

1 ≥
|w|∑
i=1

(
wg(Pi−1)− wg(Pi)

)
= wg(P0)− wg(P|w|) ≥

(n− 1)2 − (n− 1) = (n− 1)(n− 2),

as required.
It remains to construct a weight function satisfying (i)–(iii). This is by no

means an easy task because some moves can delete two coins at once. It is
to overcome this difficulty that we let our coins be distinguishable from each
other—this allows us to make weight functions depend on reset words while a
‘uniform’ weight function serving all reset words simultaneously may not exist.

Thus, let us fix a reset word w and an initial distribution P0 of n coins on
the states of Bn. As mentioned, the action of w on P0 removes n− 1 coins. We
call the only coin that remains after the action the golden coin and denote it
by G. Now fix a position Pi (0 ≤ i ≤ |w|). For any coin C that is present in
this position, let mi(C) be the state covered with C. We denote by di(C) the
least non-negative integer such that δ

(
mi(C), b2di(C)

)
= mi(G). In the ‘visual’

terms, di(C) is the number of double steps on the ‘main circle’ of Bn (measured
clockwise) from the state covered with C to the state covered with the golden
coin. We define the weight of C in the position Pi as

wg(C,Pi) = (n− 1) · di(C) +mi(C).

(Observe that here we multiply and add integers and not residues modulo n.)
In order to illustrate this definition, assume that the black coin in the position
shown on Fig. 4 is the golden coin. Then the weight of the white coin in this
position is equal to 4 · 3 + 3 = 15 because the white coin covers the state 3
and from this state one needs 3 double steps in the clockwise direction in order
to reach the state 2 covered with the golden coin. Similarly, the weight of the
dark-grey coin on Fig. 4 is 4 · 2 + 1 = 9 and the weight of the light-grey coin is
4 · 4+0 = 16. As for the black (=golden) coin, its weight is 4 · 0+2 = 2 because,
by the definition, the weight of the golden coin in any position is equal to the
state it covers.

Now we define the weight wg(Pi) of the position Pi as the maximum of the
weights of the coins present in this position. For instance, the weight of the
position shown on Fig. 4 is 16 (if, as above, one assumes that the black coin is
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the golden one). It remains to verify that this weight function satisfies Conditions
(i)–(iii).

Condition (i): wg(P0) ≥ (n− 1)2. In the initial position all states are covered
with coins. Consider the coin C that covers the state m0(G) − 2(mod n), that
is the state in one double step clockwise after the state covered with the golden
coin. Then it is easy to see that d0(C) = n−1 whence wg(C,P0) = (n−1) · (n−
1) +m0(C) ≥ (n− 1)2. Since the weight of a position is not less that the weight
of any coin in this position, we conclude that wg(P0) ≥ (n− 1)2, as required.

Condition (ii): wg(P|w|) ≤ n− 1. In the final position only the golden coin G
remains, whence the weight of this position is the weight of G. We already have
observed that wg(G,Pi) = mi(G) for any position Pi and, clearly, mi(G) ≤ n−1.

Condition (iii): wg(Pi−1) − wg(Pi) ≤ 1 for i = 1, . . . , |w|. Let us fix a coin C
of maximum weight in Pi−1. First consider the case when the letter that causes
the transition from Pi−1 to Pi is b. Recall that δ(m, b) = m − 1(mod n). This
implies that di(C) = di−1(C) (because the relative location of the coins does not
change) and

mi(C) =

{
mi−1(C) − 1 if mi−1(C) > 0,
n− 1 if mi−1(C) = 0.

We see that

wg(Pi) ≥ wg(C,Pi) = (n− 1) · di(C) +mi(C) ≥
(n− 1) · di−1(C) +mi−1(C)− 1 = wg(C,Pi−1)− 1 = wg(Pi−1)− 1,

as required.
Next suppose that the transition from Pi−1 to Pi is caused by the action of

the letter a. Recall that a moves the states 0 and 1 to the states n− 2 and n− 1
respectively (that is one double step clockwise) and fixes all other states. If the
coin C covers neither 0 nor 1, then it does not move whence mi(C) = mi−1(C)
and

di(C) =

{
di−1(C) if the golden coin G covers neither 0 nor 1,
di−1(C) + 1 if G covers either 0 or 1.

We conclude that

wg(Pi) ≥ wg(C,Pi) = (n− 1) · di(C) +mi(C) ≥
(n− 1) · di−1(C) +mi−1(C) = wg(C,Pi−1) = wg(Pi−1).

Thus, here the transition from Pi−1 to Pi does not decrease the weight.
It remains to consider the subcase when the coin C covers either 0 or 1. As

these two possibilities are analyzed with precisely the same argument, we assume
that C covers 0. Then in the position Pi the state n− 2 holds a coin C′ (which



Synchronizing Automata with a Letter of Deficiency 2 441

may or may not coincide with C). If in the position Pi−1 the golden coin G
covers either 0 or 1, then di(C′) = di−1(C) whence

wg(Pi) ≥ wg(C′, Pi) = (n− 1) · di(C′) + n− 2 >
(n− 1) · di−1(C) = wg(C,Pi−1) = wg(Pi−1).

We see that here the weight even increases. Finally, if the coin G covers neither
0 nor 1, it does not move whence di(C′) = di−1(C)− 1. Therefore

wg(Pi) ≥ wg(C′, Pi) = (n− 1) · di(C′) + n− 2 =
(n− 1) · (di−1(C)− 1) + n− 2 = (n− 1) · di−1(C)− 1 =

wg(C,Pi−1)− 1 = wg(Pi−1)− 1,

as required.
Thus, we have verified that our weight function satisfies Conditions (i)–(iii),

and this completes the proof of Theorem 1.
It is very tempting to conjecture that the expression (n − 1)(n − 2) gives

the exact value for the minimum length of reset words for n-state synchronizing
automata with a letter of deficiency 2 when n ≥ 5 is odd. So far we have been able
to confirm this only for n = 5 (thus solving a question mentioned in J.-E.Pin’s
early survey [9]).

4 The Automata Dn

Take an n > 4 and let Dn be the DFA with the state set {1, 2, . . . , n}, the input
alphabet a, b, c and the transition function δ defined by the following table:

m 1 2 3 4 5 . . . n
δ(m, a) 1 1 1 4 5 . . . n
δ(m, b) 1 1 2 4 5 . . . n
δ(m, c) 4 1 4 5 6 . . . 3

Thus, both a and b fix each state m with 4 ≤ n ≤ m and c acts on the set
{3, 4, . . . , n} as a cyclic shift. The automaton Dn is shown on Fig. 6.

Verifying the following fact amounts to a straightforward calculation:

Lemma 2. Let n > 4. Then the word

c2(bcn−1)n−4bc2 (2)

is a reset word for the automaton Dn.

The length of the word (2) is n(n − 4) + 5 = (n − 2)2 + 1. and this is in fact
the minimum length of a reset word for Dn. Observe that the word (2) does not
involve the letter a, and therefore, it also resets the DFA obtained from Dn by
omitting a. Thus, we see (and it seems to be somewhat surprising) that adding
a letter o f deficiency 2 to a synchronizing automaton in which all letters have
deficiency 1 may not decrease the minimum length of reset words.
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Fig. 6. The automaton Dn
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On Some Variations of Two-Way Probabilistic
Finite Automata Models

Bala Ravikumar
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Abstract. Rabin [21] initiated the study of probabilistic finite automata
(PFA). Rabin’s work showed a crucial role of the gap in the error bound
(for accepting and non-accepting computations) in the power of the
model. Further work resulted in the identification of qualitatively dif-
ferent error models (one-sided error, bounded and unbounded errors, no
error etc.) Karpinski and Verbeek [16] and Nisan [20] studied a model of
probabilistic automaton in which the tape containing random bits can
be read by a two-way head. They presented results comparing models
with one-way vs. two-way access to randomness. Dwork and Stockmeyer
[5] and Condon et al. [4] studied a model of 2-PFA with nondeterministic
states (2-NPFA). In this paper, we present some results about the above
mentioned variations of probabilistic finite automata, as well as a model
of 2-PFA augmented with a pebble studied in [22]. Our observations in-
dicate that these models exhibit subtle variations in their computational
power. We also mention many open problems about these models. Com-
plete characterizations of their power will likely provide deeper insights
about the role of randomness is space-bounded computations.

1 Introduction

Randomness has been understood to be a crucial artifact for an efficient solu-
tion of a wide range of computational problems. In a pioneering work, Rabin
[21] showed that a 1-way probabilistic finite automaton (1-pfa) in which the
acceptance probability is bounded away from 1/2 is no more powerful than a
determinstic finite automaton, i.e., both accept the same class of (regular) lan-
guages. In contrast, he also showed that allowing the error probability to be
arbitrarily close to 1/2 makes a probabilistic automaton accept non-regular lan-
guages. Freivalds [9] considered bounded error model, but allowed the input tape
to be 2-way. He showed that this model (2-pfa) can accept non-regular languages.
Specifically, Frievalds showed that a 2-pfa can accept Leq = {0n1n|n ≥ 1} with
arbitrarily small error probability. Following Freivalds’ work, several papers [13],
[7], [3], [22], [4] studied this model and presented various results about the power
of 2-pfa.

In this work, we study some variations of the 2-pfa model. Specifically, we are
interested the following variations of the 2-pfa model:

O.H. Ibarra and Z. Dang (Eds.): DLT 2006, LNCS 4036, pp. 443–454, 2006.
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1. The standard 2-pfa model has a coin-tossing mechanism in the finite con-
trol. Specifically, for some fixed k, its transition function provides k different
options (just like a nondeterministic machine) from any specific configura-
tion. At each step, one of these k options is assumed to be chosen randomly
(with uniform probability) and the move is executed. However, the actual
random choice made is not recorded for future reference. We can thus think
of the randomization process as being implemented using a tape in which
an arbitrarily long string over the alphabet {1, 2, ..., k} is written and this
tape is being read by the device using a tape-head that always moves in one
direction to generate coin tosses. In contrast to this model, a 2-way random
tape model is one in which the read-head on the tape can move in both
directions. This model was first introduced by [2] and has been studied in
[20], [16],[17] etc.

2. Interactive proof systems in which the verifier is a finite-state automaton was
studied by Dwork and Stockmeyer [5], [6], [7] and Condon and Lipton [3],
among others. This model is the finite-state analog of the interactive Turing
machines introduced by Goldwasser, Micali and Rackoff [11] in a celebrated
paper that extended the concept of a nondeterministic verification to include
two new ingredients, namely: interaction and randomness. Since the model
of interactive proofs we consider are such that the verifier’s coin tosses are
public, it is easier to model such automata as 2-pfa’s with nondeterministic
states (2-NPFA). We relate this model to the deterministic counter machine
model in which the counters are reversal-bounded.

3. The third model we consider is the extension of the 2-pfa model by adding a
pebble. This model was introduced in [22]. We consider 2-NPFA augmented
with a pebble and present some results about the power of such automata.

The rest of this paper is organized as follows. In Section 2, we anwer an open
question from [17] by showing that the class BP*TISP(poly, O(1)), the class of
languages accepted by a 2-way PFA with bounded error that runs in expected
polynomial time and with two-way access to random tape can accept non-regular
languages. We show that a subclass of this class, namely ZP*TISP(poly, O(1))
(which is not allowed to have any error) can already accept non-regular lan-
guages. In Section 3, we show that the class of languages accepted by a one
reveral deterministic multi-counter machine can be accepted by a 2-NPFA. In
Section 4, we consider the 2-NPFA model augmented by a pebble and present
examples of languages accepted by 2-NPFA(pebble) not known to be accepted
by other weaker models. We present many open problems throughout the paper.

Because of space limitation, some of the proofs are not included in the ex-
tended abstract, but can be found in an appendix.

2 Two-Way PFA with Two-Way Access to the Random
Tape

In the “standard” model of a probabilistic machine, the source of randomness is
assumed to be a sequence of independent and unbiased coin tosses. We can view
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such a sequence as being stored in a read-only tape (“random-tape”) which can
only be accessed from left to right. A natural extension of this model is to allow
the random-tape head to move bidirectionally. Such a model has been studied
in [2], [16], [17], [20] and others. We will briefly describe some of the previous
results about probabilistic models with two-way access to coin tosses.

Let BPTISP(T (n), S(n)) be the class of languages accepted by a bounded
error probabilistic Turing machine operating with O(S(n)) space (on all paths)
and expected time O(T (n)) on inputs of length n. As always, the expectation is
over the coin tosses for every fixed input, and not by averaging over various inputs
of length n. Following Nisan’s notation in [20], the corresponding probabilistic
class with two-way access to random tape is defined as BP*TISP(T (n), S(n)) etc.
We also use the notation BSPACE(S(n)) to denote a bounded-error probabilistic
Turing machine in which space bound S(n) holds on every computational path,
and in which the access to random tape is 1-way. The analoguous model with two
way access to random tape will be denote by B*SPACE(S(n)). BSPACE(O(1))
will be denoted by the more familiar name 2-PFA.

The first question comparing probabilistic machine with two-way and one-
way access to random tape was raised by Borodin et al. [2]. It was answered
by [16] by showing that there is a language in B*SPACE(S(n)) (where S(n) ≥
log n) that is not in DSPACE(S(n)k) for any k. This is in contrast to the
result of Borodin et al. that every language in BSPACE(S(n)) (where S(n) ≥
log n) is in DSPACE(S(n)2), a generalization of Savitch’s theorem. The work
[17] presents stronger results about probabilistic models with two-way access to
random tape. Let Z*TISP(poly, log) denote probabilistic polynomial time and
log space bounded Turing machine languages with two-way access to random
tape. Nisan [20] showed that BPTISP(poly,log) ⊆ ZP*TISP(poly,log). But no
results were known about the classes BP*TISP(poly, O(1)) or ZP*TISP(poly,
O(1)) or any other complexity classes in which the space bound is constant. (It
should be noted that the finite-state analog of Nisan’s theorem is trivially true
since the class BPTISP(poly, O(1)) is known to contain only regular languages
[5].)

Our first result involves an answer to an open problem in [17], namely, whether
the class BP*TISP(poly,O(1)) contains a non-regular language. We answer these
questions below.

First, we need the following lemmas.

Lemma 1. Let s be a binary string generated by successively choosing each bit
randomly (with probability 1/2 for both 0 and 1). Let Et denote the expected
number of bits that need to be generated before a string of t 0’s is observed.
Then, Et ≤ t2t. This claim also holds if t 0’s is replaced by any fixed t-bit
string σ.

Proof. The proof is simple. Consider the occurrences of a string of t 0’s whose
starting position is a multiple of t (where the positions are counted from 0).
Thus we are looking at a sequence of t tosses as a single event and we stop as
soon as the first success occurs which corresponds to the occurrence of t O’s in a
row. The probability of success is 2−t and the expected number of trials before
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success (because it is a geometric distribution) is 2t. Thus, the expected number
of tosses before the first success is at most t2t since each event involves t tosses.

Lemma 2. Suppose there are n + 1 points numbered 1 to n + 1 on a line. If
a random walk starts in position 2, and moves with equal probability to either
neighboring point until the walk ends at 1 or n+1. The probability that the walk
ends in n+ 1 is 1/n.

We omit the proof of the above lemma which involves the well-known one-
dimensional random walk with absorbing barriers.

The next lemma is due to Alt and Mehlhorn [1] and can be shown from the
prime number formula:

Lemma 3. If n,m are two positive integers such that n �= m, then there exists
an integer k ≤ 4log (n+m) such that n �≡ m (mod k).

We next show that there is a non-regular language in BP*TISP(poly, O(1)).

Theorem 1. The language L = {0n1n|n ≥ 1} is in BP*TISP(poly, O(1)).

Proof. We design a 2-PFA M with two-way access to randomness as follows: On
input x, M first checks that x is of the form On1m, else the input is rejected.
If the string is of this form, it proceeds as follows: M moves the head on the
random tape looking for a substring of the form 10r1. Whenever such a substring
is found, M checks that n ≡ m (mod r) as follows.

It moves the random tape head back to the leftmost 0, and its input head
on the leftmost 0, and starts moving its input head and the random tape head
simulatenously until the random tape head reaches a 1 while the input tape is
still reading a 0. (The case in which the input head reaches a 1 before random
tape head reaches a 1 is exponentially rare and is, in any event, covered by our
construction. This will become clear later on.) Now, M resets the random tape
back to the first 0 of the block by moving its random tape back until it reaches a
1, and by moving right one step. This cycle is repeated as many times as needed,
until the input head is away from 1 by t for some 0 ≤ t < r at the start of a
cycle. It is clear that t = n mod r. At this point, one more cycle is executed
with both heads advancing to the right. M ’s input head will reach a 1 before
the random tape’s head reaches a 1. Now, the random tape is exactly reading
the t-th leftmost 0 of the block 10r1. Next, as the random tape head is moved
back until it reaches a 1, the input head is moved to the right over the block
of 1’s. If the right end-marker on the input tape is reached before the random
tape reaches the 1 on the block 10r1, then clearly n �≡ m (mod t) so the input is
rejected and the computation halts. Assuming that this does not happen, when
the random tape head reaches a 1, the input head is reading the t-th 1 (from
the left-end) on the input tape. From now on, a series of cycles similar to that
over the block of 0’s is repeated, namely, the input head is moved over a block
of r 1’s over each sweep on the random tape. If at the end of a cycle when the
random tape is reading the right 1 of the block 10t1, the input head reaches the
right end-marker, then it is clear that n ≡ m (mod r). On the other hand, when
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the input tape reaches the right-end marker, if the random tape did not reach
the right 1 of the block 10t1, then n �≡ m (mod r) so the input is rejected and
the computation ends.

If the computation does not end in a previous phase of the computation as
described in the last paragraph, the random tape head is moved to the next block
of the form 10r1 and another phase of computation is repeated with the new r.
It is clear that, if n �= m, eventually an r will be found such that n �≡ m (mod r)
and the input will be rejected. However, on inputs of the form 0n1n, such an r
will never be found. So, we need a different mechanism to halt the computations.
This is described below. Before the next phase is started, we execute a random
process that has a probability of success = Θ(1/Nd) for a carefully chosen integer
constant d (the choice of which will be described soon), where N = n + m is
the input length. Such a process can be simulated using lemma 2 as follows:
The input head is placed on the second symbol on the input tape, and a random
walk is executed until the head reaches one of the endmarkers. If in d consecutive
executions of this random process, the head reaches the right end-marker each
time, then we say that the random process succeeds. If the random process
succeeds, then M accepts the input and stops. Else, it continues with the next
phase by choosing the next block 10r1 and performs the test “Is n ≡ m (mod
r)?” for this new r as described above.

To show that the above construction is correct, we need to show the following:
(a) On all inputs of length N , M halts in expected time bounded by a polynomial
in N . It is clear that each cycle takes O(N) time to execute (by a slightly
more efficient way to implement each cycle than the one described above). The
expected number of phases is given by O(Nd) since the expected number of
cycles executed before the random process executed in between successive cycles
succeeds is Θ(1/Nd). Thus, it is clear that the M halts in average polynomial
time. (b) We need to show that M accepts the language Leq = {0n1n|n ≥ 1}.
This involves showing that M accepts (rejects) every string (not) in L with
probability 1 − ε for a given ε < 1/2. It is clear that if the string is in L, it is
never rejected since the only way to reject the input is to find a string of the
form 10r1 on the random tape such that n �≡ m (mod r). Such an r can never
be found if the input is in L, and hence M in fact, has only error on one side.
Suppose the input string 0n1m is not L. Then, by lemma 3, there is a k ≤ 4log N
such that n �≡ m (mod k). By lemma 1, the expected number of moves that need
to be made on the random tape before a string of k 0’s is observed is at most
k2k = O(N c) for some c. Thus, by choosing an integer constant d > c, we can
make the probability that a string of the form 10k1 is observed in the random
tape of length Nd to be smaller than 1− ε for any given fixed ε > 0. Thus, the
probability that M will accept the input is at most ε since the only way the
input will be accepted in this case is if such a k is never encountered during Nd

phases of execution.

Since BP*TISP(poly, O(1)) is closed under complement, we have the following
corollary:

Corollary 1. {0n1m|n �= m} is in BP*TISP(poly, O(1)).
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Next we address whether Leq is in ZP*TISP(poly, O(1)), which is a subset of
BP*TISP(poly, O(1)). ZP*TISP(poly, O(1)) denotes the class of languages which
can be accepted by a 2-pfa (with two-way access to random tape) in expected
polynomial time which halts with probability at least 1/2 on all inputs and
never makes a mistake. We do not know the answer to this question, although
the above construction shows that the error is one-sided, only on strings not
in the language which means that the yes answer is always correct. (For the
language {0n1m|n �= m}, the error is on the other side.)

Since {0n1n|n ≥ 1} and {0n1m|n �= m} are both in 2-PFA, a natural question
is whether every language in 2-PFA is in BP*TISP(poly, O(1)). There is no
evidence to make such a conjecture and we do not believe that this claim is true
and suggest the language {0n1m|n ≤ m}, shown in [22] to be in 2-PFA, as a
potential candidate to separate the classes 2-PFA and BP*TISP(poly, O(1)).

Next we address the question whether ZP*TISP(poly, O(1)) contains a non-
regular language.

Theorem 2. There is a non-regular language in ZP*TISP(poly,O(1)).

Proof. Let L = {x1#...#xk| k ≥ 1, xi is the binary representation of i with
leading 1 }. This is a well-known non-regular language introduced by Hartmanis,
Stearns and Lewis [14]. We describe a 2-pfa M which accepts L in polynomial
average time on every input of lentgh n. The idea behind such an M is as follows:
We describe the construction inductively on the block number i. Suppose the
correctness of the first i blocks has been checked. i.e., M has checked that xj is
the binary representation of j for all 1 ≤ j ≤ i. We will show how to check the
correctness of the next block, namely xi+1.

Assume that the input head is scanning the the leftmost symbol of xi. To
check the correctness of the next block xi+1, M proceeds as follows: It tries
to find a substring on the random tape that exactly matches xi. It does it in
the most obvious way by moving both heads to the right so long as there is a
match. When the match fails, it moves both heads back until the input head
reaches the # symbol, then it advances both heads by one position (to allow the
string matching to start at the position immediately to the right of previously
attempted matching) and the cycle is repeated. When the matching succeeds, we
have the string xi on the random tape. Now, both heads are reversed until xi is
reading the # symbol, while the random tape is reading the symbol immediately
to the left of the matching position. Now the head on the random tape is moved
one position to the right, and the input head moved all the way to the next #
symbol. Now a matching between xi and xi+1 is attempted. This is easy to do
and we omit the details. If this attempt fails, the input is rejected. Otherwise,
the computation proceeds to i+2. After all the blocks are correctly checked, the
input is accepted. It is clear that the above algorithm does not make any errors.
We will now show that M terminates in polynomial average time on inputs of
length n where n is the input length.

Let n be the length of the input string. It can be shown that the length of
the block xi is O(log n) for each i so the expected number of moves needed to
find a copy of xi on the random tape is O(nc) for some c as seen from lemma
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1. Thus, the total time required to find the sequence of such strings in various
cycles is at most O(nc+1log n). (The mutiplicative factor log n occurs due to the
backtracking after each failure.) The rest of the computation involves a sequence
of string matchings and this involves O(n) time. Thus the expected time of M
on inputs of length n is bounded by a polynomial in n.

It should be noted that both languages decribed in the above theorems can be
accepted in log log n space. The latter language is in DSPACE(log log n) [14].
The former language is actually not in NSPACE(log log n), but its complement
is in NSPACE(log log n), and Leq would also be recognizable in log log n space if
a work-tape of length *log log n+ is marked at the beginning of the computation
[15]. Do these results suggest that perhaps every language in DSPACE(log log n)
is in BSPACE(poly, O(1))? There is no evidence to make such a claim. In fact,
consider the unary language L = {an| the smallest r that does not divide n is a
power of 2 }. This language is known to be in DSPACE(log log n) [1], but it is
not clear that it is in BP*TISP(poly, O(1)).

We propose as an interesting area to investigate the connections between the
classes in 2-PFA, BP*TISP(poly,O(1)), and ZP*TISP(poly,O(1)). At this point,
out knowledge of these classes is quite limited. In the next section, we discuss
another interesting class of probabilistic automata.

3 Two-Way PFA with Nondeterministic States

Dwork and Stockmeyer [7] introduced the model of two-way probabilistic finite
automaton with nondeterministic states (2-NPFA) as the finite-state analog of
the Arthur-Merlin games. We will informally describe how a 2-NPFA works.
A 2-NPFA has states partitioned into nondeterministic states and probabilistic
states. The input head can move left or right and change it state based the
current state and the current input scanned. In the case of probabilistic state,
if there are k options, any one of them is chosen with probability k. In the
case of nondeterministic state, any one of the successor moves is chosen. The
actual choice is only relevant in defining the probability of acceptance of the
input string: To determine the probability of acceptance on an input string x,
we create a computation tree in which all the children of probabilistic states
are retained with weights, while for nondeterministic state, we pick one of the
next possible moves. Thus, there are many computation trees associated with an
input string x. To determine the probability of acceptance of the string w.r.to a
fixed tree, we associate a probability of acceptance for the tree as the weighted
sum of all the paths that reach an accepting leaf. The probability of acceptance
of a string is the maximum probability over all possible computation trees. A
2-NPFA accepts a language L if it accepts every string x ∈ L with probability
at least 2/3 and accepts every string not in L with probability at most 1/3. It
is obvious that the class of languages accepted by 2-PFA is a subset of the class
of languages accepted by 2-NPFA and hence the latter includes non-regular
languages (because of the results of [9], [22] etc.) With a slight abuse of the
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notation, 2-NPFA will be used to denote a class of machines as well as the class
of languages accepted by these machines.

The main result of the section is the following theorem:

Theorem 3. Let L be accepted by a 1-way deterministic reversal-bounded mul-
ticounter machine. Then L can be accepted by a 2-NPFA.

Because of space limitations, we omit the proof of this theorem. It is presented
in the Appendix.

We can also show that many languages accepted by a 1-way nondeterministic
1-reversal counter can be accepted by a 2-NPFA. Specifically, we can show that
the following language can be so accepted: L1 = {0t#0i1# ... #0ik | for some
subset S of {1, ..., k}, Σj∈Sij = t}.

4 2-NPFA Augmented with a Pebble

A pebble is a marker that is initially in the finite control. The transition function
of the automaton depends, in addition to the current state and the input symbol,
also on whether the pebble is in the finite control. If this is true, then in the next
move it is possible for the pebble to be left on the current cell on the input tape.
Similarly, when a cell with a pebble is visited, a possible next move is to collect
the pebble and return it to finite control etc. The study of pebble augmenting
the finite control of a finite automaton goes back to Hennie who showed that
a 2-DFA augmented with a pebble accepts only regular languages. Since then,
much work has been done to show that a pebble can add power to computational
devices, especially when the space bound is below log n, see e.g. [15]. In [22], the
question of whether 2-PFA(pebble) is more powerful than 2-PFA was addressed.
Although some evidence for such power was provided, no proof to this effect was
given, and this problem is still open. Here, we will compare the powers of the
machines 2-NPFA, 2-PFA and 2-NPFA(pebble). While our results do not lead
to separation of 2-PFA(pebble) from 2-PFA or 2-NPFA(pebble) from 2-NPFA,
they offer new candidates for proving such a separation. Specifically, we show
that some languages can be accepted by 2-NPFA(pebble) that seem not likely
to be accepted by 2-PFA(pebble) or 2-NPFA. We also show some conditional
separation results.

Theorem 4. The language Let L = {0n1m|n �= m}. L∗ can be accepted by a
2-NPFA with a pebble.

Proof. (sketch) Let ε be the error tolerance. Choose δ, a real number (0 < δ < 1)
and a positive integer d such that 2.(1/2)d < ε and (1− δ)d > 1− ε.

We view the input to be of the form x1...xk where each xi is in L. Let Mδ

denote the 2-pfa that Freivalds constructed to accept Leq with error tolerance δ.
Note that Mδ has a constant acceptance probability on strings in Leq. We now
design a 2-pfaM for L∗.M conducts “competitions” as in Freivalds’ construction
of 2-pfa for Leq. However, each block in our case is of the form 0n1m. We use
the pebble to place it on a cell of the tape, so that on the left or the right side
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of the block, we have the string 0k1k for some k. (For example, if the string is
08110, Mδ will place the pebble on the 9-th one.) A “macroprocessing” of the
input is a sequential simulation of Mδ on each block of the form 0j1j once. Note
that each such block is created nondeterministically by placing the pebble on
the appropriate square of the block. The macroprocessing is positive for x if Mδ

accepts all xi’s. Let x′ = 0k. Note that m is the number of xi’s in x. Let d′ be
the integer chosen in Freivalds’ lemma to satisfy the inequality 2.(1/2)d′

< δ. A
macroprocessing of x′ involves tossing a sequence of biased coins with Pr(Head)
= 2.(1/2)d′

, and Pr(Tail) = 1 - 2.(1/2)d. A macroprocessing of x′ is said to
positive if all m coins turn up H. A competition is a macroprocessing of x and
x′ once. We say that it is a decisive competition if exactly one of the outcomes
is positive, and the one with positive outcome is said to have won. M conducts
a sequence of competitions until exactly d decisive competitions result. If at this
time, both x and x′ have won at least one match, then M accepts the input, else
it rejects it. It can be shown that M accepts L∗ with error at most ε.

Similarly, we can show the following:

Theorem 5. Let Lbal be the set of balanced parentheses over a two-letter alpha-
bet {[, ]}. The complement of Lbal can be accepted by a 2-NPFA augmented with
a pebble.

The proof is presented in the Appendix.
Dwork and Stockmeyer [8] conjecture that Lbal is not in 2-PFA. The conjec-

ture implies that its complement is also not in 2-PFA (since 2-PFA is closed
under complement). A proof of this conjecture would therefore imply that 2-
NPFA(pebble) is more powerful than 2-PFA. It is not clear if either of the
languages described in the previous two theorems can be accepted by a 2-NPFA
(without a pebble).

5 Conclusions

We have presented several results about variants of 2-PFA, an important model
of computation. We also presented a solution to an open problem in [17] about
the power of a 2-PFA with bounded error and with 2-way access to random tape.
Our understanding of these variants of 2-PFA is quite limited at this time. We
have stated many open problems throughout the paper about these models. We
hope that our work will stimulate interest in these problems.
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A Appendix

To show the main result of section 3, we need the following lemmas. The first
one was shown by Freivalds [9].

Lemma 4. Leq = {0n1n | n ≥ 1} can be accepted by a 2-PFA.

Our next lemma shows that a closely related language Lle = {0m1n|m ≤ n} can
be accepted by a 2-PFA. This lemma is due to [22].

Lemma 5. Lle = {0n1m | m ≤ n} can be accepted by a 2-PFA.

In [22], it was shown that 2-PFA can accept 1-way blind reversal-bounded
counter machines. These machines are like reversal-bounded counter machines,
but are weaker in the sense that the next move of the device depends only on
the current state and the input symbol scanned, but not on whether the counter
value is 0.

In the next theorem, we show that every language accepted by a reversal-
bounded 1-way determinstic counter machine can be accepted by a 2-NPFA.

Theorem 3. Let L be accepted by a 1-way deterministic reversal-bounded mul-
ticounter machine. Then L can be accepted by a 2-NPFA.

Proof. (sketch) We present the proof in terms of (P, V ), a prover-verifier system in
which the verifier uses public coins. It is known that such systems are equivalent
to 2-NPFA machines.

Let M be a 1-way reversal-bounded deterministic k-counter machine. We
describe a system (P, V ) (where V is a public coin 2-pfa) to simulate M . Let
the input to M be x#. We assume without loss of generality that each counter
exactly reverses once and on all accepted inputs, M halts with all counters
set to 0. Each counter thus goes through an increment phase followed by a
decrement phase. We will show the simulation for k = 1. Extension to arbitrary
k is not difficult. The basic idea behind the construction is as follows: Let M ′

be the simulating machine. M ′’s verifier starts simulating M on an input x by
making successive moves of M . Note that the initial phase of the simulation is the
increment phase. During this phase, the verifier does not need interaction with
the prover. As the simulation proceeds, it also needs to maintain the counter.
However, its finite control is not enough the maintain a counter. The way this
issue is dealt with is as follows: Suppose, the counter reaches the value I on
input x during the increment phase. Since the counter value is 0 at the end of
the computation, the counter is decremented exactly D = I times during the
decrement phase. Instead of explicitly simulating the counter, M ′ attempts to
verify that I =D using lemma 4. However, there is a problem with the decrement
phase since the moves ofM during this phase may depend on whether the counter
is 0 or not. M ′ does not have this information. This is where an interaction with
the prover is required.

In the decrement phase, each time M makes a move, the verifier asks the
prover if the counter value if 0, and the prover P responds. In addition, as
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explained above, the verifier simulates two variables I and D corresponding to
the values of the counter in the increment and decrement phase. When M ’s head
reaches the end-marker, if M enters an accepting state while the counter is still
positive, then V checks that d ≤ i. But if the counter becomes zero prior to
acceptance, then V checks that d = i. These checks are done using lemma 4 and
lemma 5 respectively. The prover will tell the verifier at the beginning of the
computation whether the checking to be done is equality checking or inequality
checking. Note that in order to do the checking, the variables I and D need
to be created many times. The details of this simulation are quite similar to
Theorem 2.1 in [3] where a simulation of a two counter machine is described.
The essential differences are that the counter machine simulated in [4] is not
reversal bounded, and the prover transmits the successive configurations of M ,
and that their system uses private coins. In our case, i is created by the verifier
itself, so it is always correct. The proof of correctness of the construction is
similar to that of [3] and so we omit the details.

We now prove the theorem stated in section 4 without proof:

Theorem 5. Let Lbal be the set of balanced parentheses over a two-letter alphabet
{[, ]}. The complement of Lbal can be accepted by a 2-NPFA augmented with a
pebble.

Proof. Let x be in the complement of Lbal. Then either x does not have an equal
number of [’s and ]’s, or there is a prefix y of x in which there are more ]’s
than [’s. The 2-NPFA machine M guesses one of these options and verifies it as
follows: The former involves using lemma 4. The latter involves first placing a
pebble to mark off y on the tape. Then, it uses lemma 5 to check the desired
property.
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